1
|
Jordan AS, Woods MJ, Cori JM, Chan JKM, Nicholas CL, Semmler J, Trinder J. Motor control of the palatoglossus and genioglossus during changes in breathing route. J Appl Physiol (1985) 2024; 137:1409-1417. [PMID: 39323393 DOI: 10.1152/japplphysiol.00055.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/22/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024] Open
Abstract
High activity of upper airway dilator muscles is thought to be critical in preventing sleep-related upper airway collapse. To date, most of the research regarding upper airway dilator muscles has focused on the genioglossus muscle, which protrudes the tongue and opens the retroglossal airway. However, collapse commonly occurs in the retropalatal region. We, therefore, aimed to examine the motor control of the palatoglossus muscle as well as investigate breathing route-related changes in genioglossus and palatoglossus motor units. Single motor unit recordings of the genioglossus and palatoglossus were made simultaneously in healthy individuals during wakefulness while breathing through the nose with the mouth closed (NMC), nose with mouth open (NMO), or orally (OMO). The palatoglossus was found to have all five motor unit firing patterns that have been observed in other upper airway dilator muscles, but during nasal breathing had a higher proportion of tonically active but inspiratory modulated motor units as compared with the genioglossus (67% vs. 30%). When still breathing nasally but with the mouth open, the units with an expiratory firing pattern in genioglossus, and all firing patterns in palatoglossus, increased their firing rates compared with nasal breathing with the mouth closed [genioglossus (GG): 17.8 ± 4.9 vs. 23.1 ± 4.8 Hz, palatoglossus (PG): 17.0 ± 4.0 vs. 19.3 ± 4.0 Hz]. Finally, oral breathing resulted in dramatic reductions in the number of palatoglossal motor units that were firing (35 units vs. 92 during nasal breathing). Palatoglossal activity may contribute importantly to airway collapsibility and may provide an alternate pathway for preventing sleep-related airway collapse.NEW & NOTEWORTHY The firing patterns of motor units in the palatoglossus have until now not been investigated, and how they and motor units in the genioglossus change with breathing route alteration was not known. This study has shown that the palatoglossus contains motor units with all the firing patterns observed in the genioglossus but in different proportions. Furthermore, breathing route changes alter units with different firing patterns differentially in the two muscles.
Collapse
Affiliation(s)
- Amy S Jordan
- Melbourne School of Psychological Sciences, University of Melbourne, Parkville, Victoria, Australia
- Institute for Breathing and Sleep, Austin Health, Heidelberg, Victoria, Australia
| | - Michael J Woods
- Melbourne School of Psychological Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Jennifer M Cori
- Melbourne School of Psychological Sciences, University of Melbourne, Parkville, Victoria, Australia
- Institute for Breathing and Sleep, Austin Health, Heidelberg, Victoria, Australia
| | - Julia K M Chan
- Melbourne School of Psychological Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Christian L Nicholas
- Melbourne School of Psychological Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - John Semmler
- Discipline of Physiology, School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia
| | - John Trinder
- Melbourne School of Psychological Sciences, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
2
|
Perger E, Bertoli S, Lombardi C. Pharmacotherapy for obstructive sleep apnea: targeting specific pathophysiological traits. Expert Rev Respir Med 2023; 17:663-673. [PMID: 37646222 DOI: 10.1080/17476348.2023.2241353] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/24/2023] [Indexed: 09/01/2023]
Abstract
INTRODUCTION The pathophysiology of obstructive sleep apnea (OSA) is multi-factorial and complex. Varying OSA's pathophysiological traits have been identified, including pharyngeal collapsibility, upper airway muscle reactivity, arousal threshold, and regulation of the ventilatory drive. Being CPAP of difficult tolerance and other interventions reserved to specific subpopulations new pharmacological treatments for OSA might be resolutive. AREAS COVERED Several existing and newly developed pharmacological drugs can impact one or more endotypes and could therefore be proposed as treatment options for sleep disordered breathing. With this review we will explore different pathophysiological traits as new targets for OSA therapy. This review will summarize the most promising pharmacological treatment for OSA accordingly with their mechanisms of action on upper airway collapsibility, muscle responsiveness, arousal threshold, and loop gain. EXPERT OPINION Only understanding the pathophysiological traits causing OSA in each patient and placing the disease in the framework of patient comorbidities, we will be able to evolve interventions toward OSA. The development of new drug's combinations will permit different approaches and different choices beside conventional treatments. In the next future, we hope that sleep specialists will select the treatment for a specific patient on the base of its pathophysiology, defining a precision medicine for OSA.
Collapse
Affiliation(s)
- Elisa Perger
- Sleep Disorders Center & Department of Cardiovascular, Neural and Metabolic Sciences, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Simona Bertoli
- Sleep Disorders Center & Department of Cardiovascular, Neural and Metabolic Sciences, Istituto Auxologico Italiano, IRCCS, Milan, Italy
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
- Lab of Nutrition and Obesity Research, Istituto Auxologico Italiano, IRCCS, Milan, Carolina
| | - Carolina Lombardi
- Sleep Disorders Center & Department of Cardiovascular, Neural and Metabolic Sciences, Istituto Auxologico Italiano, IRCCS, Milan, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
3
|
Carberry JC, Burke PGR, Osman AM, Jugé L, Toson B, Gandevia SC, Butler JE, Bilston LE, Eckert DJ. Regional genioglossus reflex responses to negative pressure pulses in people with obstructive sleep apnea. J Appl Physiol (1985) 2022; 133:755-765. [PMID: 35771222 DOI: 10.1152/japplphysiol.00083.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tongue and upper airway dilator muscle movement patterns during quiet breathing vary in people with obstructive sleep apnea (OSA). Many patients have inadequate or counterproductive responses to inspiratory negative airway pressure that likely contributes to their OSA. This may be due, at least in part, to inadequate or non-homogeneous reflex drive to different regions of the largest upper airway dilator, genioglossus. To investigate potential regional heterogeneity of genioglossus reflex responses in OSA, brief suction pulses were applied via nasal breathing mask and electromyogram (EMG) was recorded in 4 regions (anterior oblique, anterior horizontal, posterior oblique, posterior horizontal) using intramuscular fine wire electrodes in 15 people with OSA. Genioglossus short-latency reflex excitation amplitude had regional heterogeneity (horizontal vs. oblique regions) when expressed in absolute units but homogeneity when normalized as a percentage of the immediate (100ms) pre-stimulus EMG. Regional variability in reflex morphology (excitation and inhibition) was present in one third of participants. Minimum cross-sectional area (CSA) of the pharyngeal airway quantified using MRI and may be related to the amplitude of the short-latency reflex response to negative pressure such that we found that people with a smaller CSA tended to have greater reflex amplitude (e.g. horizontal region r2=0.41, p=0.01). These findings highlight the complexity of genioglossus reflex control, the potential for regional heterogeneity and the functional importance of upper airway anatomy in mediating genioglossus reflex responses to rapid changes in negative pressure in OSA.
Collapse
Affiliation(s)
- Jayne C Carberry
- Adelaide Institute for Sleep Health, Flinders University, Adelaide, SA, Australia.,Neuroscience Research Australia, Sydney, New South Wales, Australia.,University College Dublin, School of Medicine, Ireland
| | - Peter George Redmayne Burke
- Neuroscience Research Australia, Sydney, New South Wales, Australia.,UNSW Sydney, Randwick, Australia.,Department of Biomedical Sciences, Macquarie University, Australia
| | - Amal M Osman
- Adelaide Institute for Sleep Health, Flinders University, Adelaide, SA, Australia.,Neuroscience Research Australia, Sydney, New South Wales, Australia.,UNSW Sydney, Randwick, Australia
| | - Lauriane Jugé
- Neuroscience Research Australia, Sydney, New South Wales, Australia.,UNSW Sydney, Randwick, Australia
| | - Barbara Toson
- Adelaide Institute for Sleep Health, Flinders University, Adelaide, SA, Australia
| | - Simon C Gandevia
- Neuroscience Research Australia, Sydney, New South Wales, Australia.,UNSW Sydney, Randwick, Australia
| | - Jane E Butler
- Neuroscience Research Australia, Sydney, New South Wales, Australia.,UNSW Sydney, Randwick, Australia
| | - Lynne E Bilston
- Neuroscience Research Australia, Sydney, New South Wales, Australia.,UNSW Sydney, Randwick, Australia
| | - Danny J Eckert
- Adelaide Institute for Sleep Health, Flinders University, Adelaide, SA, Australia.,Neuroscience Research Australia, Sydney, New South Wales, Australia.,UNSW Sydney, Randwick, Australia
| |
Collapse
|
4
|
Hensen HA, Carberry JC, Krishnan AV, Osman AM, Mosch AMH, Toson B, Tay KL, Eckert DJ. Impaired pharyngeal reflex responses to negative pressure: A novel cause of sleep apnea in multiple sclerosis. J Appl Physiol (1985) 2022; 132:815-823. [PMID: 35050793 DOI: 10.1152/japplphysiol.00240.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Obstructive sleep apnea (OSA) is common in people with multiple sclerosis (MS). However, people with MS often do not have 'typical' anatomical risk factors (i.e. non-obese and female predominance). Accordingly, non-anatomical factors such as impaired upper airway muscle function may be particularly important for OSA pathogenesis in MS. Therefore, this study aimed to investigate genioglossus (largest upper-airway dilator muscle) reflex responses to brief pulses of upper airway negative pressure in people with OSA and MS. 11 people with MS and OSA and 10 OSA controls without MS matched for age, sex and OSA severity were fitted with a nasal mask, pneumotachograph, choanal and epiglottic pressure sensors and intramuscular electrodes into genioglossus. Approximately 60 brief (250ms) negative pressure pulses (~-12cmH2O mask pressure) were delivered every 2-6 breaths at random during quiet nasal breathing during wakefulness to determine genioglossus EMG reflex responses (timing, amplitude and morphology). Where available, recent clinical MRI brain scans were evaluated for the number, size and location of brainstem lesions in the MS group. When present, genioglossus reflex excitation responses were similar between MS participants and controls (e.g. peak excitation amplitude 229±85 vs. 282±98 % baseline, p=0.17). However, ~30% of people with MS had either an abnormal (predominantly inhibition) or no protective excitation reflex. Participants with MS without a reflex had multiple brainstem lesions including in the hypoglossal motor nucleus which may impair sensory processing and/or efferent output. Impaired pharyngeal reflex function may be an important contributor to OSA pathogenesis for a proportion of people with MS.
Collapse
Affiliation(s)
- Hanna A Hensen
- Neuroscience Research Australia (NeuRA), Sydney, New South Wales, Australia.,School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Jayne C Carberry
- Adelaide Institute for Sleep Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia.,UCD School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | | | - Amal M Osman
- Adelaide Institute for Sleep Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia
| | - Anne-Marie H Mosch
- Neuroscience Research Australia (NeuRA), Sydney, New South Wales, Australia
| | - Barbara Toson
- Neuroscience Research Australia (NeuRA), Sydney, New South Wales, Australia.,Adelaide Institute for Sleep Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia
| | - Kevin L Tay
- Prince of Wales Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Danny J Eckert
- Neuroscience Research Australia (NeuRA), Sydney, New South Wales, Australia.,Adelaide Institute for Sleep Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
5
|
Pépin JL, Eastwood P, Eckert DJ. Novel avenues to approach non-CPAP therapy and implement comprehensive OSA care. Eur Respir J 2021; 59:13993003.01788-2021. [PMID: 34824053 DOI: 10.1183/13993003.01788-2021] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/16/2021] [Indexed: 11/05/2022]
Abstract
Recent advances in obstructive sleep apnoea (OSA) pathophysiology and translational research have opened new lines of investigation for OSA treatment and management. Key goals of such investigations are to provide efficacious, alternative treatment and management pathways that are better tailored to individual risk profiles to move beyond the traditional, continuous positive airway pressure (CPAP)-focused, "one size fits all", trial and error approach which is too frequently inadequate for many patients. Identification of different clinical manifestations of OSA (clinical phenotypes) and underlying pathophysiological phenotypes (endotypes), that contribute to OSA have provided novel insights into underlying mechanisms and have underpinned these efforts. Indeed, this new knowledge has provided the framework for precision medicine for OSA to improve treatment success rates with existing non-CPAP therapies such as mandibular advancement devices and upper airway surgery, and newly developed therapies such as hypoglossal nerve stimulation and emerging therapies such as pharmacotherapies and combination therapy. These concepts have also provided insight into potential physiological barriers to CPAP adherence for certain patients. This review summarises the recent advances in OSA pathogenesis, non-CPAP treatment, clinical management approaches and highlights knowledge gaps for future research. OSA endotyping and clinical phenotyping, risk stratification and personalised treatment allocation approaches are rapidly evolving and will further benefit from the support of recent advances in e-health and artificial intelligence.
Collapse
Affiliation(s)
- Jean-Louis Pépin
- HP2 Laboratory, INSERM U1042, University Grenoble Alpes, Grenoble, France .,EFCR Laboratory, Grenoble Alpes University Hospital, Grenoble, France
| | - Peter Eastwood
- Flinders Health and Medical Research Institute and Adelaide Institute for Sleep Health, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Danny J Eckert
- Flinders Health and Medical Research Institute and Adelaide Institute for Sleep Health, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| |
Collapse
|
6
|
Targeting Endotypic Traits with Medications for the Pharmacological Treatment of Obstructive Sleep Apnea. A Review of the Current Literature. J Clin Med 2019; 8:jcm8111846. [PMID: 31684047 PMCID: PMC6912255 DOI: 10.3390/jcm8111846] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 12/28/2022] Open
Abstract
Obstructive sleep apnea (OSA) is a highly prevalent condition with few therapeutic options. To date there is no approved pharmacotherapy for this disorder, but several attempts have been made in the past and are currently ongoing to find one. The recent identification of multiple endotypes underlying this disorder has oriented the pharmacological research towards tailored therapies targeting specific pathophysiological traits that contribute differently to cause OSA in each patient. In this review we retrospectively analyze the literature on OSA pharmacotherapy dividing the medications tested on the basis of the four main endotypes: anatomy, upper airway muscle activity, arousal threshold and ventilatory instability (loop gain). We show how recently introduced drugs for weight loss that modify upper airway anatomy may play an important role in the management of OSA in the near future, and promising results have been obtained with drugs that increase upper airway muscle activity during sleep and reduce loop gain. The lack of a medication that can effectively increase the arousal threshold makes this strategy less encouraging, although recent studies have shown that the use of certain sedatives do not worsen OSA severity and could actually improve patients' sleep quality.
Collapse
|
7
|
Abstract
The prevalence of obstructive sleep apnea (OSA) is considered to be very high in western industrialized countries. There are conservative and surgical forms of treatment for OSA; however, the pathophysiology is largely unexplained and cannot be explained by anatomical abnormalities alone. In recent years, a number of non-anatomical factors have been found that favor the development of OSA. These include the respiratory excitation threshold (arousals), the respiratory drive (loop gain), as well as the control and function of the muscular upper airway dilators. The understanding of the individual pathophysiological processes may be helpful in the future to develop individual treatment approaches for patients.
Collapse
|
8
|
Herr KB, Mann GL, Kubin L. Modulation of Motoneuronal Activity With Sleep-Wake States and Motoneuronal Gene Expression Vary With Circadian Rest-Activity Cycle. Front Integr Neurosci 2018; 12:32. [PMID: 30131680 PMCID: PMC6090895 DOI: 10.3389/fnint.2018.00032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 07/17/2018] [Indexed: 12/16/2022] Open
Abstract
In both nocturnal and diurnal mammals, sleep and wake states differentially aggregate during the rest and active phases of circadian cycle. Closely associated with this rhythm are prominent changes in motor activity. Here, we quantified the magnitudes of electromyographic activity (EMG) measured separately during different sleep-wake states across the rest-activity cycle, thereby separating amplitude measurements from the known dependance of the timing of wake and sleep on the phase of circadian rest-activity cycle. In seven rats chronically instrumented for electroencephalogram and EMG monitoring, nuchal and lingual muscle EMGs were measured as a commonly used postural output in behavioral sleep studies and as a cranial motor output with potential clinical relevance in obstructive sleep apnea (OSA) syndrome, respectively. We found that, for both motor outputs, EMG measured during wake episodes was significantly higher during the active phase, than during the rest phase, of circadian cycle. The corresponding patterns observed during slow-wave sleep (SWS) and rapid eye movement sleep (REMS) were different. During SWS, lingual EMG was very low and did not differ between the rest and active phase, whereas nuchal EMG had pattern similar to that during wakefulness. During REMS, lingual EMG was, paradoxically, higher during the rest phase due to increased twitching activity, whereas nuchal EMG was very low throughout the rest and active periods (postural atonia). In the follow-up comparison of differences in transcript levels in tissue samples obtained from the medullary hypoglossal motor nucleus and inferior olive (IO) at rest onset and active period onset conducted using microarrays, we identified significant differences for multiple transcripts representing the core members of the molecular circadian clock and other genes important for the regulation of cell metabolism and activity (up to n = 130 at p < 0.001). Collectively, our data indicate that activity of motoneurons is regulated to optimally align it with the rest-activity cycle, with the process possibly involving transcriptional mechanisms at the motoneuronal level. Our data also suggest that OSA patients may be relatively better protected against sleep-related upper airway obstructions during REMS episodes generated during the rest phase, than during active phase, of the circadian cycle.
Collapse
Affiliation(s)
- Kate B Herr
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Graziella L Mann
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Leszek Kubin
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
9
|
Abstract
The prevalence of obstructive sleep apnea (OSA) continues to rise. So too do the health, safety, and economic consequences. On an individual level, the causes and consequences of OSA can vary substantially between patients. In recent years, four key contributors to OSA pathogenesis or "phenotypes" have been characterized. These include a narrow, crowded, or collapsible upper airway "anatomical compromise" and "non-anatomical" contributors such as ineffective pharyngeal dilator muscle function during sleep, a low threshold for arousal to airway narrowing during sleep, and unstable control of breathing (high loop gain). Each of these phenotypes is a target for therapy. This review summarizes the latest knowledge on the different contributors to OSA with a focus on measurement techniques including emerging clinical tools designed to facilitate translation of new cause-driven targeted approaches to treat OSA. The potential for some of the specific pathophysiological causes of OSA to drive some of the key symptoms and consequences of OSA is also highlighted.
Collapse
Affiliation(s)
- Amal M Osman
- Neuroscience Research Australia (NeuRA).,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Sophie G Carter
- Neuroscience Research Australia (NeuRA).,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Jayne C Carberry
- Neuroscience Research Australia (NeuRA).,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Danny J Eckert
- Neuroscience Research Australia (NeuRA).,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
10
|
Hicks A, Cori JM, Jordan AS, Nicholas CL, Kubin L, Semmler JG, Malhotra A, McSharry DGP, Trinder JA. Mechanisms of the deep, slow-wave, sleep-related increase of upper airway muscle tone in healthy humans. J Appl Physiol (1985) 2017; 122:1304-1312. [PMID: 28255086 DOI: 10.1152/japplphysiol.00872.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 02/14/2017] [Accepted: 02/23/2017] [Indexed: 12/21/2022] Open
Abstract
Upper airway muscle activity is reportedly elevated during slow-wave sleep (SWS) when compared with lighter sleep stages. To uncover the possible mechanisms underlying this elevation, we explored the correlation between different indices of central and reflex inspiratory drive, such as the changes in airway pressure and end-expiratory CO2 and the changes in the genioglossus (GG) and tensor palatini (TP) muscle activity accompanying transitions from the lighter N2 to the deeper N3 stage of non-rapid eye movement (NREM) sleep in healthy young adult men. Forty-six GG and 38 TP continuous electromyographic recordings were obtained from 16 men [age: 20 ± 2.5 (SD) yr; body mass index: 22.5 ± 1.8 kg/m2] during 32 transitions from NREM stages N2 to N3. GG but not TP activity increased following transition into N3 sleep, and the increase was positively correlated with more negative airway pressure, increased end-tidal CO2, increased peak inspiratory flow, and increased minute ventilation. None of these correlations was statistically significant for TP. Complementary GG and TP single motor unit analysis revealed a mild recruitment of GG units and derecruitment of TP units during the N2 to N3 transitions. These findings suggest that, in healthy individuals, the increased GG activity during SWS is driven primarily by reflex stimulation of airway mechanoreceptors and central chemoreceptors.NEW & NOTEWORTHY The characteristic increase in the activity of the upper airway dilator muscle genioglossus during slow-wave sleep (SWS) in young healthy individuals was found to be related to increased stimulation of airway mechanoreceptors and central chemoreceptors. No evidence was found for the presence of a central SWS-specific drive stimulating genioglossus activity in young healthy individuals. However, it remains to be determined whether a central drive exists in obstructive sleep apnea patients.
Collapse
Affiliation(s)
- Amelia Hicks
- School of Psychological Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Jennifer M Cori
- School of Psychological Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Amy S Jordan
- School of Psychological Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Christian L Nicholas
- School of Psychological Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Leszek Kubin
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - John G Semmler
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Atul Malhotra
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of California at San Diego, San Diego, California; and
| | - David G P McSharry
- School of Medicine and Medical Science, University College Dublin and Mater Misericordiae University Hospital, Dublin, Ireland
| | - John A Trinder
- School of Psychological Sciences, University of Melbourne, Melbourne, Victoria, Australia;
| |
Collapse
|
11
|
Woods MJ, Nicholas CL, Semmler JG, Chan JKM, Jordan AS, Trinder J. Common drive to the upper airway muscle genioglossus during inspiratory loading. J Neurophysiol 2015; 114:2883-92. [PMID: 26378207 DOI: 10.1152/jn.00738.2014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 09/14/2015] [Indexed: 12/14/2022] Open
Abstract
Common drive is thought to constitute a central mechanism by which the efficiency of a motor neuron pool is increased. This study tested the hypothesis that common drive to the upper airway muscle genioglossus (GG) would increase with increased respiratory drive in response to an inspiratory load. Respiration, GG electromyographic (EMG) activity, single-motor unit activity, and coherence in the 0-5 Hz range between pairs of GG motor units were assessed for the 30 s before an inspiratory load, the first and second 30 s of the load, and the 30 s after the load. Twelve of twenty young, healthy male subjects provided usable data, yielding 77 pairs of motor units: 2 Inspiratory Phasic, 39 Inspiratory Tonic, 15 Expiratory Tonic, and 21 Tonic. Respiratory and GG inspiratory activity significantly increased during the loads and returned to preload levels during the postload periods (all showed significant quadratic functions over load trials, P < 0.05). As hypothesized, common drive increased during the load in inspiratory modulated motor units to a greater extent than in expiratory/tonic motor units (significant load × discharge pattern interaction, P < 0.05). Furthermore, this effect persisted during the postload period. In conclusion, common drive to inspiratory modulated motor units was elevated in response to increased respiratory drive. The postload elevation in common drive was suggestive of a poststimulus activation effect.
Collapse
Affiliation(s)
- Michael J Woods
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Victoria, Australia; and
| | - Christian L Nicholas
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Victoria, Australia; and
| | - John G Semmler
- School of Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Julia K M Chan
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Victoria, Australia; and
| | - Amy S Jordan
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Victoria, Australia; and
| | - John Trinder
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Victoria, Australia; and
| |
Collapse
|
12
|
Eckert DJ, Malhotra A, Wellman A, White DP. Trazodone increases the respiratory arousal threshold in patients with obstructive sleep apnea and a low arousal threshold. Sleep 2014; 37:811-9. [PMID: 24899767 PMCID: PMC4044741 DOI: 10.5665/sleep.3596] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES The effect of common sedatives on upper airway physiology and breathing during sleep in obstructive sleep apnea (OSA) has been minimally studied. Conceptually, certain sedatives may worsen OSA in some patients. However, sleep and breathing could improve with certain sedatives in patients with OSA with a low respiratory arousal threshold. This study aimed to test the hypothesis that trazodone increases the respiratory arousal threshold in patients with OSA and a low arousal threshold. Secondary aims were to examine the effects of trazodone on upper airway dilator muscle activity, upper airway collapsibility, and breathing during sleep. DESIGN Patients were studied on 4 separate nights according to a within-subjects cross-over design. SETTING Sleep physiology laboratory. PATIENTS Seven patients with OSA and a low respiratory arousal threshold. INTERVENTIONS In-laboratory polysomnograms were obtained at baseline and after 100 mg of trazodone was administered, followed by detailed overnight physiology experiments under the same conditions. During physiology studies, continuous positive airway pressure was transiently lowered to measure arousal threshold (negative epiglottic pressure prior to arousal), dilator muscle activity (genioglossus and tensor palatini), and upper airway collapsibility (Pcrit). MEASUREMENTS AND RESULTS Trazodone increased the respiratory arousal threshold by 32 ± 6% (-11.5 ± 1.4 versus -15.3 ± 2.2 cmH2O, P < 0.01) but did not alter the apnea-hypopnea index (39 ± 12 versus 39 ± 11 events/h sleep, P = 0.94). Dilator muscle activity and Pcrit also did not systematically change with trazodone. CONCLUSIONS Trazodone increases the respiratory arousal threshold in patients with obstructive sleep apnea and a low arousal threshold without major impairment in dilator muscle activity or upper airway collapsibility. However, the magnitude of change in arousal threshold was insufficient to overcome the compromised upper airway anatomy in these patients.
Collapse
Affiliation(s)
- Danny J. Eckert
- Brigham and Women's Hospital, Division of Sleep Medicine, Sleep Disorders Program and Harvard Medical School, Boston, MA
- Neuroscience Research Australia (NeuRA), and the School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Atul Malhotra
- Brigham and Women's Hospital, Division of Sleep Medicine, Sleep Disorders Program and Harvard Medical School, Boston, MA
- Pulmonary and Critical Care Division, University of California San Diego, La Jolla, CA
| | - Andrew Wellman
- Brigham and Women's Hospital, Division of Sleep Medicine, Sleep Disorders Program and Harvard Medical School, Boston, MA
| | - David P. White
- Brigham and Women's Hospital, Division of Sleep Medicine, Sleep Disorders Program and Harvard Medical School, Boston, MA
| |
Collapse
|