1
|
Li L, Zhang L, Zhang Z, Keyhani NO, Xin Q, Miao Z, Zhu Z, Wang Z, Qiu J, Zheng N. Comparative transcriptome and histomorphology analysis of testis tissues from mulard and Pekin ducks. Arch Anim Breed 2020; 63:303-313. [PMID: 32964101 PMCID: PMC7500171 DOI: 10.5194/aab-63-303-2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 07/06/2020] [Indexed: 11/25/2022] Open
Abstract
Testicular transcriptomes were analyzed to characterize the
differentially expressed genes between mulard and Pekin ducks, which will
help establish gene expression datasets to assist in further determination
of the mechanisms of genetic sterility in mulard ducks. Paraffin sections
were made to compare the developmental differences in testis tissue between
mulard and Pekin ducks. Comparative transcriptome sequencing of testis
tissues was performed, and the expression of candidate genes was verified by
quantitative reverse transcription-polymerase chain reaction (qRT-PCR). In
mulard ducks, spermatogonia and spermatocytes were arranged in a disordered
manner, and no mature sperm were observed in the testis tissue. However,
different stages of development of sperm were observed in seminiferous
tubules in the testis tissue of Pekin ducks. A total of 43.84 Gb of clean
reads were assembled into 193 535 UniGenes. Of these, 2131 transcripts
exhibited differential expression (false discover rate <0.001 and
fold change ≥2), including 997 upregulated and 1134 downregulated
transcripts in mulard ducks as compared to those in Pekin duck testis
tissues. Several upregulated genes were related to reproductive functions,
including ryanodine receptor 2 (RYR2), calmodulin (CALM), argininosuccinate
synthase and delta-1-pyrroline-5-carboxylate synthetase ALDH18A1 (P5CS).
Downregulated transcripts included the testis-specific
serine/threonine-protein kinase 3, aquaporin-7 (AQP7) and glycerol kinase
GlpK (GK). The 10 related transcripts involved in the developmental biological
process were identified by GO (Gene Ontology) annotation. The KEGG (Kyoto
Encyclopedia of Genes and Genomes) pathways indicated that peroxisome
proliferator-activated receptors (PPARs) and calcium signaling pathways were
significantly (P<0.001) associated with normal testis physiology.
The differential expression of select genes implicated in reproductive
processes was verified by qRT-PCR, which was consistent with the expression
trend of transcriptome sequencing (RNA-seq). Differentially expressed candidate genes RYR2, CALM, P5CS,
AQP7 and GK were identified by transcriptional analysis in mulard and Pekin
duck testes. These were important for the normal development of the male
duck reproductive system. These data provide a framework for the further
exploration of the molecular and genetic mechanisms of sterility in mulard
ducks.
Highlights. The mulard duck is an intergeneric sterile hybrid
offspring resulting from mating between Muscovy and Pekin ducks. The
transcriptomes of testis tissue from mulard and Pekin ducks were
systematically characterized, and differentially expressed genes were screened, in
order to gain insights into potential gonad gene expression mechanisms
contributing to genetic sterility in mulard ducks.
Collapse
Affiliation(s)
- Li Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Linli Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Zhenghong Zhang
- College of Life Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Nemat O Keyhani
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Qingwu Xin
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Zhongwei Miao
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Zhiming Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Zhengchao Wang
- College of Life Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Junzhi Qiu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Nenzhu Zheng
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| |
Collapse
|
2
|
Wu T, Zhang X, Tian M, Tao Q, Zhang L, Ding Y, Zhang X, Yin Z. Transcriptome analysis reveals candidate genes involved in splay leg syndrome in piglets. J Appl Genet 2018; 59:475-483. [PMID: 29978277 DOI: 10.1007/s13353-018-0454-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 06/25/2018] [Accepted: 06/27/2018] [Indexed: 01/08/2023]
Abstract
Splay leg is frequently observed in newborn piglets and leads to economic loss as well as welfare concerns. However, the etiology and pathogenesis of splay leg syndrome in piglets are still poorly understood. The aims of this paper were to characterize changes in the transcriptome of splay leg piglets and identify candidate genes responsible for this disease. We chose three splay leg piglets and their healthy full sibs, and constructed six RNA libraries using skeletal muscle samples from both groups and identified the differentially expressed genes between the two groups using RNA-seq. A total of 555 differentially expressed genes were identified, of which 216 were up-regulated and 339 genes were down-regulated in the splay leg group relative to the healthy group. In addition, 321 significantly enriched GO terms and 12 significantly enriched KEGG pathways were identified. FBXO32 is one of the ten most differentially expressed genes in our experiment, and it is regulated by the significantly enriched pathway (PI3K-Akt). The overexpression of FBXO32 which leads to the process of muscle atrophy might be responsible for congenital splay leg in piglets. The result of this study could help improve understanding of the molecular mechanism of congenital splay leg syndrome.
Collapse
Affiliation(s)
- Tao Wu
- Key Laboratory of Local Animal Genetic Resources Conservation and Bio-breeding of Anhui province, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province, People's Republic of China
| | - Xu Zhang
- Key Laboratory of Local Animal Genetic Resources Conservation and Bio-breeding of Anhui province, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province, People's Republic of China
| | - Mi Tian
- Key Laboratory of Local Animal Genetic Resources Conservation and Bio-breeding of Anhui province, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province, People's Republic of China
| | - Qiangqiang Tao
- Key Laboratory of Local Animal Genetic Resources Conservation and Bio-breeding of Anhui province, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province, People's Republic of China
| | - Liang Zhang
- Key Laboratory of Local Animal Genetic Resources Conservation and Bio-breeding of Anhui province, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province, People's Republic of China
| | - Yueyun Ding
- Key Laboratory of Local Animal Genetic Resources Conservation and Bio-breeding of Anhui province, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province, People's Republic of China
| | - Xiaodong Zhang
- Key Laboratory of Local Animal Genetic Resources Conservation and Bio-breeding of Anhui province, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province, People's Republic of China.
| | - Zongjun Yin
- Key Laboratory of Local Animal Genetic Resources Conservation and Bio-breeding of Anhui province, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province, People's Republic of China.
| |
Collapse
|
3
|
Zhang X, Cao C, Liu Y, Qi H, Zhang W, Hao C, Chen H, Zhang Q, Zhang W, Gao M, Wang J, Ma B. Comparative liver transcriptome analysis in ducklings infected with duck hepatitis A virus 3 (DHAV-3) at 12 and 48 hours post-infection through RNA-seq. Vet Res 2018; 49:52. [PMID: 29925406 PMCID: PMC6011267 DOI: 10.1186/s13567-018-0545-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 02/23/2018] [Indexed: 01/18/2023] Open
Abstract
Duck hepatitis A virus 3 (DHAV-3), the only member of the novel genus Avihepatovirus, in the family Picornaviridae, can cause significant economic losses for duck farms in China. Reports on the pathogenicity and the antiviral molecular mechanisms of the lethal DHAV-3 strain in ducklings are inadequate and remain poorly understood. We conducted global gene expression profiling and screened differentially expressed genes (DEG) of duckling liver tissues infected with lethal DHAV-3. There were 1643 DEG and 8979 DEG when compared with mock ducklings at 12 hours post-infection (hpi) and at 48 hpi, respectively. Gene pathway analysis of DEG highlighted mainly biological processes involved in metabolic pathways, host immune responses, and viral invasion. The results may provide valuable information for us to explore the pathogenicity of the virulent DHAV-3 strain and to improve our understanding of host–virus interactions.
Collapse
Affiliation(s)
- Xuelian Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.,College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong Province, China
| | - Chong Cao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yue Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Haihui Qi
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Wenjing Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Chunxue Hao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Haotian Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Qi Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Wenlong Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Mingchun Gao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Junwei Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China. .,Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeast Agricultural University, Harbin, 150030, China.
| | - Bo Ma
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China. .,Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
4
|
Doyle JM, Bell DA, Bloom PH, Emmons G, Fesnock A, Katzner TE, LaPré L, Leonard K, SanMiguel P, Westerman R, Andrew DeWoody J. New insights into the phylogenetics and population structure of the prairie falcon (Falco mexicanus). BMC Genomics 2018; 19:233. [PMID: 29618317 PMCID: PMC5885362 DOI: 10.1186/s12864-018-4615-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 03/22/2018] [Indexed: 12/30/2022] Open
Abstract
Background Management requires a robust understanding of between- and within-species genetic variability, however such data are still lacking in many species. For example, although multiple population genetics studies of the peregrine falcon (Falco peregrinus) have been conducted, no similar studies have been done of the closely-related prairie falcon (F. mexicanus) and it is unclear how much genetic variation and population structure exists across the species’ range. Furthermore, the phylogenetic relationship of F. mexicanus relative to other falcon species is contested. We utilized a genomics approach (i.e., genome sequencing and assembly followed by single nucleotide polymorphism genotyping) to rapidly address these gaps in knowledge. Results We sequenced the genome of a single female prairie falcon and generated a 1.17 Gb (gigabases) draft genome assembly. We generated maximum likelihood phylogenetic trees using complete mitochondrial genomes as well as nuclear protein-coding genes. This process provided evidence that F. mexicanus is an outgroup to the clade that includes the peregrine falcon and members of the subgenus Hierofalco. We annotated > 16,000 genes and almost 600,000 high-quality single nucleotide polymorphisms (SNPs) in the nuclear genome, providing the raw material for a SNP assay design featuring > 140 gene-associated markers and a molecular-sexing marker. We subsequently genotyped ~ 100 individuals from California (including the San Francisco East Bay Area, Pinnacles National Park and the Mojave Desert) and Idaho (Snake River Birds of Prey National Conservation Area). We tested for population structure and found evidence that individuals sampled in California and Idaho represent a single panmictic population. Conclusions Our study illustrates how genomic resources can rapidly shed light on genetic variability in understudied species and resolve phylogenetic relationships. Furthermore, we found evidence of a single, randomly mating population of prairie falcons across our sampling locations. Prairie falcons are highly mobile and relatively rare long-distance dispersal events may promote gene flow throughout the range. As such, California’s prairie falcons might be managed as a single population, indicating that management actions undertaken to benefit the species at the local level have the potential to influence the species as a whole. Electronic supplementary material The online version of this article (10.1186/s12864-018-4615-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jacqueline M Doyle
- Department of Biological Sciences, Towson University, 8000 York Rd, Baltimore, MD, 21212, USA. .,Department of Forestry and Natural Resources, Purdue University, 715 W. State Street, West Lafayette, IN, 47907, USA.
| | - Douglas A Bell
- East Bay Regional Park District, 2950 Peralta Oaks Court, Oakland, CA, 94605, USA.,Department of Ornithology and Mammalogy, California Academy of Sciences, 55 Concourse Drive, Golden Gate Park, San Francisco, CA, 94118, USA
| | - Peter H Bloom
- Bloom Research Inc., 1820 S. Dunsmuir, Los Angeles, CA, 90019, USA
| | - Gavin Emmons
- National Park Service, Pinnacles National Park, 5000 Highway 146, Paicines, CA, 95043, USA
| | - Amy Fesnock
- California State Office, Bureau of Land Management, 2800 Cottage Way, Suite W-1928, Sacramento, CA, 95825, USA
| | - Todd E Katzner
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 970 Lusk Street, Boise, ID, 83706, USA
| | - Larry LaPré
- Bureau of Land Management, California Desert District, 22835 Calle San Juan De Los Lagos, Moreno Valley, CA, 92553, USA
| | - Kolbe Leonard
- Department of Computer and Information Sciences, Towson University, 8000 York Rd, Baltimore, MD, 21212, USA
| | - Phillip SanMiguel
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
| | - Rick Westerman
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
| | - J Andrew DeWoody
- Department of Forestry and Natural Resources, Purdue University, 715 W. State Street, West Lafayette, IN, 47907, USA.,Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN, 47907, USA
| |
Collapse
|