1
|
Li G, Du J, Li X, Zhuge S, Ren S, Wu M, Ma H, Guo X, Chen Z, Ding H. bk-5 214S2L , an allelic variant of bk-5, as high-quality silage maize genetic resource. Front Genet 2025; 16:1483839. [PMID: 40092558 PMCID: PMC11906420 DOI: 10.3389/fgene.2025.1483839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 02/11/2025] [Indexed: 03/19/2025] Open
Abstract
Introduction Stem brittleness significantly affects both yield and quality of maize. Methods Using phenotypic identification and sequence analysis, we identified a new brittle stalk maize mutant. Furthermore, we assessed its feeding value by content determination of cellulose, hemicellulose, lignin crude fiber, starch, and protein contents. Results Here, we identified a brittle stalk maize mutant, bk-5 214S2L , an allelic variant of bk-5. The stem brittleness of bk-5 214S2L was similar to that of bk-5, but not identical. Unlike bk-5, bk-5 214S2L leaves did not fall off completely and its stems did not break in windy conditions. We identified a missense mutation (C>T) in the fifth exon of the candidate gene Zm00001d043477, resulting in an amino acid change from serine to leucine at position 214. A significant reduction in cell wall thickness in the leaf veins and stems of bk-5 214S2L compared with the inbred line RP125. Among the major cell wall components in stems and leaves, total cellulose, hemicellulose, and lignin were lower in bk-5 214S2L than in RP125. We also evaluated the application value of bk-5 214S2L silage and found that the detergent fiber contents of bk-5 214S2L stems were significantly reduced compared with RP125, while the crude fiber, starch, and protein contents remained unchanged. The reduced tannin content improved the palatability of the silage for livestock. Conclusion Overall, bk-5 214S2L , an allelic variant of bk-5, is a high-quality genetic resource for breeding forage and grain-feed maize.
Collapse
Affiliation(s)
- Gang Li
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Jiyuan Du
- National Key Laboratory of Wheat Breeding, College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Xiaohu Li
- National Key Laboratory of Wheat Breeding, College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Shilin Zhuge
- National Key Laboratory of Wheat Breeding, College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Shuolin Ren
- National Key Laboratory of Wheat Breeding, College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Min Wu
- National Key Laboratory of Wheat Breeding, College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Haoran Ma
- National Key Laboratory of Wheat Breeding, College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Xinrui Guo
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Ziqiang Chen
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Haiping Ding
- National Key Laboratory of Wheat Breeding, College of Life Sciences, Shandong Agricultural University, Taian, China
| |
Collapse
|
2
|
Wang Y, Gou C, Chen L, Liao Y, Zhang H, Luo L, Ji J, Qi Y. Solid-State Fermentation with White Rot Fungi ( Pleurotus Species) Improves the Chemical Composition of Highland Barley Straw as a Ruminant Feed and Enhances In Vitro Rumen Digestibility. J Fungi (Basel) 2023; 9:1156. [PMID: 38132757 PMCID: PMC10744516 DOI: 10.3390/jof9121156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Lignin degradation is important for enhancing the digestibility and improving the nutritive quality of ruminant feeds. White rot fungi are well known for their bioconversion of lignocellulosic biomass. The objective of this paper was to evaluate whether Lentinus sajor-caju, Pleurotus ostreatus, Phyllotopsis rhodophylla, Pleurotus djamor, Pleurotus eryngii, and Pleurotus citrinopileatus treatments altered the chemical compositions of highland barley straw constituents and enhanced their nutritional value as a ruminant feed. All white rot fungi significantly increased the relative crude protein (CP), ethyl ether extract (EE), starch, soluble protein (SP), and non-protein nitrogen (NPN) contents but decreased the ash, neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin (ADL), and acid detergent insoluble protein (ADFIP) contents. In addition, L. sajor-caju treatment increased (p < 0.001) the levels of PA, PB2, PB3, CA, CB1, CB2, and CNSC, but reduced (p < 0.001) the PC and CC in the solid-state fermentation of highland barley straw. Maximum ligninlysis (50.19%) was optimally produced in the presence of 1.53% glucose and 2.29% urea at 22.72 ℃. The in vitro dry matter digestibility and total volatile fatty acid concentrations of fermented highland barley straw, as well as the fermentability, were optimized and improved with L. sajor-caju, which degraded the lignocellulose and improved the nutritional value of highland barley straw as a ruminant feed.
Collapse
Affiliation(s)
- Yuqiong Wang
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China; (Y.W.); (L.C.); (H.Z.); (L.L.); (J.J.); (Y.Q.)
| | - Changlong Gou
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China; (Y.W.); (L.C.); (H.Z.); (L.L.); (J.J.); (Y.Q.)
| | - Liming Chen
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China; (Y.W.); (L.C.); (H.Z.); (L.L.); (J.J.); (Y.Q.)
| | - Yangci Liao
- Institute of Pratacultural, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850000, China;
| | - Hang Zhang
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China; (Y.W.); (L.C.); (H.Z.); (L.L.); (J.J.); (Y.Q.)
| | - Lilong Luo
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China; (Y.W.); (L.C.); (H.Z.); (L.L.); (J.J.); (Y.Q.)
| | - Jiahang Ji
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China; (Y.W.); (L.C.); (H.Z.); (L.L.); (J.J.); (Y.Q.)
| | - Yu Qi
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China; (Y.W.); (L.C.); (H.Z.); (L.L.); (J.J.); (Y.Q.)
| |
Collapse
|
3
|
Gupta J, Kumari M, Mishra A, Akram M, Thakur IS. Agro-forestry waste management- A review. CHEMOSPHERE 2022; 287:132321. [PMID: 34563778 DOI: 10.1016/j.chemosphere.2021.132321] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/09/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Agroforestry, an integration of farming system with woody perennials leads to the generation of potential agroforestry residues. The conventional treatment of agroforestry waste includes landfilling, thermal management, and decomposition which is accompanied with their own share of disadvantages. The ample amount of residues and products needs effective management to reap the economic and environmental benefits. The channel of waste collection, transportation, and recycle or valorization into products like biofuel, fertilizers, biochar, industrial chemicals is essential to maintain a circular sustainable bioeconomy. Global market value of biowaste to bioenergy (BtB) technology is roughly US $25.32 billion and is projected to enhance to US $40 billion by 2023. Employment of an appropriate pretreatment technology such as fermentation, hydrolysis, gasification etc. is going to elevate the degree of valorization along with surpassing the mobilization barrier. The sustainability assessment of the management process can be achieved with multiple models including technoeconomic analysis, life cycle assessment and multi criteria approach which are dependent on both hard and soft indices. Additionally, the loopholes of the agroforestry sectors would be managed by the introduction of appropriate policies which are undertaken globally by the Orlando and Lugo declarations, food and agriculture organization, Millennium Development Goals, Global Research Alliance and Guidelines for Sustainable Agriculture and Rural Development. The present review envisaged the agroforestry waste management strategy and its sustainability assessment primarily based upon Social, Economic and Environmental parameters without tormenting the future generations.
Collapse
Affiliation(s)
- Juhi Gupta
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Moni Kumari
- Department of Botany, Gaya College, Gaya, 823001, Bihar, India.
| | - Arti Mishra
- Amity Institute of Microbial Technology, Amity University, Uttar Pradesh, Sector-125, Noida, 201303, India.
| | - Mohd Akram
- Amity Institute of Environmental Sciences (AIES), AUUP, Noida, India.
| | - Indu Shekhar Thakur
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
4
|
Kholif AE, Gouda GA, Patra AK. The sustainable mitigation of in vitro ruminal biogas emissions by ensiling date palm leaves and rice straw with lactic acid bacteria and Pleurotus ostreatus for cleaner livestock production. J Appl Microbiol 2021; 132:2925-2939. [PMID: 34967069 DOI: 10.1111/jam.15432] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 12/27/2021] [Indexed: 11/30/2022]
Abstract
AIMS The sustainable utilization of date palm leaves (DPL) and rice straw (RS) as feed materials for ruminant was evaluated using an in vitro wireless gas production technique. METHODS AND RESULTS Date palm leaves and RS were individually ensiled with lactic acid bacteria (LAB) for 45 d or used as substrates for the cultivation of Pleurotus ostreatus (PO) mushroom for 35 d. A total mixed ration was formulated as a control ration. In the other rations, berseem hay replaced DPL (ensiled without additives or ensiled with lactic acid bacteria or PO) at 25, 50, 75 and 100%. Ensiling with LAB did not affect the chemical composition of DPL or RS, while PO treatment reduced their fiber fractions contents. Ensiling without additives lowered (P<0.05) the asymptotic production of total gas, methane (CH4 ) and carbon dioxide (CO2 ), and the rate of CH4 and CO2 while increasing (P<0.05) the lag time of CH4 and CO2 production. Ensiling of materials with LAB and treatment with PO decreased (P<0.05) the asymptotic production of total gas, CH4 and CO2 production and decreased the rate of CH4 and CO2 production. Ensiling without additives decreased (P<0.05) total bacterial count, and increased (P<0.05) fermentation pH and total volatile fatty acids (VFA), while LAB ensiled DPL increased (P<0.05) total VFA and propionate concentrations and decreased total protozoal count. The PO treated DPL decreased (P<0.05) bacterial count, protozoal count and fermentation pH and increased total VFA production. CONCLUSIONS Replacing berseem hay with LAB or PO treated DPL at 25% increased gas production; however, increased CH4 and CO2 production, while the other replacement levels decreased total gas, CH4 and CO2 production. The treatment with LAB is more recommended than the PO treatment.
Collapse
Affiliation(s)
- Ahmed E Kholif
- Dairy Science Department, National Research Centre, 33 Bohouth St. Dokki, Giza, Egypt
| | - Gouda A Gouda
- Dairy Science Department, National Research Centre, 33 Bohouth St. Dokki, Giza, Egypt
| | - Amlan K Patra
- Department of Animal Nutrition, West Bengal University of Animal and Fishery Sciences, 37 K.B. Sarani, Kolkata, India
| |
Collapse
|
5
|
Effects of Malic Acid and Sucrose on the Fermentation Parameters, CNCPS Nitrogen Fractions, and Bacterial Community of Moringa oleifera Leaves Silage. Microorganisms 2021; 9:microorganisms9102102. [PMID: 34683423 PMCID: PMC8538485 DOI: 10.3390/microorganisms9102102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/28/2021] [Accepted: 10/03/2021] [Indexed: 01/05/2023] Open
Abstract
The present study investigated the effects of malic acid, sucrose, and their mixture on the fermentation parameters, Cornell Net Carbohydrate and Protein System (CNCPS) nitrogen fractions, and bacterial community of Moringa oleifera leaves (MOL) silages. The trial was divided into four treatments and labeled as CON (control group) and MLA, SUC, and MIX (respectively denoting the addition of 1% malic acid, 1% sucrose, and 1% malic acid + 1% sucrose to the fresh weight basis). The silage packages were opened on the 2nd, 5th, 10th, 20th, and 40th days of ensiling for subsequent determination. Malic acid and sucrose increased the lactic acid content (p < 0.05) and pH value, and the acetic acid contents of MLA and MIX were lower than those in CON (p < 0.05). Compared with sucrose, malic acid had a better capacity to preserve nutrients and inhibit proteolysis, and thus exerted better effects on the CNCPS nitrogen fractions. The results of 16S rRNA showed that the dominant phyla were Firmicutes and Proteobacteria and that the dominant genera were Lactobacillus and Weissella. With the application of silage additives and the processing of fermentation, there was a remarkable change in the composition and function of the bacterial community. The variation of the fermentation parameters and CNCPS nitrogen fractions in the MOL silages caused by malic acid and sucrose might be attributed to the dynamic and dramatic changes of the bacterial community.
Collapse
|
6
|
Trejo-López M, Ayala-Martínez M, Zepeda-Bastida A, Franco-Fernández M, Soto-Simental S. Using spent Pleurotus ostreatus substrate to supplemented goats to increase fresh cheese yields. Small Rumin Res 2021. [DOI: 10.1016/j.smallrumres.2020.106297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|