1
|
Badaras S, Ruzauskas M, Gruzauskas R, Zokaityte E, Starkute V, Klupsaite D, Mockus E, Klementaviciute J, Vadopalas L, Zokaityte G, Dauksiene A, Bartkevics V, Bartkiene E. Different creep compound feed formulations for new born piglets: influence on growth performance and health parameters. Front Vet Sci 2022; 9:971783. [PMID: 36105002 PMCID: PMC9465008 DOI: 10.3389/fvets.2022.971783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to compare the influence of different compositions of creep compound feed (CCF) (C-I – control group; TG-II – a CCF containing wheat bran extruded and fermented with L. paracasei; TG-III – a creep compound feed containing sugar beet pulp) on the piglets' growth performance, blood parameters, fecal microbial profile and physicochemical characteristics. Moreover, the fecal volatile compound (VC) profile was analyzed as a possible chemical marker related to changes in the fecal microbial profile and physicochemical characteristics. A 21-day experiment was conducted using 1-day-old 300 Large White/Norwegian Landrace piglets. The highest body weight (at the 21st day) was found in piglets of the TG-III group, and both treated groups showed lower feed conversion ratios. At the end of the experiment, significantly higher lactobacillus counts in the feces of both treated groups were found, and a correlation between fecal textural hardness and the lactobacillus count was established (r = 0.475). Significant correlations of piglets' individual fecal VC with microbiological parameters and fecal pH were established [lactobacilli with 3-n-nonadecanol-1; enterobacteria with butyric acid <2-methyl->; pentanoic acid, 4-methyl-; eicosene(E)-, etc.]. It can be concluded that local material could be successfully incorporated into CCF preparation without impairing animal metabolism.
Collapse
Affiliation(s)
- Sarunas Badaras
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Modestas Ruzauskas
- Institute of Microbiology and Virology, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Anatomy and Physiology, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Romas Gruzauskas
- Department of Food Science and Technology, Kaunas University of Technology, Kaunas, Lithuania
| | - Egle Zokaityte
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Food Safety and Quality, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vytaute Starkute
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Food Safety and Quality, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Dovile Klupsaite
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Ernestas Mockus
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Jolita Klementaviciute
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Laurynas Vadopalas
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Gintare Zokaityte
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Agila Dauksiene
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Anatomy and Physiology, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vadims Bartkevics
- Institute of Food Safety, Animal Health and Environment BIOR, Riga, Latvia
| | - Elena Bartkiene
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Food Safety and Quality, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
- *Correspondence: Elena Bartkiene
| |
Collapse
|
2
|
Sands JM, Rodrigues LA, Wellington MO, Panisson JC, Columbus DA. Pre- and post-weaning performance of piglets offered different types of creep feed. CANADIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1139/cjas-2021-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We determined the impact of creep feed provision and type on pre- and post-weaning growth performance of piglets. At 2 wk post farrow, litters (n = 50) were given no creep feed or provided a simple creep feed, a complex creep feed, or both until weaning at ∼28 d. Creep feed, regardless of type, resulted in increased growth (P < 0.05) of piglets in the final week pre-weaning and immediate week post-weaning, which was not maintained at the end of the nursery period. Piglets showed no preference for creep feed type (P > 0.05).
Collapse
Affiliation(s)
- Jade M. Sands
- Prairie Swine Centre, Inc., Saskatoon, SK S7H 5N9, Canada
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Lucas A. Rodrigues
- Prairie Swine Centre, Inc., Saskatoon, SK S7H 5N9, Canada
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Michael O. Wellington
- Prairie Swine Centre, Inc., Saskatoon, SK S7H 5N9, Canada
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Josiane C. Panisson
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Daniel A. Columbus
- Prairie Swine Centre, Inc., Saskatoon, SK S7H 5N9, Canada
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| |
Collapse
|
3
|
Using Nutritional Strategies to Shape the Gastro-Intestinal Tracts of Suckling and Weaned Piglets. Animals (Basel) 2021; 11:ani11020402. [PMID: 33562533 PMCID: PMC7914898 DOI: 10.3390/ani11020402] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 01/10/2023] Open
Abstract
This is a comprehensive review on the use of nutritional strategies to shape the functioning of the gastro-intestinal tract in suckling and weaned piglets. The progressive development of a piglet's gut and the associated microbiota and immune system offers a unique window of opportunity for supporting gut health through dietary modulation. This is particularly relevant for large litters, for which sow colostrum and milk are insufficient. The authors have therefore proposed the use of supplemental milk and creep feed with a dual purpose. In addition to providing nutrients to piglets, supplemental milk can also serve as a gut modulator in early life by incorporating functional ingredients with potential long-term benefits. To prepare piglets for weaning, it is important to stimulate the intake of solid feed before weaning, in addition to stimulating the number of piglets eating. The use of functional ingredients in creep feed and a transition diet around the time of weaning helps to habituate piglets to solid feed in general, while also preparing the gut for the digestion and fermentation of specific ingredients. In the first days after weaning (i.e., the acute phase), it is important to maintain high levels of feed intake and focus on nutritional strategies that support good gastric (barrier) function and that avoid overloading the impaired digestion and fermentation capacity of the piglets. In the subsequent maturation phase, the ratio of lysine to energy can be increased gradually in order to stimulate piglet growth. This is because the digestive and fermentation capacity of the piglets is more mature at this stage, thus allowing the inclusion of more fermentable fibres. Taken together, the nutritional strategies addressed in this review provide a structured approach to preparing piglets for success during weaning and the period that follows. The implementation of this approach and the insights to be developed through future research can help to achieve some of the most important goals in pig production: reducing piglet mortality, morbidity and antimicrobial use.
Collapse
|