1
|
Pierce CF, Brown VR, Olsen SC, Boggiatto P, Pedersen K, Miller RS, Speidel SE, Smyser TJ. Loci Associated With Antibody Response in Feral Swine ( Sus scrofa) Infected With Brucella suis. Front Vet Sci 2020; 7:554674. [PMID: 33324693 PMCID: PMC7724110 DOI: 10.3389/fvets.2020.554674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 10/23/2020] [Indexed: 11/13/2022] Open
Abstract
Feral swine (Sus scrofa) are a destructive invasive species widespread throughout the United States that disrupt ecosystems, damage crops, and carry pathogens of concern for the health of domestic stock and humans including Brucella suis-the causative organism for swine brucellosis. In domestic swine, brucellosis results in reproductive failure due to abortions and infertility. Contact with infected feral swine poses spillover risks to domestic pigs as well as humans, companion animals, wildlife, and other livestock. Genetic factors influence the outcome of infectious diseases; therefore, genome wide association studies (GWAS) of differential immune responses among feral swine can provide an understanding of disease dynamics and inform management to prevent the spillover of brucellosis from feral swine to domestic pigs. We sought to identify loci associated with differential antibody responses among feral swine naturally infected with B. suis using a case-control GWAS. Tissue, serum, and genotype data (68,516 bi-allelic single nucleotide polymorphisms) collected from 47 feral swine were analyzed in this study. The 47 feral swine were culture positive for Brucella spp. Of these 47, 16 were antibody positive (cases) whereas 31 were antibody negative (controls). Single-locus GWAS were performed using efficient mixed-model association eXpedited (EMMAX) methodology with three genetic models: additive, dominant, and recessive. Eight loci associated with seroconversion were identified on chromosome 4, 8, 9, 10, 12, and 18. Subsequent bioinformatic analyses revealed nine putative candidate genes related to immune function, most notably phagocytosis and induction of an inflammatory response. Identified loci and putative candidate genes may play an important role in host immune responses to B. suis infection, characterized by a detectable bacterial presence yet a differential antibody response. Given that antibody tests are used to evaluate brucellosis infection in domestic pigs and for disease surveillance in invasive feral swine, additional studies are needed to fully understand the genetic component of the response to B. suis infection and to more effectively translate estimates of Brucella spp. antibody prevalence among feral swine to disease control management action.
Collapse
Affiliation(s)
- Courtney F. Pierce
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, CO, United States
- Department of Animal Sciences, Colorado State University, Fort Collins, CO, United States
| | - Vienna R. Brown
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Feral Swine Damage Management Program, Fort Collins, CO, United States
| | - Steven C. Olsen
- United States Department of Agriculture, Agricultural Research Service, Infectious Bacterial Diseases, National Animal Disease Center, Ames, IA, United States
| | - Paola Boggiatto
- United States Department of Agriculture, Agricultural Research Service, Infectious Bacterial Diseases, National Animal Disease Center, Ames, IA, United States
| | - Kerri Pedersen
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, Raleigh, NC, United States
| | - Ryan S. Miller
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Center for Epidemiology and Animal Health, Fort Collins, CO, United States
| | - Scott E. Speidel
- Department of Animal Sciences, Colorado State University, Fort Collins, CO, United States
| | - Timothy J. Smyser
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, CO, United States
| |
Collapse
|
2
|
Sanglard LP, Mote BE, Willson P, Harding JCS, Plastow GS, Dekkers JCM, Serão NVL. Genomic Analysis of IgG Antibody Response to Common Pathogens in Commercial Sows in Health-Challenged Herds. Front Genet 2020; 11:593804. [PMID: 33193739 PMCID: PMC7646516 DOI: 10.3389/fgene.2020.593804] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/25/2020] [Indexed: 11/13/2022] Open
Abstract
Losses due to infectious diseases are one of the main factors affecting productivity in the swine industry, motivating the investigation of disease resilience-related traits for genetic selection. However, these traits are not expected to be expressed in the nucleus herds, where selection is performed. One alternative is to use information from the commercial level to identify and select nucleus animals genetically superior for coping with pathogen challenges. In this study, we analyzed the genetic basis of antibody (Ab) response to common infectious pathogens in health-challenged commercial swine herds as potential indicator traits for disease resilience, including Ab response to influenza A virus of swine (IAV), Mycoplasma hyopneumoniae (MH), porcine circovirus (PCV2), and Actinobacillus pleuropneumoniae (APP; different serotypes). Ab response was measured in blood at entry into gilt rearing, post-acclimation (∼40 days after entering the commercial herd), and parities 1 and 2. Heritability estimates for Ab response to IAV, MH, and PCV2 ranged from 0 to 0.76. Ab response to APP ranged from 0 to 0.40. The genetic correlation (r G ) of Ab response to IAV with MH, PCV2, PRRSV, and APPmean (average Ab responses for all serotypes of APP) were positive (>0.29) at entry. APPmean was negatively correlated with PCV2 and MH at entry and parity 2 but positively correlated with MH at post-acclimation and parity 1. Genomic regions associated with Ab response to different APP serotypes were identified on 13 chromosomes. The region on chromosome 14 (2 Mb) was associated with several serotypes of APP, explaining up to 4.3% of the genetic variance of Ab to APP7 at entry. In general, genomic prediction accuracies for Ab response were low to moderate, except average Ab response to all infectious pathogens evaluated. These results suggest that genetic selection of Ab response in commercial sows is possible, but with variable success depending on the trait and the time-point of collection. Future work is needed to determine genetic correlations of Ab response with disease resilience, reproductive performance, and other production traits.
Collapse
Affiliation(s)
- Leticia P Sanglard
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | | | - Benny E Mote
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Philip Willson
- Canadian Centre for Health and Safety in Agriculture, University of Saskatchewan, Saskatoon, SK, Canada
| | - John C S Harding
- Department of Large Animal Clinical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Graham S Plastow
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Jack C M Dekkers
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Nick V L Serão
- Department of Animal Science, Iowa State University, Ames, IA, United States
| |
Collapse
|
3
|
Lee J, Park N, Lee D, Kim J. Evolutionary and Functional Analysis of Korean Native Pig Using Single Nucleotide Polymorphisms. Mol Cells 2020; 43:728-738. [PMID: 32868490 PMCID: PMC7468586 DOI: 10.14348/molcells.2020.0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 11/27/2022] Open
Abstract
Time and cost-effective production of next-generation sequencing data has enabled the performance of population-scale comparative and evolutionary studies for various species, which are essential for obtaining the comprehensive insight into molecular mechanisms underlying species- or breed-specific traits. In this study, the evolutionary and functional analysis of Korean native pig (KNP) was performed using single nucleotide polymorphism (SNP) data by comparative and population genomic approaches with six different mammalian species and five pig breeds. We examined the evolutionary history of KNP SNPs, and the specific genes of KNP based on the uniqueness of non-synonymous SNPs among the used species and pig breeds. We discovered the evolutionary trajectory of KNP SNPs within the used mammalian species as well as pig breeds. We also found olfaction-associated functions that have been characterized and diversified during evolution, and quantitative trait loci associated with the unique traits of KNP. Our study provides new insight into the evolution of KNP and serves as a good example for a better understanding of domestic animals in terms of evolution and domestication using the combined approaches of comparative and population genomics.
Collapse
Affiliation(s)
- Jongin Lee
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea
- These authors contributed equally to this work.
| | - Nayoung Park
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea
- These authors contributed equally to this work.
| | - Daehwan Lee
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea
| | - Jaebum Kim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
4
|
Niu P, Kim SW, Kim WI, Kim KS. Association analyses of DNA polymorphisms in immune-related candidate genes GBP1, GBP2, CD163, and CD169 with porcine growth and meat quality traits. J Biomed Res 2015. [DOI: 10.12729/jbr.2015.16.2.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
5
|
Choi YJ, Kim SW, Yoon JH, Choi BH, Kim TH, Kim KS. Identification of genomic regions associated with piglet survival and mortality. J Biomed Res 2014. [DOI: 10.12729/jbr.2014.15.2.078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|