1
|
Nasar RT, Uche IK, Kousoulas KG. Targeting Cancers with oHSV-Based Oncolytic Viral Immunotherapy. Curr Issues Mol Biol 2024; 46:5582-5594. [PMID: 38921005 PMCID: PMC11201976 DOI: 10.3390/cimb46060334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024] Open
Abstract
The recent success of cancer immunotherapies, such as immune checkpoint inhibitor (ICIs), monoclonal antibodies (mAbs), cancer vaccines, and adoptive cellular therapies (ACTs), has revolutionized traditional cancer treatment. However, these immunotherapeutic modalities have variable efficacies, and many of them exhibit adverse effects. Oncolytic viral Immunotherapy (OViT), whereby viruses are used to directly or indirectly induce anti-cancer immune responses, is emerging as a novel immunotherapy for treating patients with different types of cancer. The herpes simplex virus type-1 (HSV-1) possesses many characteristics that inform its use as an effective OViT agents and remains a leading candidate. Its recent clinical success resulted in the Food and Drug Administration (FDA) approval of Talimogene laherparevec (T-VEC or Imlygic) in 2015 for the treatment of advanced melanoma. In this review, we discuss recent advances in the development of oncolytic HSV-1-based OViTs, their anti-tumor mechanism of action, and efficacy data from recent clinical trials. We envision this knowledge may be used to inform the rational design and application of future oHSV in cancer treatment.
Collapse
Affiliation(s)
- Rakin Tammam Nasar
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA;
| | - Ifeanyi Kingsley Uche
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA;
| | - Konstantin G. Kousoulas
- Division of Biotechnology and Molecular Medicine, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
2
|
Juarez-Vignon Whaley JJ, Afkhami M, Onyshchenko M, Massarelli E, Sampath S, Amini A, Bell D, Villaflor VM. Recurrent/Metastatic Nasopharyngeal Carcinoma Treatment from Present to Future: Where Are We and Where Are We Heading? Curr Treat Options Oncol 2023; 24:1138-1166. [PMID: 37318724 PMCID: PMC10477128 DOI: 10.1007/s11864-023-01101-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2023] [Indexed: 06/16/2023]
Abstract
OPINION STATEMENT Nasopharyngeal carcinoma (NPC) is distinct in its anatomic location and biology from other epithelial head and neck cancer (HNC). There are 3 WHO subtypes, which considers the presence of Epstein-Barr virus (EBV) and other histopathology features. Despite the survival benefit obtained from modern treatment modalities and techniques specifically in the local and locally advanced setting, a number of patients with this disease will recur and subsequently die of distant metastasis, locoregional relapse, or both. In the recurrent setting, the ideal therapy approach continues to be a topic of discussion and current recommendations are platinum-based combination chemotherapy. Phase III clinical trials which led to the approval of pembrolizumab or nivolumab for head and neck squamous cell carcinoma (HNSCC) specifically excluded NPC. No immune checkpoint inhibitor therapy, to date, has been approved by the FDA to treat NPC although the National Comprehensive Cancer Network (NCCN) recommendations do include use of these agents. Hence, this remains the major challenge for treatment options. Nasopharyngeal carcinoma is challenging as it is really 3 different diseases, and much research is required to determine best options and sequencing of those options. This article is going to address the data to date and discuss ongoing research in EBV + and EBV - inoperable recurrent/metastatic NPC patients.
Collapse
Affiliation(s)
- Juan Jose Juarez-Vignon Whaley
- Health Science Research Center, Faculty of Health Science, Universidad Anahuac Mexico, State of Mexico, Naucalpan de Juárez, Mexico
| | - Michelle Afkhami
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Mykola Onyshchenko
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center, Duarte, 1500 East Duarte Road. , Duarte, CA, 91010, USA
| | - Erminia Massarelli
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center, Duarte, 1500 East Duarte Road. , Duarte, CA, 91010, USA
| | - Sagus Sampath
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center Duarte, Duarte, CA, USA
| | - Arya Amini
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center Duarte, Duarte, CA, USA
| | - Diana Bell
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Victoria M Villaflor
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center, Duarte, 1500 East Duarte Road. , Duarte, CA, 91010, USA.
| |
Collapse
|
3
|
Huang H, Yao Y, Deng X, Huang Z, Chen Y, Wang Z, Hong H, Huang H, Lin T. Immunotherapy for nasopharyngeal carcinoma: Current status and prospects (Review). Int J Oncol 2023; 63:97. [PMID: 37417358 PMCID: PMC10367053 DOI: 10.3892/ijo.2023.5545] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is an epithelial tumor located in the nasopharynx and is highly associated with Epstein‑Barr virus (EBV) infection. Although radiotherapy alone can cure ~90% of patients with early‑stage disease, >70% of patients with NPC have locoregionally advanced or metastatic disease at the first diagnosis due to the insidious and aggressive nature of NPC. After comprehensive radiochemotherapy, 20‑30% of patients with advanced NPC still fail treatment, mainly due to recurrence and/or metastasis (R/M). Conventional salvage treatments, such as radiotherapy, chemotherapy and surgery, are suboptimal and frequently accompanied by severe adverse effects and limited efficacy. In recent years, immunotherapy has emerged as a promising treatment modality for R/M NPC. An increasing number of clinical studies have investigated the safety and efficacy of immunotherapy for advanced NPC and have shown considerable progress. In the present review, the rationale for the use of immunotherapy to treat NPC was summarized and the current status, progress and challenges of NPC clinical research on different immunotherapeutic approaches were highlighted, including immune checkpoint inhibitors, vaccines, immunomodulators, adoptive cell transfer and EBV‑specific monoclonal antibodies. The comprehensive overview of immunotherapy in NPC may provide insight for clinical practice and future investigation.
Collapse
Affiliation(s)
- Huageng Huang
- Department of Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong 510060
| | - Yuyi Yao
- Department of Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong 510060
| | - Xinyi Deng
- Department of Dermatology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120
| | - Zongyao Huang
- Department of Oncology, Senior Ward and Phase I Clinical Trial Ward, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610000, P.R. China
| | - Yungchang Chen
- Department of Oncology, Senior Ward and Phase I Clinical Trial Ward, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610000, P.R. China
| | - Zhao Wang
- Department of Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong 510060
| | - Huangming Hong
- Department of Oncology, Senior Ward and Phase I Clinical Trial Ward, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610000, P.R. China
| | - He Huang
- Department of Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong 510060
| | - Tongyu Lin
- Department of Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong 510060
- Department of Oncology, Senior Ward and Phase I Clinical Trial Ward, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610000, P.R. China
| |
Collapse
|
4
|
Su ZY, Siak PY, Leong CO, Cheah SC. The role of Epstein-Barr virus in nasopharyngeal carcinoma. Front Microbiol 2023; 14:1116143. [PMID: 36846758 PMCID: PMC9947861 DOI: 10.3389/fmicb.2023.1116143] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/27/2023] [Indexed: 02/11/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a metastasis-prone malignancy closely associated with the Epstein-Barr virus (EBV). Despite ubiquitous infection of EBV worldwide, NPC incidences displayed predominance in certain ethnic groups and endemic regions. The majority of NPC patients are diagnosed with advanced-stage disease, as a result of anatomical isolation and non-specific clinical manifestation. Over the decades, researchers have gained insights into the molecular mechanisms underlying NPC pathogenesis as a result of the interplay of EBV infection with several environmental and genetic factors. EBV-associated biomarkers were also used for mass population screening for the early detection of NPC. EBV and its encoded products also serve as potential targets for the development of therapeutic strategies and tumour-specific drug delivery. This review will discuss the pathogenic role of EBV in NPC and efforts in exploiting the potential of EBV-associated molecules as biomarkers and therapeutic targets. The current knowledge on the role of EBV and its associated products in NPC tumorigenesis, development and progression will offer a new outlook and potential intervention strategy against this EBV-associated malignancy.
Collapse
Affiliation(s)
- Zhi Yi Su
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, Negeri Sembilan, Malaysia
| | - Pui Yan Siak
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, Negeri Sembilan, Malaysia
| | - Chee-Onn Leong
- AGTC Genomics Sdn Bhd, Pusat Perdagangan Bandar, Persiaran Jalil 1, Bukit Jalil, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Shiau-Chuen Cheah
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, Negeri Sembilan, Malaysia
| |
Collapse
|
5
|
Scanlan H, Coffman Z, Bettencourt J, Shipley T, Bramblett DE. Herpes simplex virus 1 as an oncolytic viral therapy for refractory cancers. Front Oncol 2022; 12:940019. [PMID: 35965554 PMCID: PMC9364694 DOI: 10.3389/fonc.2022.940019] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/27/2022] [Indexed: 11/25/2022] Open
Abstract
The need for efficacious and non-toxic cancer therapies is paramount. Oncolytic viruses (OVs) are showing great promise and are introducing new possibilities in cancer treatment with their ability to selectively infect tumor cells and trigger antitumor immune responses. Herpes Simplex Virus 1 (HSV-1) is a commonly selected OV candidate due to its large genome, relative safety profile, and ability to infect a variety of cell types. Talimogene laherparevec (T-VEC) is an HSV-1-derived OV variant and the first and only OV therapy currently approved for clinical use by the United States Food and Drug Administration (FDA). This review provides a concise description of HSV-1 as an OV candidate and the genomic organization of T-VEC. Furthermore, this review focuses on the advantages and limitations in the use of T-VEC compared to other HSV-1 OV variants currently in clinical trials. In addition, approaches for future directions of HSV-1 OVs as cancer therapy is discussed.
Collapse
Affiliation(s)
- Hayle Scanlan
- Rowan School of Medicine, RowanSOM-Jefferson Health-Virtua Our Lady of Lourdes Hospital, Stratford, NJ, United States
| | - Zachary Coffman
- Monroe Clinic Rural Family Medicine Program, The University of Illinois College of Medicine Rockford, Monroe, WI, United States
| | - Jeffrey Bettencourt
- Department of Biomedical Sciences, Burrell College of Osteopathic Medicine, Las Cruces, NM, United States
| | - Timothy Shipley
- Department of Biomedical Sciences, A.T. Still University School of Osteopathic Medicine in Arizona, Mesa, AZ, United States
| | - Debra E. Bramblett
- Department of Biomedical Sciences, Burrell College of Osteopathic Medicine, Las Cruces, NM, United States
- *Correspondence: Debra E. Bramblett,
| |
Collapse
|
6
|
Goradel NH, Alizadeh A, Hosseinzadeh S, Taghipour M, Ghesmati Z, Arashkia A, Negahdari B. Oncolytic virotherapy as promising immunotherapy against cancer: mechanisms of resistance to oncolytic viruses. Future Oncol 2021; 18:245-259. [PMID: 34821517 DOI: 10.2217/fon-2021-0802] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Oncolytic virotherapy has currently emerged as a powerful therapeutic approach in cancer treatment. Although the history of using viruses goes back to the early 20th century, the approval of talimogene laherparepvec (T-VEC) in 2015 increased interest in oncolytic viruses (OVs). OVs are multifaceted biotherapeutic agents because they replicate in and kill tumor cells and augment immune responses by releasing immunostimulatory molecules from lysed cells. Despite promising results, some limitations hinder the efficacy of oncolytic virotherapy. The delivery challenges and the upregulation of checkpoints following oncolytic virotherapy also mediate resistance to OVs by diminishing immune responses. Furthermore, the localization of receptors of viruses in the tight junctions, interferon responses, and the aberrant expression of genes involved in the cell cycle of the virus, including their infection and replication, reduce the efficacy of OVs. In this review, we present different mechanisms of resistance to OVs and strategies to overcome them.
Collapse
Affiliation(s)
- Nasser Hashemi Goradel
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arezoo Alizadeh
- Department of Biochemistry & Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Shahnaz Hosseinzadeh
- Department of Microbiology & Immunology, Faculty of Medicine, Ardabil University of Medical Sciences, Iran
| | - Mitra Taghipour
- Department of Biotechnology, Faculty of Agriculture & Natural Resources, Imam Khomeini International University, Qazvin, Iran
| | - Zeinab Ghesmati
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arash Arashkia
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Asha K, Sharma-Walia N. Targeting Host Cellular Factors as a Strategy of Therapeutic Intervention for Herpesvirus Infections. Front Cell Infect Microbiol 2021; 11:603309. [PMID: 33816328 PMCID: PMC8017445 DOI: 10.3389/fcimb.2021.603309] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 01/12/2021] [Indexed: 12/13/2022] Open
Abstract
Herpesviruses utilize various host factors to establish latent infection, survival, and spread disease in the host. These factors include host cellular machinery, host proteins, gene expression, multiple transcription factors, cellular signal pathways, immune cell activation, transcription factors, cytokines, angiogenesis, invasion, and factors promoting metastasis. The knowledge and understanding of host genes, protein products, and biochemical pathways lead to discovering safe and effective antivirals to prevent viral reactivation and spread infection. Here, we focus on the contribution of pro-inflammatory, anti-inflammatory, and resolution lipid metabolites of the arachidonic acid (AA) pathway in the lifecycle of herpesvirus infections. We discuss how various herpesviruses utilize these lipid pathways to their advantage and how we target them to combat herpesvirus infection. We also summarize recent development in anti-herpesvirus therapeutics and new strategies proposed or under clinical trials. These anti-herpesvirus therapeutics include inhibitors blocking viral life cycle events, engineered anticancer agents, epigenome influencing factors, immunomodulators, and therapeutic compounds from natural extracts.
Collapse
Affiliation(s)
| | - Neelam Sharma-Walia
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| |
Collapse
|
8
|
Taguchi S, Fukuhara H, Todo T. Oncolytic virus therapy in Japan: progress in clinical trials and future perspectives. Jpn J Clin Oncol 2019; 49:201-209. [PMID: 30462296 DOI: 10.1093/jjco/hyy170] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/21/2018] [Indexed: 01/28/2023] Open
Abstract
Oncolytic virus therapy is a promising new option for cancer. It utilizes genetically engineered or naturally occurring viruses that selectively replicate in and kill cancer cells without harming normal cells. T-VEC (talimogene laherparepvec), a second-generation oncolytic herpes simplex virus type 1, was approved by the US Food and Drug Administration for the treatment of inoperable melanoma in 2015 and subsequently approved in Europe in 2016. Other oncolytic viruses using different parental viruses have also been tested in Phase III clinical trials and are ready for drug approval: Pexa-Vec (pexastimogene devacirepvec), an oncolytic vaccinia virus, CG0070, an oncolytic adenovirus, and REOLYSIN (pelareorep), an oncolytic reovirus. In Japan, as of May 2018, several oncolytic viruses have been developed, and some have already proceeded to clinical trials. In this review, we summarize clinical trials assessing oncolytic virus therapy that were conducted or are currently ongoing in Japan, specifically, T-VEC, the abovementioned oncolytic herpes simplex virus type 1, G47Δ, a third-generation oncolytic herpes simplex virus type 1, HF10, a naturally attenuated oncolytic herpes simplex virus type 1, Telomelysin, an oncolytic adenovirus, Surv.m-CRA, another oncolytic adenovirus, and Sendai virus particle. In the near future, oncolytic virus therapy may become an important and major treatment option for cancer in Japan.
Collapse
Affiliation(s)
- Satoru Taguchi
- Department of Urology, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Hiroshi Fukuhara
- Department of Urology, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Tomoki Todo
- Division of Innovative Cancer Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
Ma W, He H, Wang H. Oncolytic herpes simplex virus and immunotherapy. BMC Immunol 2018; 19:40. [PMID: 30563466 PMCID: PMC6299639 DOI: 10.1186/s12865-018-0281-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/06/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Oncolytic viruses have been proposed to be employed as a potential treatment of cancer. Well targeted, they will serve the purpose of cracking tumor cells without causing damage to normal cells. In this category of oncolytic viral drugs human pathogens herpes simplex virus (HSV) is especially suitable for the cause. Although most viral infection causes antiviral reaction in the host, HSV has multiple mechanisms to evade those responses. Powerful anti-tumor effect can thus be achieved via genetic manipulation of the HSV genes involved in this evading mechanism, namely deletions or mutations that adapt its function towards a tumor microenvironment. Currently, oncolytic HSV (oHSV) is widely use in clinical; moreover, there's hope that its curative effect will be further enhanced through the combination of oHSV with both traditional and emerging therapeutics. RESULTS In this review, we provide a summary of the HSV host antiviral response evasion mechanism, HSV expresses immune evasion genes such as ICP34.5, ICP0, Us3, which are involved in inducing and activating host responses, so that the virus can evade the immune system and establish effective long-term latent infection; we outlined details of the oHSV strains generated by removing genes critical to viral replication such as ICP34.5, ICP0, and inserting therapeutic genes such as LacZ, granulocyte macrophage colony-stimulating factor (GM-CSF); security and limitation of some oHSV such G207, 1716, OncoVEX, NV1020, HF10, G47 in clinical application; and the achievements of oHSV combined with immunotherapy and chemotherapy. CONCLUSION We reviewed the immunotherapy mechanism of the oHSV and provided a series of cases. We also pointed out that an in-depth study of the application of oHSV in cancer treatment will potentially benefits cancer patients more.
Collapse
Affiliation(s)
- Wenqing Ma
- Ruminant Diseases Research Center, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Hongbin He
- Ruminant Diseases Research Center, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China.
| | - Hongmei Wang
- Ruminant Diseases Research Center, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
10
|
Recombinant Viruses for Cancer Therapy. Biomedicines 2018; 6:biomedicines6040094. [PMID: 30257488 PMCID: PMC6316473 DOI: 10.3390/biomedicines6040094] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/17/2018] [Accepted: 09/20/2018] [Indexed: 12/28/2022] Open
Abstract
Recombinant viruses are novel therapeutic agents that can be utilized for treatment of various diseases, including cancers. Recombinant viruses can be engineered to express foreign transgenes and have a broad tropism allowing gene expression in a wide range of host cells. They can be selected or designed for specific therapeutic goals; for example, recombinant viruses could be used to stimulate host immune response against tumor-specific antigens and therefore overcome the ability of the tumor to evade the host's immune surveillance. Alternatively, recombinant viruses could express immunomodulatory genes which stimulate an anti-cancer immune response. Oncolytic viruses can replicate specifically in tumor cells and induce toxic effects leading to cell lysis and apoptosis. However, each of these approaches face certain difficulties that must be resolved to achieve maximum therapeutic efficacy. In this review we discuss actively developing approaches for cancer therapy based on recombinant viruses, problems that need to be overcome, and possible prospects for further development of recombinant virus based therapy.
Collapse
|
11
|
Gallardo F, Mariamé B, Gence R, Tilkin-Mariamé AF. Macrocyclic lactones inhibit nasopharyngeal carcinoma cells proliferation through PAK1 inhibition and reduce in vivo tumor growth. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:2805-2814. [PMID: 30233143 PMCID: PMC6135081 DOI: 10.2147/dddt.s172538] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Purpose The Epstein-Barr virus (EBV)-associated cancer nasopharyngeal carcinoma (NPC) is rare in Europe and North America but is a real public health problem in some regions of the world, such as southern Asia, North Africa, and for Inuit populations. Due to the anatomy and location of the nasopharynx, surgery is rarely used to treat primary NPC cancers. Treatment by radiotherapy, combined or not with chemotherapy, are efficient for primary tumors but often do not protect against fatal relapses or metastases. Methods Search for new therapeutic molecules through high content screening lead to the identification of Ivermectin (IVM) as a promising drug. IVM is a US Food and Drug Administration-approved macrocyclic lactone widely used as anthelmintic and insecticidal agent that has also shown protective effects against cancers. Results We show here that IVM has cytotoxic activity in vitro against NPC cells, in which it reduces MAPKs pathway activation through the inhibition PAK-1 activity. Moreover, all macrocyclic lactones tested and a PAK1 inhibitor are cytotoxic in vitro for EBV-positive and EBV-negative NPC tumor cells. We have also shown that IVM intraperitoneal repeated injections, at US Food and Drug Administration-approved doses, have no significant toxicity and decrease NPC subcutaneous tumors development in nude mice. Conclusion Macrocyclic lactones appear as promising molecules against NPC targeting PAK-1 with no detectable adverse effect.
Collapse
Affiliation(s)
- Franck Gallardo
- NeoVirTech, SAS, Institut for Advanced Technology in Life Science (ITAV), Toulouse, France,
| | | | - Remi Gence
- INSERM UMR 1037, CRCT, University of Toulouse, Toulouse, France
| | | |
Collapse
|
12
|
Jiang N, Jiang X, Chen Z, Song X, Wu L, Zong D, Song D, Yin L, Wang D, Chen C, Bian X, He X. MiR-203a-3p suppresses cell proliferation and metastasis through inhibiting LASP1 in nasopharyngeal carcinoma. J Exp Clin Cancer Res 2017; 36:138. [PMID: 28982387 PMCID: PMC5629759 DOI: 10.1186/s13046-017-0604-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/19/2017] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND miR-203a-3p was reported as a tumor suppressor and disregulated in many malignancies including nasopharyngeal carcinoma (NPC). However, its function in tumor growth and metastasis in NPC has rarely been reported. METHODS The expression level of miR-203a-3p in human NPC tissues and cell lines was detected via real-time PCR (RT-PCR). Cell proliferation, migration and invasion were assessed in vitro by MTT, colony formation and transwell assay, respectively. The function of miR-203a-3p in vivo was detected through NPC xenograft tumor growth and lung metastatic mice model. Dual-luciferase reporter assay was used to identify the direct target of miR-203a-3p. RESULTS The expression of miR-203a-3p was decreased in NPC tissues and cell lines in comparison with normal nasopharyngeal tissues and cell line. Ectopic expression of miR-203a-3p inhibited while inhibiting miR-203a-3p expression increased NPC cell proliferation, migration and invasion in vitro. MR-203a-3p overexpression suppressed xenograft tumor growth and lung metastasis in vivo. LASP1 was identified as a direct target of miR-203a-3p, which was confirmed by real-time PCR and western blotting assay. Ectopic expression of LASP1 partially reversed miR-203a-3p-mediated inhibition on proliferation, migration and invasion in NPC cells. CONCLUSION Collectively, miR-203a-3p suppresses tumor growth and metastasis through targeting LASP1 in NPC. The newly identified miR-203a-3p/LASP1 pathway provides further insights into the initiation and progression of NPC, which may represent a novel therapeutic target for NPC.
Collapse
Affiliation(s)
- Ning Jiang
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, 42 Baiziting Rd, Xuanwu District, Nanjing, 210000 Jiangsu Province People’s Republic of China
| | - Xuesong Jiang
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, 42 Baiziting Rd, Xuanwu District, Nanjing, 210000 Jiangsu Province People’s Republic of China
| | - Zhenzhang Chen
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, 42 Baiziting Rd, Xuanwu District, Nanjing, 210000 Jiangsu Province People’s Republic of China
| | - Xue Song
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, 42 Baiziting Rd, Xuanwu District, Nanjing, 210000 Jiangsu Province People’s Republic of China
| | - Lirong Wu
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, 42 Baiziting Rd, Xuanwu District, Nanjing, 210000 Jiangsu Province People’s Republic of China
| | - Dan Zong
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, 42 Baiziting Rd, Xuanwu District, Nanjing, 210000 Jiangsu Province People’s Republic of China
| | - Dan Song
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, 42 Baiziting Rd, Xuanwu District, Nanjing, 210000 Jiangsu Province People’s Republic of China
| | - Li Yin
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, 42 Baiziting Rd, Xuanwu District, Nanjing, 210000 Jiangsu Province People’s Republic of China
| | - Dejun Wang
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, 42 Baiziting Rd, Xuanwu District, Nanjing, 210000 Jiangsu Province People’s Republic of China
| | - Cheng Chen
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, 42 Baiziting Rd, Xuanwu District, Nanjing, 210000 Jiangsu Province People’s Republic of China
| | - Xiuhua Bian
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, 42 Baiziting Rd, Xuanwu District, Nanjing, 210000 Jiangsu Province People’s Republic of China
| | - Xia He
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, 42 Baiziting Rd, Xuanwu District, Nanjing, 210000 Jiangsu Province People’s Republic of China
| |
Collapse
|
13
|
Taguchi S, Fukuhara H, Homma Y, Todo T. Current status of clinical trials assessing oncolytic virus therapy for urological cancers. Int J Urol 2017; 24:342-351. [PMID: 28326624 DOI: 10.1111/iju.13325] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/02/2017] [Indexed: 12/17/2022]
Abstract
Oncolytic virus therapy has recently been recognized as a promising new option for cancer treatment. Oncolytic viruses replicate selectively in cancer cells, thus killing them without harming normal cells. Notably, T-VEC (talimogene laherparepvec, formerly called OncoVEXGM-CSF ), an oncolytic herpes simplex virus type 1, was approved by the US Food and Drug Administration for the treatment of inoperable melanoma in October 2015, and was subsequently approved in Europe and Australia in 2016. The efficacies of many types of oncolytic viruses against urological cancers have been investigated in preclinical studies during the past decade, and some have already been tested in clinical trials. For example, a phase I trial of the third-generation oncolytic Herpes simplex virus type 1, G47Δ, in patients with prostate cancer was completed in 2016. We summarize the current status of clinical trials of oncolytic virus therapy in patients with the three major urological cancers: prostate, bladder and renal cell cancers. In addition to Herpes simplex virus type 1, adenoviruses, reoviruses, vaccinia virus, Sendai virus and Newcastle disease virus have also been used as parental viruses in these trials. We believe that oncolytic virus therapy is likely to become an important and major treatment option for urological cancers in the near future.
Collapse
Affiliation(s)
- Satoru Taguchi
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Fukuhara
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yukio Homma
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoki Todo
- Division of Innovative Cancer Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
14
|
Presage of oncolytic virotherapy for oral cancer with herpes simplex virus. JAPANESE DENTAL SCIENCE REVIEW 2016; 53:53-60. [PMID: 28479936 PMCID: PMC5405200 DOI: 10.1016/j.jdsr.2016.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 10/02/2016] [Accepted: 10/08/2016] [Indexed: 12/30/2022] Open
Abstract
A virus is a pathogenic organism that causes a number of infectious diseases in humans. The oral cavity is the site at which viruses enter and are excreted from the human body. Herpes simplex virus type 1 (HSV-1) produces the primary infectious disease, gingivostomatitis, and recurrent disease, labial herpes. HSV-1 is one of the most extensively investigated viruses used for cancer therapy. In principle, HSV-1 infects epithelial cells and neuronal cells and exhibits cytotoxicity due to its cytopathic effects on these cells. If the replication of the virus occurs in tumor cells, but not normal cells, the virus may be used as an antitumor agent. Therefore, HSV-1 genes have been modified by genetic engineering, and in vitro and in vivo studies with the oncolytic virus have demonstrated its efficiency against head and neck cancer including oral cancer. The oncolytic abilities of other viruses such as adenovirus and reovirus have also been demonstrated. In clinical trials, HSV-1 is the top runner and is now available for the treatment of patients with advanced melanoma. Thus, melanoma in the oral cavity is the target of oncolytic HSV-1. Oncolytic virotherapy is a hopeful and realistic modality for the treatment of oral cancer.
Collapse
|
15
|
Fukuhara H, Ino Y, Todo T. Oncolytic virus therapy: A new era of cancer treatment at dawn. Cancer Sci 2016; 107:1373-1379. [PMID: 27486853 PMCID: PMC5084676 DOI: 10.1111/cas.13027] [Citation(s) in RCA: 502] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 07/31/2016] [Accepted: 08/01/2016] [Indexed: 12/12/2022] Open
Abstract
Oncolytic virus therapy is perhaps the next major breakthrough in cancer treatment following the success in immunotherapy using immune checkpoint inhibitors. Oncolytic viruses are defined as genetically engineered or naturally occurring viruses that selectively replicate in and kill cancer cells without harming the normal tissues. T‐Vec (talimogene laherparepvec), a second‐generation oncolytic herpes simplex virus type 1 (HSV‐1) armed with GM‐CSF, was recently approved as the first oncolytic virus drug in the USA and Europe. The phase III trial proved that local intralesional injections with T‐Vec in advanced malignant melanoma patients can not only suppress the growth of injected tumors but also act systemically and prolong overall survival. Other oncolytic viruses that are closing in on drug approval in North America and Europe include vaccinia virus JX‐594 (pexastimogene devacirepvec) for hepatocellular carcinoma, GM‐CSF‐expressing adenovirus CG0070 for bladder cancer, and Reolysin (pelareorep), a wild‐type variant of reovirus, for head and neck cancer. In Japan, a phase II clinical trial of G47∆, a third‐generation oncolytic HSV‐1, is ongoing in glioblastoma patients. G47∆ was recently designated as a “Sakigake” breakthrough therapy drug in Japan. This new system by the Japanese government should provide G47∆ with priority reviews and a fast‐track drug approval by the regulatory authorities. Whereas numerous oncolytic viruses have been subjected to clinical trials, the common feature that is expected to play a major role in prolonging the survival of cancer patients is an induction of specific antitumor immunity in the course of tumor‐specific viral replication. It appears that it will not be long before oncolytic virus therapy becomes a standard therapeutic option for all cancer patients.
Collapse
Affiliation(s)
- Hiroshi Fukuhara
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasushi Ino
- Division of Innovative Cancer Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tomoki Todo
- Division of Innovative Cancer Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
16
|
Fan J, Jiang H, Cheng L, Liu R. The oncolytic herpes simplex virus vector, G47Δ, effectively targets tamoxifen-resistant breast cancer cells. Oncol Rep 2015; 35:1741-9. [PMID: 26718317 DOI: 10.3892/or.2015.4539] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 11/18/2015] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to establish a tamoxifen-resistant cell line (MCF-7/TAM-R) and to investigate the therapeutic effect of G47Δ on this cell line both in vitro and in vivo. In the present study, the MCF-7/TAM-R monoclonal subline was established after exposing MCF-7 cells to tamoxifen for 21 days. Then, it was compared with a wild-type MCF-7 subline (MCF-7W), which was not treated with tamoxifen. Cell proliferation, viability, cell cycle and apoptosis analyses were carried out to examine the characteristics of the MCF-7/TAM-R cells. Both in vitro and in vivo toxicity studies were conducted to investigate the therapeutic effect of G47Δ on the MCF-7/TAM-R cells. Compared to the MCF-7W cells, we found that the MCF-7/TAM-R cells exhibited a higher proliferation ability (P<0.05) and a stronger resistance to the cytotoxic effects induced by 4-hydroxytamoxifen (4-OHT) (P<0.05). G47Δ demonstrated a high cytotoxic effect on both the MCF-7/TAM-R and MCF-7W cell lines. After being infected with G47Δ at an MOI of 0.01, >90% of the MCF-7/TAM-R and MCF-7W cells died on day 5. G47Δ induced cell cycle arrest in the G2/M phase. Furthermore, G47Δ inhibited tumor growth in subcutaneous tumor models of both MCF-7/TAM-R and MCF-7W. Thus, we conclude that G47Δ, a third generation oncolytic herpes simplex virus, is highly sensitive and safe in targeting tamoxifen-resistant breast cancer cells both in vitro and in vivo.
Collapse
Affiliation(s)
- Jingjing Fan
- Breast Cancer Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, P.R. China
| | - Hua Jiang
- Breast Cancer Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, P.R. China
| | - Lin Cheng
- Breast Cancer Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, P.R. China
| | - Renbin Liu
- Breast Cancer Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, P.R. China
| |
Collapse
|
17
|
Malhotra A, Sendilnathan A, Old MO, Wise-Draper TM. Oncolytic virotherapy for head and neck cancer: current research and future developments. Oncolytic Virother 2015; 4:83-93. [PMID: 27512673 PMCID: PMC4918384 DOI: 10.2147/ov.s54503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Head and neck cancer (HNC) is the sixth most common malignancy worldwide. Despite recent advancements in surgical, chemotherapy, and radiation treatments, HNC remains a highly morbid and fatal disease. Unlike many other cancers, local control rather than systemic control is important for HNC survival. Therefore, novel local therapy in addition to systemic therapy is urgently needed. Oncolytic virotherapy holds promise in this regard as viruses can be injected intratumorally as well as intravenously with excellent safety profiles. This review will discuss the recent advancements in oncolytic virotherapy, highlighting some of the most promising candidates and modifications to date.
Collapse
Affiliation(s)
- Akshiv Malhotra
- Division of Hematology-Oncology, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Arun Sendilnathan
- Division of Hematology-Oncology, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Matthew O Old
- Department of Otolaryngology-Head and Neck Surgery, Ohio State University, Columbus, OH, USA
| | - Trisha M Wise-Draper
- Division of Hematology-Oncology, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
18
|
Wang JN, Xu LH, Zeng WG, Hu P, Rabkin SD, Liu RR. Treatment of Human Thyroid Carcinoma Cells with the G47delta Oncolytic Herpes Simplex Virus. Asian Pac J Cancer Prev 2015; 16:1241-5. [DOI: 10.7314/apjcp.2015.16.3.1241] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
19
|
Advance in herpes simplex viruses for cancer therapy. SCIENCE CHINA-LIFE SCIENCES 2013; 56:298-305. [PMID: 23564184 DOI: 10.1007/s11427-013-4466-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 02/27/2013] [Indexed: 02/07/2023]
Abstract
Oncolytic virotherapy is an attractive approach that uses live viruses to selectively kill cancer cells. Oncolytic viruses can be genetically engineered to induce cell lyses through virus replication and cytotoxic protein expression. Herpes simplex virus (HSV) has become one of the most widely clinically used oncolytic agent. Various types of HSV have been studied in basic or clinical research. Combining oncolytic virotherapy with chemotherapy or radiotherapy generally produces synergic action with unclear molecular mechanisms. Arming HSV with therapeutic transgenes is a promising strategy and can be used to complement conventional therapies. As an efficient gene delivery system, HSV has been successfully used to deliver various immunomodulatory molecules. Arming HSV with therapeutic genes merits further investigation for potential clinical application.
Collapse
|
20
|
Zeng WG, Li JJ, Hu P, Lei L, Wang JN, Liu RB. An oncolytic herpes simplex virus vector, G47Δ, synergizes with paclitaxel in the treatment of breast cancer. Oncol Rep 2013; 29:2355-61. [PMID: 23525624 DOI: 10.3892/or.2013.2359] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 02/14/2013] [Indexed: 11/06/2022] Open
Abstract
Paclitaxel-containing treatment regimens are standard chemotherapy schemes for breast cancer patients. The use of oncolytic herpes simplex virus (oHSV) vectors has been shown to be a safe and effective therapeutic approach for different types of cancer. We hypothesized that paclitaxel in combination with an oHSV vector would present an enhanced killing effect when used against breast cancer cells. In the present study, we demonstrated that the combined use of the oHSV vector G47Δ and paclitaxel produced a synergistic effect against breast cancer cells both in vitro and in vivo. In vitro studies demonstrated that paclitaxel and G47Δ both caused dose-dependent cytotoxicity against the human breast cancer cell lines MCF-7 and MDA-MB-468. G47Δ and paclitaxel also demonstrated synergistic cytotoxicity when applied together, with Chou-Talalay combination indices ranging from 0.44 to 0.77 for MCF-7 cells and 0.68 to 0.83 for MDA-MB‑468 cells. Paclitaxel did not enhance viral replication or viral spread among tumor cells. However, G47Δ increased the antitumor ability of paclitaxel by inducing mitotic arrest and apoptosis. In vivo studies indicated that when combined with G47Δ, the dose of paclitaxel could be reduced at least 5-fold while maintaining levels of tumor reduction similar to those achieved with the administration of paclitaxel alone. Combination therapy resulted in no morbidity in vivo. Our data demonstrated that G47Δ and paclitaxel combination therapy had synergistic effects in the treatment of breast cancer. This combination therapy may be promising for breast cancer patients.
Collapse
Affiliation(s)
- Wei-Gen Zeng
- Breast Cancer Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, PR China
| | | | | | | | | | | |
Collapse
|