1
|
Stevens PE, Ahmed SB, Carrero JJ, Foster B, Francis A, Hall RK, Herrington WG, Hill G, Inker LA, Kazancıoğlu R, Lamb E, Lin P, Madero M, McIntyre N, Morrow K, Roberts G, Sabanayagam D, Schaeffner E, Shlipak M, Shroff R, Tangri N, Thanachayanont T, Ulasi I, Wong G, Yang CW, Zhang L, Levin A. KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int 2024; 105:S117-S314. [PMID: 38490803 DOI: 10.1016/j.kint.2023.10.018] [Citation(s) in RCA: 515] [Impact Index Per Article: 515.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 03/17/2024]
|
2
|
Canki E, Kho E, Hoenderop JGJ. Urinary biomarkers in kidney disease. Clin Chim Acta 2024; 555:117798. [PMID: 38280489 DOI: 10.1016/j.cca.2024.117798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
BACKGROUND Chronic kidney disease (CKD) affects many people worldwide and early diagnosis is essential for successful treatment and improved outcome. Unfortunately, current methods are insufficient especially for early disease detection. However, advances in the analytical methods for urinary biomarkers may provide a unique opportunity for diagnosis and management of CKD. This review explores evolving technology and highlights the importance of early marker detection in these patients. APPROACH A search strategy was set up using the terms CKD, biomarkers, and urine. The search included 53 studies comprising 37 biomarkers. The value of these biomarkers for CKD are based on their ability to diagnose CKD, monitor progression, assess mortality and nephrotoxicity. RESULTS KIM-1 was the best marker for diagnosis as it increased with the development of incident CKD. DKK3 increased in patients with declining eGFR, whereas UMOD decreased in those with declining kidney function. Unfortunately, none fulfilled all criteria to adequately assess mortality and nephrotoxicity. CONCLUSION New developments in the field of urinalysis using smart toilets may open several possibilities for urinary biomarkers. This review explored which biomarkers could be used for CKD disease detection and management.
Collapse
Affiliation(s)
- Esra Canki
- Department of Medical BioSciences, Radboudumc, Nijmegen, The Netherlands
| | - Esther Kho
- imec within OnePlanet Research Center, Wageningen, The Netherlands
| | | |
Collapse
|
3
|
Inhibition of Xanthine Oxidase Protects against Sepsis-Induced Acute Kidney Injury by Ameliorating Renal Hypoxia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4326695. [PMID: 35873795 PMCID: PMC9307393 DOI: 10.1155/2022/4326695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 06/15/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022]
Abstract
Xanthine oxidase (XO) utilizes molecular oxygen as a substrate to convert purine substrates into uric acid, superoxide, and hydrogen peroxide, which is one of the main enzyme pathways to produce reactive oxygen species (ROS) during septic inflammation and oxidative stress. However, it is not clear whether XO inhibition can improve sepsis-induced renal hypoxia in sepsis-induced acute kidney injury (SI-AKI) mice. In this study, pretreatment with febuxostat, an XO-specific inhibitor, or kidney knockdown of XO by shRNA in vivo significantly improved the prognosis of SI-AKI, not only by reducing the levels of blood urea nitrogen, serum creatinine, tumor necrosis factor-α, interleukin-6, and interleukin-1β in peripheral blood but also by improving histological damage and apoptosis, reducing the production of ROS, and infiltrating neutrophils and macrophages in the kidney. More importantly, we found that pharmacological and genetic inhibition of XO significantly improved renal hypoxia in SI-AKI mice by a hypoxia probe via fluorescence staining. This effect was further confirmed by the decrease in hypoxia-inducible factor-1α expression in the kidneys of mice with pharmacological and genetic inhibition of XO. In vitro, the change in XO activity induced by lipopolysaccharide was related to the change in hypoxia in HK-2 cells. Febuxostat and XO siRNA significantly relieved the hypoxia of HK-2 cells cultured in 2% oxygen and reversed the decrease in cell viability induced by lipopolysaccharide. Our results provide novel insights into the nephroprotection of XO inhibition in SI-AKI, improving cell hypoxia by inhibiting XO activity and reducing apoptosis, inflammation, and oxidative stress.
Collapse
|
4
|
Ye S, Zhuang W, Lin Y, Lai X, Chen J, Wang J, Zhong G, Yao H, Wu J. A Phase I, Randomized, Single-Ascending-Dose, Multiple-Dose, and Food-Effect Trial of the Safety, Efficacy, and Pharmacokinetics of Topiroxostat in Healthy Chinese Participants. BIO INTEGRATION 2022. [DOI: 10.15212/bioi-2022-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background: As the structure of the human diet changes, the prevalence of hyperuricemia is increasing each year. Hyperuricemia and its comorbidities, such as gout, severely affect quality of life. Moreover, hyperuricemia causes renal impairment and is associated with chronic kidney disease. Topiroxostat, a selective xanthine oxidoreductase inhibitor, has been approved to treat hyperuricemia or gout in Japan. Topiroxostat has shown good tolerance and efficacy in the Japanese population. However, its pharmacokinetic (PK) characteristics, efficacy, and safety in the Chinese population remains unknown.Objective: This trial evaluated the PK profile, safety, efficacy, and food effects of Topiroxostat in healthy Chinese participants.Methods: The major endpoint was determination of the PK profile of Topiroxostat. Topiroxostat concentrations were detected with LC-MS/MS. PK parameters were calculated in Phoenix WinNonlin 8.1. Minor endpoints were safety and efficacy assessments. Assessment of adverse events and safety was performed by clinicians. Plasma uric acid concentration (ΔECmax and ΔAUEC) was determined as the pharmacodynamic index. This study consisted of three arms: single ascending dose (20, 40, and 80 mg, N = 10), multiple dose (80 mg BID, 7 days, N = 10), and food effects (40 mg single dose, fasting-fed cross-over design, N = 10).Results: In the single-ascending-dose arm, Topiroxostat showed rapid absorption and excretion, with Tmax <1.6 h and T1/2 2.49–3.72 h. Additionally, Topiroxostat showed a wide distribution, on the basis of moderate Vz/F (242.8–336.36 L). The main PK parameters Cmax, AUC0-t, and AUC0-C showed a linear relationship with dose (R2 = 0.5146, 0.8416, 0.8386, respectively). In the multiple-dose arm, no significant differences were observed in Cmin on days 3–6 (P = 0.265). No serious adverse events were observed. Regarding efficacy, plasma uric acid levels were controlled to low levels during multiple-dose administration. In the food-effects arm, the fed group showed a lower Cmax than the fasting group (316.00 ± 135.81 vs. 478.40 ± 175.42 ng/mL, P = 0.033) but demonstrated better efficacy (ΔECmax, P < 0.001; ΔAUEC, P < 0.001).Conclusions: Topiroxostat showed rapid absorption and a broad distribution in healthy Chinese adults. Additionally, it showed good safety and tolerance in the Chinese population. Moreover, the pharmacodynamic profile indicated that post cibum administration increased the efficacy of Topiroxostat.
Collapse
Affiliation(s)
- Suiwen Ye
- Phase I Clinical Trial Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China
| | - Wei Zhuang
- Phase I Clinical Trial Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China
| | - Yunni Lin
- Phase I Clinical Trial Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China
| | - Xiuping Lai
- Phase I Clinical Trial Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China
| | - Junyi Chen
- Phase I Clinical Trial Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China
| | - Jing Wang
- Phase I Clinical Trial Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China
| | | | - Herui Yao
- Phase I Clinical Trial Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China
| | - Junyan Wu
- Phase I Clinical Trial Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China
| |
Collapse
|
5
|
Tsukamoto S, Okami N, Yamada T, Azushima K, Yamaji T, Kinguchi S, Uneda K, Kanaoka T, Wakui H, Tamura K. Prevention of kidney function decline using uric acid-lowering therapy in chronic kidney disease patients: a systematic review and network meta-analysis. Clin Rheumatol 2021; 41:911-919. [PMID: 34642880 DOI: 10.1007/s10067-021-05956-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Several previous studies have suggested that uric acid-lowering therapy (ULT) can slow the progression of chronic kidney disease (CKD). Although crucial for CKD patients, few studies have evaluated the effects of different ULT medications on kidney function. This systematic review summarizes evidence from randomized controlled trials (RCTs) regarding the effects of ULT on kidney function. METHOD We performed a systematic search of PubMed, MEDLINE, Embase, Scopus, and the Cochrane Library up to September 2021 to identify RCTs in CKD patients comparing the effects of ULT on kidney function with other ULT medications or placebo. A network meta-analysis was performed to compare each ULT indirectly. The primary outcome was a change in estimated glomerular filtration rate (eGFR) from baseline. RESULTS Ten studies were selected with a total of 1480 patients. Topiroxostat significantly improved eGFR and reduced the urinary albumin/creatinine ratio compared to placebo (mean difference (MD) and 95% confidence interval [95% CI]: 1.49 [0.08; 2.90], P = 0.038 and 25.65% [13.25; 38.04], P < 0.001, respectively). Although febuxostat did not show a positive effect overall, it significantly improved renal function (i.e., eGFR) in a subgroup of CKD patients with hyperuricemia (MD [95% CI]: 0.85 [0.02; 1.67], P = 0.045). Allopurinol and pegloticase did not show beneficial effects. CONCLUSIONS Topiroxostat and febuxostat may have better renoprotective effects in CKD patients than other ULT medications. Further large-scale, long-term studies are required to determine whether these effects will lead, ultimately, to reductions in dialysis induction and major adverse cardiovascular events. Key Points • This study is the first network meta-analysis comparing the nephroprotective effects of ULT in CKD patients. • Topiroxostat and febuxostat showed better renoprotective effects in CKD patients than other ULT medications. • Heterogeneity was low in this study, suggesting consistency of results.
Collapse
Affiliation(s)
- Shunichiro Tsukamoto
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Naohito Okami
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Takayuki Yamada
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.,Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kengo Azushima
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Takahiro Yamaji
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.,Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore
| | - Sho Kinguchi
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Kazushi Uneda
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.,Department of Kampo Medicine, Aizu Medical Center, Fukushima Medical University School of Medicine, Aizuwakamatsu, Japan
| | - Tomohiko Kanaoka
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Hiromichi Wakui
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| | - Kouichi Tamura
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| |
Collapse
|
6
|
The Role of Oxidative Stress in Hyperuricemia and Xanthine Oxidoreductase (XOR) Inhibitors. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1470380. [PMID: 33854690 PMCID: PMC8019370 DOI: 10.1155/2021/1470380] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 03/05/2021] [Accepted: 03/12/2021] [Indexed: 12/19/2022]
Abstract
Uric acid is the end product of purine metabolism in humans. Hyperuricemia is a metabolic disease caused by the increased formation or reduced excretion of serum uric acid (SUA). Alterations in SUA homeostasis have been linked to a number of diseases, and hyperuricemia is the major etiologic factor of gout and has been correlated with metabolic syndrome, cardiovascular disease, diabetes, hypertension, and renal disease. Oxidative stress is usually defined as an imbalance between free radicals and antioxidants in our body and is considered to be one of the main causes of cell damage and the development of disease. Studies have demonstrated that hyperuricemia is closely related to the generation of reactive oxygen species (ROS). In the human body, xanthine oxidoreductase (XOR) catalyzes the oxidative hydroxylation of hypoxanthine to xanthine to uric acid, with the accompanying production of ROS. Therefore, XOR is considered a drug target for the treatment of hyperuricemia and gout. In this review, we discuss the mechanisms of uric acid transport and the development of hyperuricemia, emphasizing the role of oxidative stress in the occurrence and development of hyperuricemia. We also summarize recent advances and new discoveries in XOR inhibitors.
Collapse
|
7
|
Piani F, Sasai F, Bjornstad P, Borghi C, Yoshimura A, Sanchez-Lozada LG, Roncal-Jimenez C, Garcia GE, Hernando AA, Fuentes GC, Rodriguez-Iturbe B, Lanaspa MA, Johnson RJ. Hyperuricemia and chronic kidney disease: to treat or not to treat. J Bras Nefrol 2021; 43:572-579. [PMID: 33704350 PMCID: PMC8940113 DOI: 10.1590/2175-8239-jbn-2020-u002] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 12/28/2020] [Indexed: 12/25/2022] Open
Abstract
Hyperuricemia is common in chronic kidney disease (CKD) and may be present in 50%
of patients presenting for dialysis. Hyperuricemia can be secondary to impaired
glomerular filtration rate (GFR) that occurs in CKD. However, hyperuricemia can
also precede the development of kidney disease and predict incident CKD.
Experimental studies of hyperuricemic models have found that both soluble and
crystalline uric acid can cause significant kidney damage, characterized by
ischemia, tubulointerstitial fibrosis, and inflammation. However, most Mendelian
randomization studies failed to demonstrate a causal relationship between uric
acid and CKD, and clinical trials have had variable results. Here we suggest
potential explanations for the negative clinical and genetic findings, including
the role of crystalline uric acid, intracellular uric acid, and xanthine oxidase
activity in uric acid-mediated kidney injury. We propose future clinical trials
as well as an algorithm for treatment of hyperuricemia in patients with CKD.
Collapse
Affiliation(s)
- Federica Piani
- University of Colorado School of Medicine, Division of Renal Diseases and Hypertension, Department of Medicine, Aurora, CO, USA.,University of Bologna, Department of Medical and Surgical Sciences, Bologna, Italy
| | - Fumihiko Sasai
- University of Colorado School of Medicine, Division of Renal Diseases and Hypertension, Department of Medicine, Aurora, CO, USA
| | - Petter Bjornstad
- University of Colorado School of Medicine, Division of Renal Diseases and Hypertension, Department of Medicine, Aurora, CO, USA
| | - Claudio Borghi
- University of Bologna, Department of Medical and Surgical Sciences, Bologna, Italy
| | | | - Laura G Sanchez-Lozada
- University of Colorado School of Medicine, Division of Renal Diseases and Hypertension, Department of Medicine, Aurora, CO, USA
| | - Carlos Roncal-Jimenez
- University of Colorado School of Medicine, Division of Renal Diseases and Hypertension, Department of Medicine, Aurora, CO, USA
| | - Gabriela E Garcia
- University of Colorado School of Medicine, Division of Renal Diseases and Hypertension, Department of Medicine, Aurora, CO, USA
| | - Ana Andres Hernando
- University of Colorado School of Medicine, Division of Renal Diseases and Hypertension, Department of Medicine, Aurora, CO, USA
| | - Gabriel Cara Fuentes
- University of Colorado School of Medicine, Division of Renal Diseases and Hypertension, Department of Medicine, Aurora, CO, USA
| | - Bernardo Rodriguez-Iturbe
- Hospital Universitario de Maracaibo, Instituto de Investigaciones Científicas, Ivic-Zulia, Maracaibo, Venezuela
| | - Miguel A Lanaspa
- University of Colorado School of Medicine, Division of Renal Diseases and Hypertension, Department of Medicine, Aurora, CO, USA
| | - Richard J Johnson
- University of Colorado School of Medicine, Division of Renal Diseases and Hypertension, Department of Medicine, Aurora, CO, USA.,Rocky Mountain VA Medical Center, Aurora, CO, USA
| |
Collapse
|