1
|
Mondal R, Sameer M. Connected Healthcare System Technology Interventions to Improve Patient Safety by Reducing Medical Errors: A Systematic Review. GLOBAL JOURNAL ON QUALITY AND SAFETY IN HEALTHCARE 2025; 8:43-49. [PMID: 39935722 PMCID: PMC11808857 DOI: 10.36401/jqsh-24-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/19/2024] [Accepted: 11/06/2024] [Indexed: 02/14/2025]
Abstract
Medication or medical mistakes, the third highest cause of death in the United States, occur from prescription writing to administering the therapy, with serious clinical and cost repercussions. Digital health technologies, such as connected healthcare systems, have the potential to reduce pharmaceutical errors and increase patient safety. This systematic review was conducted to find literature evidence to improve patient safety and reduce medication errors with connected healthcare interventions. This systematic review was conducted using the PRISMA 2020 guidelines. PubMed, SCOPUS, EBSCO, and Google Scholar databases were searched from January 1, 2000 to June 30, 2024 using keywords: medication errors, patient safety, and connected healthcare. A qualitative narrative analysis was conducted for the review. The detailed search yielded 9524 papers in total. In the process of duplicate removal, 4856 duplicate articles were found. After the removal of duplicate articles, 4615 were found not suitable or relevant to the topic of this study and were removed. Finally, 53 articles were chosen for the review study after screening and duplication removal. Ten of the 53 articles were review articles (18.9%), and 43 (81.1%) were original. The research indicates that various connected healthcare system technologies are more effective in minimizing errors and enhancing care quality. Integrating computerized physician order entry and clinical decision support systems may further reduce medical errors. However, many areas require additional research, and the outcomes are mixed. A balanced strategy that combines innovation, practical safety, and outcome evaluation is preferable.
Collapse
Affiliation(s)
- Ramkrishna Mondal
- Department of Hospital Administration, All India Institute of Medical Sciences, Patna, Bihar, India
| | - Mohammed Sameer
- Department of Hospital Administration, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
| |
Collapse
|
2
|
Sicking M, Živná M, Bhadra P, Barešová V, Tirincsi A, Hadzibeganovic D, Hodaňová K, Vyleťal P, Sovová J, Jedličková I, Jung M, Bell T, Helms V, Bleyer AJ, Kmoch S, Cavalié A, Lang S. Phenylbutyrate rescues the transport defect of the Sec61α mutations V67G and T185A for renin. Life Sci Alliance 2022; 5:e202101150. [PMID: 35064074 PMCID: PMC8807872 DOI: 10.26508/lsa.202101150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 11/24/2022] Open
Abstract
The human Sec61 complex is a widely distributed and abundant molecular machine. It resides in the membrane of the endoplasmic reticulum to channel two types of cargo: protein substrates and calcium ions. The SEC61A1 gene encodes for the pore-forming Sec61α subunit of the Sec61 complex. Despite their ubiquitous expression, the idiopathic SEC61A1 missense mutations p.V67G and p.T185A trigger a localized disease pattern diagnosed as autosomal dominant tubulointerstitial kidney disease (ADTKD-SEC61A1). Using cellular disease models for ADTKD-SEC61A1, we identified an impaired protein transport of the renal secretory protein renin and a reduced abundance of regulatory calcium transporters, including SERCA2. Treatment with the molecular chaperone phenylbutyrate reversed the defective protein transport of renin and the imbalanced calcium homeostasis. Signal peptide substitution experiments pointed at targeting sequences as the cause for the substrate-specific impairment of protein transport in the presence of the V67G or T185A mutations. Similarly, dominant mutations in the signal peptide of renin also cause ADTKD and point to impaired transport of this renal hormone as important pathogenic feature for ADTKD-SEC61A1 patients as well.
Collapse
Affiliation(s)
- Mark Sicking
- Department of Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Martina Živná
- Research Unit for Rare Diseases, Department of Pediatrics and Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Pratiti Bhadra
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Veronika Barešová
- Research Unit for Rare Diseases, Department of Pediatrics and Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Andrea Tirincsi
- Department of Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Drazena Hadzibeganovic
- Department of Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Kateřina Hodaňová
- Research Unit for Rare Diseases, Department of Pediatrics and Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Petr Vyleťal
- Research Unit for Rare Diseases, Department of Pediatrics and Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jana Sovová
- Research Unit for Rare Diseases, Department of Pediatrics and Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ivana Jedličková
- Research Unit for Rare Diseases, Department of Pediatrics and Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Martin Jung
- Department of Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Thomas Bell
- Department of Chemistry, University of Nevada, Reno, NV, USA
| | - Volkhard Helms
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Anthony J Bleyer
- Research Unit for Rare Diseases, Department of Pediatrics and Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Stanislav Kmoch
- Research Unit for Rare Diseases, Department of Pediatrics and Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Adolfo Cavalié
- Experimental and Clinical Pharmacology and Toxicology, Pre-clinical Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Sven Lang
- Department of Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| |
Collapse
|
3
|
Kim J, Kong SY, Han SH, Kim JW, Jeon CH, Yoo J. Genetic Counseling Status and Perspectives Based on a 2018 Professional Survey in Korea. Ann Lab Med 2019; 40:232-237. [PMID: 31858763 PMCID: PMC6933060 DOI: 10.3343/alm.2020.40.3.232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/20/2019] [Accepted: 11/18/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Genetic counseling (GC) provides many benefits, including the identification of patients appropriate for testing, patient education, and medical management. We evaluated the current status of and challenges faced by GC practitioners in Korean hospitals. METHODS An electronic survey was designed and conducted in 52 certified laboratory physicians belonging to the Korean Society of Laboratory Medicine, from August to September 2018. The questionnaires addressed three main categories of information: (1) current status of GC in hospitals; (2) essential qualifications of GC practitioners; and (3) challenges and perspectives for GC. Fisher's exact test was applied to analyze categorical data. RESULTS Among a total of 52 participants who initially responded, 12 (23.1%) were performing GC either by direct or indirect care. GC clinics were opened regularly for one (33.3%) or more than three sessions (25.0%) per week; most respondents spent more time for pre-visit activities than in-person visits, both for a initial visit patient and for a follow-up visit patient. All laboratory physicians provided genetic information to their patients. Most recommended family genetic testing when indicated (91.7%), discussed disease management (75.0%), and/or ordered additional genetic testing (58.3%), and some referred patients to other specialists (8.3%). CONCLUSIONS Both patients and laboratory physicians concede the advantage of GC performed by clinical geneticists; however, the practice of GC involves several challenges and raises some concerns. The cost and support required to implement GC need to be addressed in order to provide qualified GC in Korea.
Collapse
Affiliation(s)
- Jieun Kim
- Department of Laboratory Medicine, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul, Korea
| | - Sun Young Kong
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea.,Department of Laboratory Medicine, National Cancer Center, Goyang, Korea
| | - Sung Hee Han
- BioCore Co. Ltd., Division of Biotechnology, Yongin, Korea
| | - Jong Won Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Chang Ho Jeon
- Department of Laboratory Medicine, Daegu Catholic Medical Center, Daegu, Korea
| | - Jongha Yoo
- Department of Laboratory Medicine, National Health Insurance Service, Ilsan Hospital, Goyang, Korea.
| |
Collapse
|
4
|
Thierauf J, Ramamurthy N, Jo VY, Robinson H, Frazier RP, Gonzalez J, Pacula M, Dominguez Meneses E, Nose V, Nardi V, Dias-Santagata D, Le LP, Lin DT, Faquin WC, Wirth LJ, Hess J, Iafrate AJ, Lennerz JK. Clinically Integrated Molecular Diagnostics in Adenoid Cystic Carcinoma. Oncologist 2019; 24:1356-1367. [PMID: 30926674 PMCID: PMC6795155 DOI: 10.1634/theoncologist.2018-0515] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 02/27/2019] [Indexed: 01/29/2023] Open
Abstract
Adenoid cystic carcinoma is a rare but aggressive type of salivary gland malignancy. This article addresses the need for more effective, biomarker‐informed therapies in rare cancers, focusing on clinical utility and financial sustainability of integrated next‐generation sequencing in routine practice. Background. Adenoid cystic carcinoma (ACC) is an aggressive salivary gland malignancy without effective systemic therapies. Delineation of molecular profiles in ACC has led to an increased number of biomarker‐stratified clinical trials; however, the clinical utility and U.S.‐centric financial sustainability of integrated next‐generation sequencing (NGS) in routine practice has, to our knowledge, not been assessed. Materials and Methods. In our practice, NGS genotyping was implemented at the discretion of the primary clinician. We combined NGS‐based mutation and fusion detection, with MYB break‐apart fluorescent in situ hybridization (FISH) and MYB immunohistochemistry. Utility was defined as the fraction of patients with tumors harboring alterations that are potentially amenable to targeted therapies. Financial sustainability was assessed using the fraction of global reimbursement. Results. Among 181 consecutive ACC cases (2011–2018), prospective genotyping was performed in 11% (n = 20/181; n = 8 nonresectable). Testing identified 5/20 (25%) NOTCH1 aberrations, 6/20 (30%) MYB‐NFIB fusions (all confirmed by FISH), and 2/20 (10%) MYBL1‐NFIB fusions. Overall, these three alterations (MYB/MYBL1/NOTCH1) made up 65% of patients, and this subset had a more aggressive course with significantly shorter progression‐free survival. In 75% (n = 6/8) of nonresectable patients, we detected potentially actionable alterations. Financial analysis of the global charges, including NGS codes, indicated 63% reimbursement, which is in line with national (U.S.‐based) and international levels of reimbursement. Conclusion. Prospective routine clinical genotyping in ACC can identify clinically relevant subsets of patients and is approaching financial sustainability. Demonstrating clinical utility and financial sustainability in an orphan disease (ACC) requires a multiyear and multidimensional program. Implications for Practice. Delineation of molecular profiles in adenoid cystic carcinoma (ACC) has been accomplished in the research setting; however, the ability to identify relevant patient subsets in clinical practice has not been assessed. This work presents an approach to perform integrated molecular genotyping of patients with ACC with nonresectable, recurrent, or systemic disease. It was determined that 75% of nonresectable patients harbor potentially actionable alterations and that 63% of charges are reimbursed. This report outlines that orphan diseases such as ACC require a multiyear, multidimensional program to demonstrate utility in clinical practice.
Collapse
Affiliation(s)
- Julia Thierauf
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Nisha Ramamurthy
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Vickie Y Jo
- Department of Pathology, Brigham and Women's Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Hayley Robinson
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Ryan P Frazier
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan Gonzalez
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Maciej Pacula
- Department of Pathology, Computational Pathology, Boston, Massachusetts, USA
| | | | - Vania Nose
- Department of Pathology, Head and Neck Pathology, Boston, Massachusetts, USA
- Department of Pathology, Surgical Pathology, Boston, Massachusetts, USA
| | - Valentina Nardi
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Dora Dias-Santagata
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Long P Le
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
- Department of Pathology, Computational Pathology, Boston, Massachusetts, USA
| | - Derrick T Lin
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - William C Faquin
- Department of Pathology, Surgical Pathology, Boston, Massachusetts, USA
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - Lori J Wirth
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - Jochen Hess
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Research Group Molecular Mechanisms of Head and Neck Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - A John Iafrate
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Jochen K Lennerz
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|