1
|
Kuo SW, Zhang T, Esteller R, Grill WM. In Vivo Measurements reveal that both low- and high-frequency spinal cord stimulation heterogeneously modulate superficial dorsal horn neurons. Neuroscience 2023; 520:119-131. [PMID: 37085007 DOI: 10.1016/j.neuroscience.2023.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 03/01/2023] [Accepted: 04/08/2023] [Indexed: 04/23/2023]
Abstract
Current sub-perception spinal cord stimulation (SCS) is characterized by the use of high-frequency pulses to achieve paresthesia-free analgesic effects. High-frequency SCS demonstrates distinctive properties from paresthesia-based SCS, such as a longer time course to response, implying the existence of alternative mechanism(s) of action beyond gate control theory. We quantified the responses to SCS of single neurons within the superficial dorsal horn (SDH), a structure in close proximity to SCS electrodes, to investigate the mechanisms underlying high-frequency SCS in 62 urethane-anesthetized male rats. Sciatic nerve stimulation was delivered to isolate lumbar SDH neurons with evoked C-fiber activity. The evoked C-fiber activity before and after the application of SCS was compared to quantify the effects of SCS across stimulation intensity and stimulation duration at three different stimulation frequencies. We observed heterogeneous responses of SDH neurons which depended primarily on the type of unit. Low-threshold units with spontaneous activity, putatively inhibitory interneurons, tended to be facilitated by SCS while the other unit types were suppressed. The effects of SCS were more prominent with increased stimulation duration from 30 s to 30 m across frequencies. Our results highlight the importance of inhibitory interneurons in modulating local circuits of the SDH and the importance of local circuit contributions to the analgesic mechanisms of SCS.
Collapse
Affiliation(s)
- Su-Wei Kuo
- Department of Biomedical Engineering, Duke University, Durham, NC
| | - Tianhe Zhang
- Division of Neuromodulation, Boston Scientific Corporation, CA
| | - Rosana Esteller
- Division of Neuromodulation, Boston Scientific Corporation, CA
| | - Warren M Grill
- Department of Biomedical Engineering, Duke University, Durham, NC; Departments of Electrical and Computer Engineering, Neurobiology, and Neurosurgery, Duke University, Durham, NC.
| |
Collapse
|
2
|
Sharma A, Behl T, Sharma L, Shah OP, Yadav S, Sachdeva M, Rashid S, Bungau SG, Bustea C. Exploring the molecular pathways and therapeutic implications of angiogenesis in neuropathic pain. Biomed Pharmacother 2023; 162:114693. [PMID: 37062217 DOI: 10.1016/j.biopha.2023.114693] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/26/2023] [Accepted: 04/10/2023] [Indexed: 04/18/2023] Open
Abstract
Recently, much attention has been paid to chronic neuro-inflammatory condition underlying neuropathic pain. It is generally linked with thermal hyperalgesia and tactile allodynia. It results due to injury or infection in the nervous system. The neuropathic pain spectrum covers a variety of pathophysiological states, mostly involved are ischemic injury viral infections associated neuropathies, chemotherapy-induced peripheral neuropathies, autoimmune disorders, traumatic origin, hereditary neuropathies, inflammatory disorders, and channelopathies. In CNS, angiogenesis is evident in inflammation of neurons and pain in bone cancer. The role of chemokines and cytokines is dualistic; their aggressive secretion produces detrimental effects, leading to neuropathic pain. However, whether the angiogenesis contributes and exists in neuropathic pain remains doubtful. In the present review, we elucidated summary of diverse mechanisms of neuropathic pain associated with angiogenesis. Moreover, an overview of multiple targets that have provided insights on the VEGF signaling, signaling through Tie-1 and Tie-2 receptor, erythropoietin pathway promoting axonal growth are also discussed. Because angiogenesis as a result of these signaling, results in inflammation, we focused on the mechanisms of neuropathic pain. These factors are mainly responsible for the activation of post-traumatic regeneration of the PNS and CNS. Furthermore, we also reviewed synthetic and herbal treatments targeting angiogenesis in neuropathic pain.
Collapse
Affiliation(s)
- Aditi Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan 173211, Himachal Pradesh, India
| | - Tapan Behl
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidholi, 248007 Dehradun, Uttarakhand, India.
| | - Lalit Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan 173211, Himachal Pradesh, India
| | - Om Prakash Shah
- School of Pharmaceutical Sciences, Shoolini University, Solan 173211, Himachal Pradesh, India
| | - Shivam Yadav
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Chhatrapati Shahu ji Maharaj University, Kanpur 208024, Uttar Pradesh, India
| | - Monika Sachdeva
- Fatima College of Health Sciences, Al Ain 00000, United Arab Emirates
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea 410028, Romania; Doctoral School of Biomedical Sciences, University of Oradea, Oradea 410028, Romania.
| | - Cristiana Bustea
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, Oradea 410073, Romania
| |
Collapse
|
3
|
Jain V, Pareek A, Bhardwaj YR, Sinha SK, Gupta MM, Singh N. Punicalagin and ellagic acid containing Punica granatum L. fruit rind extract prevents vincristine-induced neuropathic pain in rats: an in silico and in vivo evidence of GABAergic action and cytokine inhibition. Nutr Neurosci 2021; 25:2149-2166. [PMID: 34369317 DOI: 10.1080/1028415x.2021.1954293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Objectives: We aimed to investigate the protective potential of Punica granatum L. fruit rind extract (PFE) containing punicalagin (10.3% W/W), ellagic acid (EA) (2.7%W/W) in vincristine (75 µg/kg i.p.)- induced neuropathic pain in Wistar rats.Methods: Docking simulation studies were done on the three-dimensional (3D) structure of the GABAA and PPAR γ receptor for the binding of EA as well as punicalagin docking studies on TNF-α, and IL-6. The Present Study conceptualized a test battery to evaluate the behavioral, biochemical and histological changes.Results: Vincristine -induced significant cold allodynia, mechanical hyperalgesia, and functional deficit on 12th and 21st days. It also increased in the levels of TNF-α (Tumor necrosis factor-α), IL-6 (Interleukin-6), and MPO (Myeloperoxidase). Administration of PFE (100 and 300 mg/kg, p.o.), EA (50 mg/kg), and gabapentin (100 mg/kg) attenuated Vincristine-induced behavioral and biochemical changes significantly (P < .05). PFE showed better antinociceptive activity to EA. The histopathological evaluation also revealed the protective effects of PFE. Pretreatment of bicuculline (selective antagonist of GABAA receptors) reversed antinociceptive action of PFE, but administration of γ aminobutyric acid potentiated the action of PFE. PPAR-γ antagonist BADGE did not modify the effect of PFE. Docking results revealed that EA properly positioned into GABA and PPARγ binding site and acts as a partial agonist. Docking score of Punicalagin found to be - 9.02 kcal/mol and - 8.32 kcal/mol on IL-6 and TNFα respectively.Discussion: Conclusively, the attenuating effect of PFE may be attributed to the GABAergic system, cytokine inhibition, and anti-inflammatory activities.
Collapse
Affiliation(s)
- Vivek Jain
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, Rajasthan, India.,Department of Pharmacy, Banasthali University, Banasthali, India
| | - Ashutosh Pareek
- Department of Pharmacy, Banasthali University, Banasthali, India
| | | | - Saurabh Kumar Sinha
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Madan Mohan Gupta
- School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St Augustine, Trinidad & Tobago, West Indies
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| |
Collapse
|
4
|
Electroacupuncture at Zusanli and at Neiguan characterized point specificity in the brain by metabolomic analysis. Sci Rep 2020; 10:10717. [PMID: 32612281 PMCID: PMC7329888 DOI: 10.1038/s41598-020-67766-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/08/2020] [Indexed: 11/24/2022] Open
Abstract
Different point stimulations can induce brain activity in specific regions, and however whether these stimulations affect unique neurotransmitter transmission remains unknown. Therefore, we aimed to investigate the effect of point specificity to the brain by resolving the metabolite profiles. Eighteen Sprague–Dawley rats were randomly divided into three groups: (1) the sham group: sham acupuncture at Zusanli (ST36) without electric stimulation; (2) the Zusanli (ST36) group: electroacupuncture (EA) at ST36; and (3) the Neiguan (PC6) group: EA at PC6. Then, the metabolites from rat brain samples were measured by LC–ESI–MS. The results of a partial least squares discriminant analysis revealed the differences among the sham, ST36, and PC6 groups regarding the relative content of metabolites in the cerebral cortex, hippocampus, and hypothalamus. EA at PC6 resulted in downregulation of adenosine, adrenaline, γ-aminobutyric acid, glycine, and glutamate majorly in hippocampus, and then in cerebral cortex. Otherwise, EA at ST6 resulted in upregulation of adrenaline and arginine in hippocampus, and all stimulations showed barely change of identified neurotransmitters in hypothalamus. These differential metabolite and neurotransmitter profiles prove that brain areas can be modulated by point specificity and may provide a maneuver to understand more details of meridian.
Collapse
|
5
|
Mollashahi M, Abbasnejad M, Esmaeili-Mahani S. Spinal protein kinase A and phosphorylated extracellular signal-regulated kinase signaling are involved in the antinociceptive effect of phytohormone abscisic acid in rats. ARQUIVOS DE NEURO-PSIQUIATRIA 2020; 78:21-27. [PMID: 32074185 DOI: 10.1590/0004-282x20190137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 09/05/2019] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The phytohormone abscisic acid (ABA) as a signaling molecule exists in various types of organisms from early multicellular to animal cells and tissues. It has been demonstrated that ABA has an antinociceptive effect in rodents. The present study was designed to assess the possible role of PKA and phosphorylated ERK (p-ERK) on the antinociceptive effects of intrathecal (i.t.) ABA in male Wistar rats. METHODS The animals were cannulated intrathecally and divided into different experimental groups (n=6‒7): Control (no surgery), vehicle (received ABA vehicle), ABA-treated groups (received ABA in doses of 10 or 20 µg/rat), ABA plus H.89 (PKA inhibitor)-treated group which received the inhibitor 15 min prior to the ABA injection. Tail-flick and hot-plate tests were used as acute nociceptive stimulators to assess ABA analgesic effects. p-ERK was evaluated in the dorsal portion of the spinal cord using immunoblotting. RESULTS Data showed that a microinjection of ABA (10 and 20 µg/rat, i.t.) significantly increased the nociceptive threshold in tail flick and hot plate tests. The application of PKA inhibitor (H.89, 100 nM/rat) significantly inhibited ABA-induced analgesic effects. Expression of p-ERK was significantly decreased in ABA-injected animals, which were not observed in the ABA+H.89-treated group. CONCLUSIONS Overall, i.t. administration of ABA (10 µg/rat) induced analgesia and p-ERK down-expression likely by involving the PKA-dependent mechanism.
Collapse
Affiliation(s)
- Mahtab Mollashahi
- Shahid Bahonar University of Kerman, Faculty of Sciences, Department of Biology, Kerman, Iran
| | - Mehdi Abbasnejad
- Shahid Bahonar University of Kerman, Faculty of Sciences, Department of Biology, Kerman, Iran
- Kerman University of Medical Sciences, Kerman Neuroscience Research Center (KNRC), Laboratory of Molecular Neuroscience, Kerman, Iran
| | - Saeed Esmaeili-Mahani
- Shahid Bahonar University of Kerman, Faculty of Sciences, Department of Biology, Kerman, Iran
| |
Collapse
|