1
|
Sayyah M, Seydyousefi M, Moghanlou AE, Metz GAS, Shamsaei N, Faghfoori MH, Faghfoori Z. Activation of BDNF- and VEGF-mediated Neuroprotection by Treadmill Exercise Training in Experimental Stroke. Metab Brain Dis 2022; 37:1843-1853. [PMID: 35596908 DOI: 10.1007/s11011-022-01003-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 04/21/2022] [Indexed: 12/01/2022]
Abstract
Early treatment of ischemic stroke is one of the most effective ways to reduce brains' cell death and promote functional recovery. This study was designed to examine the effect of aerobic exercise on post ischemia/reperfusion injury on concentration and expression of brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) after inducing a neuronal loss in CA1 region of hippocampus in Male Wistar rats. Three experimental groups including sham(S), ischemia/reperfusion-control (IRC) and ischemia/reperfusion exercise (IRE) were used for this purpose. The rats in the IRE group received a bilateral carotid artery occlusion treatment. They ran for 45 minutes on a treadmill five days per week for eight consecutive weeks. Cresyl violet (Nissl), Hematoxylin (H & E) and Eosin staining procedure were used to determine the extent of damage. A ladder rung walking task was used to assess the functional impairments and recovery after the ischemic lesion. ELISA and immunohistochemistry method were employed to measure BDNF and VEGF protein expressions. The result showed that the brain ischemia/reperfusion condition increased the cell death in hippocampal CA1 neurons and impaired motor performance on the ladder rung task whereas the aerobic exercise program significantly decreased the brain cell's death and improved motor skill performance. It was concluded that ischemic brain lesion decreased the BDNF and VEGF expression. It seems that the aerobic exercise following the ischemia/reperfusion potentially promotes neuroprotective mechanisms and neuronal repair and survival mediated partly by BDNF and other pathways.
Collapse
Affiliation(s)
- Mansour Sayyah
- Clinical Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Mehdi Seydyousefi
- Department of Physical Education and Sport Sciences, Bojnourd Branch, Islamic Azad University, Bojnourd, Iran
| | | | - Gerlinde A S Metz
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, T1K 3M4, Canada
| | - Nabi Shamsaei
- Department of Physical Education and Sport Sciences, Ilam University, Ilam, Iran
| | - Mohammad Hasan Faghfoori
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Zeinab Faghfoori
- Food Safety Research Center (salt), Semnan University of Medical Sciences, Semnan, Iran.
- Department of Nutrition, School of Nutrition and Food Sciences, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
2
|
Wang F, Fangfang Z, Guo X, Chen W, Yao W, Liu H, Lyu C, Zhang Y, Fan C. Effects of volatile organic compounds and carbon monoxide mixtures on learning and memory, oxidative stress, and monoamine neurotransmitters in the brains of mice. Toxicol Ind Health 2018; 34:178-187. [PMID: 29506457 DOI: 10.1177/0748233717747504] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, we investigated the effect of inhaled mixtures of volatile organic compounds (VOCs) and carbon monoxide (CO) on neuroethology. Fifty 6-week-old male Kunming mice were exposed in five similar static chambers; zero (control) and four different doses of VOC and CO mixtures (G1-G4) for 10 consecutive days and 2 h/day. The compounds and concentrations were as follows: formaldehyde, benzene, toluene, xylene, and CO as 0.10 + 0.11 + 0.20 + 0.20 + 10.00 mg/m3, 0.20 + 0.22 + 0.40 + 0.40 + 20.00 mg/m3, 1.00 + 1.10 + 2.00 + 2.00 + 100.00 mg/m3, and 5.00 + 5.50 + 10.00 + 10.00 + 500.00 mg/m3, respectively, which corresponded to 1, 2, 10, and 50 times the indoor air quality standard in China. Morris water maze and grip strength tests were performed during the exposure experiment. One day following the final exposure, oxidative damage levels, monoamine neurotransmitters, monoamine oxidase (MAO), and morphology of mice brain were analyzed. Escape latency, dopamine, norepinephrine (NE), and serotonin decreased significantly, while total antioxidant capacity, glutathione peroxidase, and MAO increased significantly in G3 and G4. In addition, there were morphological changes and degeneration of neurons in the dentate gyrus regions of the hippocampus in G4. Results showed that the inhaled mixtures of VOCs and CO affected learning and memory of mice. The impairment of monoamine neurotransmitter associated with MAO may be one of the mechanisms of learning and memory impairment of the mice induced by the mixtures of VOCs and CO.
Collapse
Affiliation(s)
- Fan Wang
- 1 School of Biological Science, Luoyang Normal University, Luoyang, China.,2 Cold Water Fish Breeding Engineering Technology Research Center of Henan Province, Luoyang, China
| | - Zheng Fangfang
- 1 School of Biological Science, Luoyang Normal University, Luoyang, China
| | - Xiangmeng Guo
- 1 School of Biological Science, Luoyang Normal University, Luoyang, China
| | - Wanguang Chen
- 1 School of Biological Science, Luoyang Normal University, Luoyang, China.,2 Cold Water Fish Breeding Engineering Technology Research Center of Henan Province, Luoyang, China
| | - Weiyun Yao
- 1 School of Biological Science, Luoyang Normal University, Luoyang, China
| | - Haifang Liu
- 3 School of Energy and Environment Engineering, Zhongyuan University of Technology, Zhengzhou, China
| | - Chengcai Lyu
- 4 College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Yaowen Zhang
- 4 College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Chaojie Fan
- 4 College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|