1
|
Wuni R, Adela Nathania E, Ayyappa AK, Lakshmipriya N, Ramya K, Gayathri R, Geetha G, Anjana RM, Kuhnle GGC, Radha V, Mohan V, Sudha V, Vimaleswaran KS. Impact of Lipid Genetic Risk Score and Saturated Fatty Acid Intake on Central Obesity in an Asian Indian Population. Nutrients 2022; 14:2713. [PMID: 35807893 PMCID: PMC9269337 DOI: 10.3390/nu14132713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/22/2022] Open
Abstract
Abnormalities in lipid metabolism have been linked to the development of obesity. We used a nutrigenetic approach to establish a link between lipids and obesity in Asian Indians, who are known to have a high prevalence of central obesity and dyslipidaemia. A sample of 497 Asian Indian individuals (260 with type 2 diabetes and 237 with normal glucose tolerance) (mean age: 44 ± 10 years) were randomly chosen from the Chennai Urban Rural Epidemiological Study (CURES). Dietary intake was assessed using a previously validated questionnaire. A genetic risk score (GRS) was constructed based on cholesteryl ester transfer protein (CETP) and lipoprotein lipase (LPL) genetic variants. There was a significant interaction between GRS and saturated fatty acid (SFA) intake on waist circumference (WC) (Pinteraction = 0.006). Individuals with a low SFA intake (≤23.2 g/day), despite carrying ≥2 risk alleles, had a smaller WC compared to individuals carrying <2 risk alleles (Beta = −0.01 cm; p = 0.03). For those individuals carrying ≥2 risk alleles, a high SFA intake (>23.2 g/day) was significantly associated with a larger WC than a low SFA intake (≤23.2 g/day) (Beta = 0.02 cm, p = 0.02). There were no significant interactions between GRS and other dietary factors on any of the measured outcomes. We conclude that a diet low in SFA might help reduce the genetic risk of central obesity confirmed by CETP and LPL genetic variants. Conversely, a high SFA diet increases the genetic risk of central obesity in Asian Indians.
Collapse
Affiliation(s)
- Ramatu Wuni
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences, University of Reading, Reading RG6 6DZ, UK; (R.W.); (G.G.C.K.)
| | - Evelyn Adela Nathania
- Indonesia International Institute for Life Sciences, JI. Pulomas Barat Kav. 88, Jakarta Timur 13210, Indonesia;
| | - Ashok K. Ayyappa
- Department of Molecular Genetics, Madras Diabetes Research Foundation, ICMR Centre for Advanced Research on Diabetes, Chennai 603103, India; (A.K.A.); (K.R.); (R.M.A.); (V.R.); (V.M.)
| | - Nagarajan Lakshmipriya
- Department of Food, Nutrition and Dietetics Research, Madras Diabetes Research Foundation, Chennai 600086, India; (N.L.); (R.G.); (G.G.); (V.S.)
| | - Kandaswamy Ramya
- Department of Molecular Genetics, Madras Diabetes Research Foundation, ICMR Centre for Advanced Research on Diabetes, Chennai 603103, India; (A.K.A.); (K.R.); (R.M.A.); (V.R.); (V.M.)
| | - Rajagopal Gayathri
- Department of Food, Nutrition and Dietetics Research, Madras Diabetes Research Foundation, Chennai 600086, India; (N.L.); (R.G.); (G.G.); (V.S.)
| | - Gunasekaran Geetha
- Department of Food, Nutrition and Dietetics Research, Madras Diabetes Research Foundation, Chennai 600086, India; (N.L.); (R.G.); (G.G.); (V.S.)
| | - Ranjit Mohan Anjana
- Department of Molecular Genetics, Madras Diabetes Research Foundation, ICMR Centre for Advanced Research on Diabetes, Chennai 603103, India; (A.K.A.); (K.R.); (R.M.A.); (V.R.); (V.M.)
- Department of Food, Nutrition and Dietetics Research, Madras Diabetes Research Foundation, Chennai 600086, India; (N.L.); (R.G.); (G.G.); (V.S.)
- Dr. Mohan’s Diabetes Specialties Centre, IDF Centre of Excellence in Diabetes Care, Gopalapuram, Chennai 600086, India
| | - Gunter G. C. Kuhnle
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences, University of Reading, Reading RG6 6DZ, UK; (R.W.); (G.G.C.K.)
| | - Venkatesan Radha
- Department of Molecular Genetics, Madras Diabetes Research Foundation, ICMR Centre for Advanced Research on Diabetes, Chennai 603103, India; (A.K.A.); (K.R.); (R.M.A.); (V.R.); (V.M.)
| | - Viswanathan Mohan
- Department of Molecular Genetics, Madras Diabetes Research Foundation, ICMR Centre for Advanced Research on Diabetes, Chennai 603103, India; (A.K.A.); (K.R.); (R.M.A.); (V.R.); (V.M.)
- Department of Food, Nutrition and Dietetics Research, Madras Diabetes Research Foundation, Chennai 600086, India; (N.L.); (R.G.); (G.G.); (V.S.)
- Dr. Mohan’s Diabetes Specialties Centre, IDF Centre of Excellence in Diabetes Care, Gopalapuram, Chennai 600086, India
| | - Vasudevan Sudha
- Department of Food, Nutrition and Dietetics Research, Madras Diabetes Research Foundation, Chennai 600086, India; (N.L.); (R.G.); (G.G.); (V.S.)
| | - Karani Santhanakrishnan Vimaleswaran
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences, University of Reading, Reading RG6 6DZ, UK; (R.W.); (G.G.C.K.)
- The Institute for Food, Nutrition, and Health (IFNH), University of Reading, Reading RG6 6AP, UK
| |
Collapse
|
2
|
Lee HS, Kim B, Park T. Transethnic meta-analysis of exome-wide variants identifies new loci associated with male-specific metabolic syndrome. Genes Genomics 2022; 44:629-636. [PMID: 35384631 DOI: 10.1007/s13258-021-01214-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 12/29/2021] [Indexed: 11/04/2022]
Abstract
BACKGROUND Metabolic syndrome (MetS) is a group of very common human conditions promoting strong understand the impact of rare variants, beyond exome-wide association studies, to potentially discover causative variants, across different ethnic populations. OBJECTIVE We performed transethnic, exome-wide MetS association studies on MetS in men. METHODS We analyzed genotype data of 5302 European subjects (2658 cases and 2644 controls), in the discovery stage of the European METabolic Syndrome In Men study, generated from exome chips, and 2481 subjects (714 cases and 1767 controls), in the replication stage, across 6 independent cohorts of 5 ancestries (T2D-GENES consortium), using whole-exome sequencing. We therefore evaluated gene-level and variant-level associations, of rare variants for MetS, using logistic regression (LR) and multivariate analyses (MulA). RESULTS Gene-based association found the gene for the cholesteryl ester transfer protein (CETP) (from MulA, p value = 4.67 × 10-9; from LR, p value = 0.009) to well associate with MetS. At two missense variants, from 8 rare variants in CETP, Ala390Pro (rs5880) (from MulA, p value = 1.28 × 10-7; from LR, p value = 1.34 × 10-4) and Arg468Gln (rs1800777) (from MulA, p value = 2.40 × 10-5; from LR, p value = 1.49 × 10-3) significantly associated with MetS across five ancestries. CONCLUSIONS Our findings highlight novel rare variants of genes that confer MetS susceptibility, in Europeans, that are shared with diverse populations, emphasizing an opportunity to further understand the biological target or genes that underlie MetS, across populations.
Collapse
Affiliation(s)
- Ho-Sun Lee
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, Republic of Korea
- Daegu Institution, National Forensic Service, 33-14, Hogukro, Waegwon-eup, Chilgok-gun, Gyeomgsamgbuk-do, Republic of Korea
| | - Boram Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, Republic of Korea
| | - Taesung Park
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, Republic of Korea.
- Department of Statistics, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|