1
|
Jiang L, Zhang L, Xia J, Cheng L, Chen G, Wang J, Raghavan V. Probiotics supplementation during pregnancy or infancy on multiple food allergies and gut microbiota: a systematic review and meta-analysis. Nutr Rev 2025; 83:e25-e41. [PMID: 38502006 PMCID: PMC11723154 DOI: 10.1093/nutrit/nuae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024] Open
Abstract
CONTEXT Probiotics show promise in preventing and managing food allergies, but the impact of supplementation during pregnancy or infancy on children's allergies and gut microbiota remains unclear. OBJECTIVE This study aimed to assess the effects of maternal or infant probiotic supplementation on food allergy risk and explore the role of gut microbiota. DATA SOURCES A systematic search of databases (PubMed, Cochrane Library, Embase, and Medline) identified 37 relevant studies until May 20, 2023. DATA EXTRACTION Two independent reviewers extracted data, including probiotics intervention details, gut microbiota analysis, and food allergy information. DATA ANALYSIS Probiotics supplementation during pregnancy and infancy reduced the risk of total food allergy (relative risk [RR], 0.79; 95% CI, 0.63-0.99), cow-milk allergy (RR, 0.51; 95% CI, 0.29-0.88), and egg allergy (RR, 0.57; 95% CI, 0.39-0.84). Infancy-only supplementation lowered cow-milk allergy risk (RR, 0.69; 95% CI, 0.49-0.96), while pregnancy-only had no discernible effect. Benefits were observed with over 2 probiotic species, and a daily increase of 1.8 × 109 colony-forming units during pregnancy and infancy correlated with a 4% reduction in food allergy risk. Children with food allergies had distinct gut microbiota profiles, evolving with age. CONCLUSIONS Probiotics supplementation during pregnancy and infancy reduces food allergy risk and correlates with age-related changes in gut microbial composition in children. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42023425988.
Collapse
Affiliation(s)
- Lan Jiang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Lili Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Jiayue Xia
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Lei Cheng
- Department of Otorhinolaryngology and Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Guoxun Chen
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN, USA
| | - Jin Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Vijaya Raghavan
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| |
Collapse
|
2
|
Hsu CY, Khachatryan LG, Younis NK, Mustafa MA, Ahmad N, Athab ZH, Polyanskaya AV, Kasanave EV, Mirzaei R, Karampoor S. Microbiota-derived short chain fatty acids in pediatric health and diseases: from gut development to neuroprotection. Front Microbiol 2024; 15:1456793. [PMID: 39439941 PMCID: PMC11493746 DOI: 10.3389/fmicb.2024.1456793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/12/2024] [Indexed: 10/25/2024] Open
Abstract
The infant gut microbiota undergoes significant changes during early life, which are essential for immune system maturation, nutrient absorption, and metabolic programming. Among the various microbial metabolites, short-chain fatty acids (SCFAs), primarily acetate, propionate, and butyrate, produced through the fermentation of dietary fibers by gut bacteria, have emerged as critical modulators of host-microbiota interactions. SCFAs serve as energy sources for colonic cells and play pivotal roles in regulating immune responses, maintaining gut barrier integrity, and influencing systemic metabolic pathways. Recent research highlights the potential neuroprotective effects of SCFAs in pediatric populations. Disruptions in gut microbiota composition and SCFA production are increasingly associated with a range of pediatric health issues, including obesity, allergic disorders, inflammatory bowel disease (IBD), and neurodevelopmental disorders. This review synthesizes current knowledge on the role of microbiota-derived SCFAs in pediatric health, emphasizing their contributions from gut development to neuroprotection. It also underscores the need for further research to unravel the precise mechanisms by which SCFAs influence pediatric health and to develop targeted interventions that leverage SCFAs for therapeutic benefits.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, AZ, United States
| | - Lusine G. Khachatryan
- Department of Pediatric Diseases, N. F. Filatov Clinical Institute of Children’s Health, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Techniques, University of Imam Jafar Al-Sadiq, College of Technology, Baghdad, Iraq
| | - Nabeel Ahmad
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, India
- Department of Biotechnology, School of Allied Sciences, Dev Bhoomi Uttarakhand University Dehradun, Uttarakhand, India
| | - Zainab H. Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Angelina V. Polyanskaya
- Department of Pediatric Diseases, N. F. Filatov Clinical Institute of Children’s Health, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Elena Victorovna Kasanave
- Department of Pediatric Diseases, N. F. Filatov Clinical Institute of Children’s Health, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Farnetano M, Carucci L, Coppola S, Oglio F, Masino A, Cozzolino M, Nocerino R, Berni Canani R. Gut microbiome features in pediatric food allergy: a scoping review. FRONTIERS IN ALLERGY 2024; 5:1438252. [PMID: 39386092 PMCID: PMC11461474 DOI: 10.3389/falgy.2024.1438252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/13/2024] [Indexed: 10/12/2024] Open
Abstract
Increasing evidence suggests that alterations in the gut microbiome (GM) play a pivotal role in the pathogenesis of pediatric food allergy (FA). This scoping review analyzes the current evidence on GM features associated with pediatric FAs and highlights the importance of the GM as a potential target of intervention for preventing and treating this common condition in the pediatric age. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines, we searched PubMed and Embase using the keywords (gut microbiome OR dysbiosis OR gut microbiota OR microbiome signatures) AND (food allergy OR IgE-mediated food allergy OR food protein-induced allergic proctocolitis OR food protein-induced enterocolitis OR non-IgE food allergy OR cow milk allergy OR hen egg allergy OR peanut allergy OR fish allergy OR shellfish allergy OR tree nut allergy OR soy allergy OR wheat allergy OR rice allergy OR food sensitization). We included 34 studies reporting alterations in the GM in children affected by FA compared with healthy controls. The GM in pediatric FAs is characterized by a higher abundance of harmful microorganisms (e.g., Enterobacteriaceae, Clostridium sensu stricto, Ruminococcus gnavus, and Blautia spp.) and lower abundance of beneficial bacteria (e.g., Bifidobacteriaceae, Lactobacillaceae, some Bacteroides species). Moreover, we provide an overview of the mechanisms of action elicited by these bacterial species in regulating immune tolerance and of the main environmental factors that can modulate the composition and function of the GM in early life. Altogether, these data improve our knowledge of the pathogenesis of FA and can open the way to innovative diagnostic, preventive, and therapeutic strategies for managing these conditions.
Collapse
Affiliation(s)
- Margherita Farnetano
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
| | - Laura Carucci
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
| | - Serena Coppola
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
| | - Franca Oglio
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
| | - Antonio Masino
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
| | - Marica Cozzolino
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
| | - Rita Nocerino
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | - Roberto Berni Canani
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food-Induced Diseases, University of Naples Federico II, Naples, Italy
| |
Collapse
|
4
|
OGASAWARA K, YAMADA N, NAKAYAMA SMM, WATANABE Y, SAITO K, CHIBA A, UCHIDA Y, UEDA K, TAKENAKA Y, KAZAMA K, KAZAMA M, YAMAGISHI J, MIZUKAWA H, IKENAKA Y, ISHIZUKA M. Surveys of eleven species of wild and zoo birds and feeding experiments in white-tailed eagles reveal differences in the composition of the avian gut microbiome based on dietary habits between and within species. J Vet Med Sci 2023; 85:1355-1365. [PMID: 37914278 PMCID: PMC10788175 DOI: 10.1292/jvms.23-0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/30/2023] [Indexed: 11/03/2023] Open
Abstract
The composition of the gut microbiome varies due to dietary habits. We investigated influences of diet on the composition of the gut microbiome using the feces of 11 avian species, which consumed grain-, fish- and meat-based diets. We analyzed gut microbiome diversity and composition by next-generation sequencing (NGS) of 16S ribosomal RNA. The grain-diet group had higher gut microbiome diversity than the meat- and fish-diet group. The ratio of Bacteroidetes and Firmicutes phyla was higher in the grain-diet group than in the meat- and fish-diet groups. The grain-diet group had a higher ratio of Veillonellaceae than the meat-diet group and a higher ratio of Eubacteriaceae than the fish-diet habit group. To clarify the influence of diet within the same species, white-tailed eagles (Haliaeetus albicilla, n=6) were divided into two groups, and given only deer meat or fish for approximately one month. The composition of the gut microbiome of individuals in both groups were analyzed by NGS. There were indications of fluctuation in the levels of some bacteria (Lactobacillus, Coriobacteriales, etc.) in each diet group. Moreover, one individual for each group which switched each diet in last week changed to each feature of composition of bacterial flora. The above results show that the composition of the gut microbiome differ depending on diet, even within the same species.
Collapse
Affiliation(s)
- Kohei OGASAWARA
- Laboratory of Toxicology, Faculty of Veterinary Medicine,
Hokkaido University, Hokkaido, Japan
| | - Naoki YAMADA
- Laboratory of Toxicology, Faculty of Veterinary Medicine,
Hokkaido University, Hokkaido, Japan
| | - Shouta MM NAKAYAMA
- Laboratory of Toxicology, Faculty of Veterinary Medicine,
Hokkaido University, Hokkaido, Japan
- School of Veterinary Medicine, The University of Zambia,
Lusaka, Zambia
| | - Yukiko WATANABE
- Institute for Raptor Biomedicine Japan, Kushiro Shitsugen
Wildlife Center, Hokkaido, Japan
| | - Keisuke SAITO
- Institute for Raptor Biomedicine Japan, Kushiro Shitsugen
Wildlife Center, Hokkaido, Japan
| | - Akane CHIBA
- Research Faculty of Agriculture, Hokkaido University,
Hokkaido, Japan
- Research Unit Comparative Microbiome Analysis, Helmholtz
Zentrum München, German Research Centre for Environmental Health, Neuherberg,
Germany
| | - Yoshitaka UCHIDA
- Research Faculty of Agriculture, Hokkaido University,
Hokkaido, Japan
| | | | - Yasunori TAKENAKA
- Haboro Nature Conservation Office, Ministry of the
Environment, Hokkaido, Japan
| | - Kentaro KAZAMA
- Faculty of Human Sciences, Waseda University, Saitama,
Japan
| | - Mami KAZAMA
- Rishiri Natural History Institute, Hokkaido, Japan
| | - Junya YAMAGISHI
- Division of Collaboration and Education, International
Institute for Zoonosis Control, Hokkaido University, Hokkaido, Japan
- International Collaboration Unit, International Institute
for Zoonosis Control, Hokkaido University, Hokkaido, Japan
| | - Hazuki MIZUKAWA
- Department of Science and Technology for Biological
Resources and Environment, Graduate School of Agriculture, Ehime University, Ehime,
Japan
| | - Yoshinori IKENAKA
- Laboratory of Toxicology, Faculty of Veterinary Medicine,
Hokkaido University, Hokkaido, Japan
- Water Research Group, School of Environmental Sciences and
development, NorthWest University, Potchefstroom , South Africa
- Translational Research Unit, Veterinary Teaching Hospital,
Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
- One Health Research Center, Hokkaido University, Hokkaido,
Japan
| | - Mayumi ISHIZUKA
- Laboratory of Toxicology, Faculty of Veterinary Medicine,
Hokkaido University, Hokkaido, Japan
| |
Collapse
|
5
|
Ma L, Yan Y, Webb RJ, Li Y, Mehrabani S, Xin B, Sun X, Wang Y, Mazidi M. Psychological Stress and Gut Microbiota Composition: A Systematic Review of Human Studies. Neuropsychobiology 2023; 82:247-262. [PMID: 37673059 DOI: 10.1159/000533131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 07/10/2023] [Indexed: 09/08/2023]
Abstract
INTRODUCTION The associations between psychological stress and gut microbiota composition are not fully understood. This study investigated associations between psychological stress and gut microbiota composition and examined the potential modifying effects of age, sex, and ethnicity on such associations. METHODS A systematic literature search was conducted using PubMed, Web of Science, PsycINFO, and Embase databases for studies published until November 2021 which examined associations between psychological stress and gut microbiota composition. RESULTS During the search process, 10,790 studies were identified, and after screening, 13 met the eligibility criteria and were included. The median sample size was 70, and the median age of participants was 28.0 years. Most of the included studies did not report associations between measures of alpha- and beta diversity of the gut microbiota composition and psychological stress. A few studies reported that the Shannon index, Chao 1, Simpson index, and weighted UniFrac were negatively associated with psychological stress. Significant reductions in several taxa at the phyla-, family-, and genus-levels were observed in participants with higher psychological stress. At the phylum level, the abundance of Proteobacteria and Verrucomicrobia were negatively associated with psychological stress. At the family-level, no more than two studies reported associations of the same microbiota with psychological stress. At the genus level, the following results were found in more than two studies; psychological stress was negatively associated with the abundance of Lachnospira, Lachnospiraceae, Phascolarctobacterium, Sutterella, and Veillonella, and positively associated with the abundance of Methanobrevibacter, Rhodococcus, and Roseburia. However, it was not possible to determine the influence of age, sex, or ethnicity due to the limited studies included. CONCLUSION Our findings provide evidence that psychological stress is associated with changes in the abundance of the gut microbiota. Larger sample longitudinal studies are needed to determine the causal relationship between psychological stress and the gut microbiota.
Collapse
Affiliation(s)
- Lu Ma
- Global Health Institute, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yating Yan
- Global Health Institute, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China,
| | - Richard James Webb
- School of Health and Sports Sciences, Hope Park Campus, Liverpool Hope University, Liverpool, UK
| | - Ying Li
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Sanaz Mehrabani
- Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bao Xin
- School of Public Health, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xiaomin Sun
- Global Health Institute, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Youfa Wang
- Global Health Institute, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Mohsen Mazidi
- Medical Research Council Population Health Research Unit, University of Oxford, Oxford, UK
- Nuffield Department of Population Health, Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), University of Oxford, Oxford, UK
- Department of Twin Research and Genetic Epidemiology, King's College London, South Wing St Thomas', London, UK
| |
Collapse
|
6
|
Zhang K, Zhang L, Zhou R, Zhong J, Xie K, Hou Y, Zhou P. Cow's milk α S1-casein is more sensitizing than goat's milk α S1-casein in a mouse model. Food Funct 2022; 13:6484-6497. [PMID: 35616505 DOI: 10.1039/d2fo01136k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The aim of this study was to compare the sensitization of αS1-CN in cow and goat's milk in a mouse model. Fifty mice were divided into control group, adjuvant control group, cow's milk αS1-CN sensitized group, goat's milk αS1-CN sensitized group and cross sensitized group. Cow's and goat's milk αS1-CN were used to establish a mouse sensitization model. The results showed that cow's milk αS1-CN had higher allergenicity than goat's milk αS1-CN, as can be seen in significantly increased s-IgE and Th2 cell-related inflammatory factors, the proportion of Th2, and the expression of Th2 cell-related transcription factors. Furthermore, the sensitization of cow's milk αS1-CN damaged the intestinal barrier of mice, caused the leakage of LPS, activated the TLR4-NFκB pathway, and thus resulted in the increase of IFN-γ. In addition, mice allergic to cow's milk αS1-CN were less sensitized to goat's milk αS1-CN.
Collapse
Affiliation(s)
- Kai Zhang
- State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China.
| | - Lina Zhang
- State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China. .,School of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Ruoya Zhou
- State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China.
| | - Jinjing Zhong
- Ausnutria Hyproca Nutrition Co. Ltd., Changsha, Hunan Province 410011, China
| | - Kui Xie
- Ausnutria Hyproca Nutrition Co. Ltd., Changsha, Hunan Province 410011, China
| | - Yanmei Hou
- Ausnutria Hyproca Nutrition Co. Ltd., Changsha, Hunan Province 410011, China
| | - Peng Zhou
- State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China. .,School of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| |
Collapse
|
7
|
Galié S, García-Gavilán J, Camacho-Barcía L, Atzeni A, Muralidharan J, Papandreou C, Arcelin P, Palau-Galindo A, Garcia D, Basora J, Arias-Vasquez A, Bulló M. Effects of the Mediterranean Diet or Nut Consumption on Gut Microbiota Composition and Fecal Metabolites and their Relationship with Cardiometabolic Risk Factors. Mol Nutr Food Res 2021; 65:e2000982. [PMID: 34331403 DOI: 10.1002/mnfr.202000982] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 04/21/2021] [Indexed: 12/11/2022]
Abstract
SCOPE To examine whether a Mediterranean Diet (MedDiet) compared to the consumption of nuts in the context of a habitual non-MedDiet exerts a greater beneficial effect on gut microbiota and fecal metabolites; thus, contributing to explain major benefits on cardiometabolic risk factors. METHODS AND RESULTS Fifty adults with Metabolic Syndrome are randomized to a controlled, crossover 2-months dietary-intervention trial with a 1-month wash-out period, following a MedDiet or consuming nuts (50 g day-1 ). Microbiota composition is assessed by 16S rRNA gene sequencing and metabolites are measured using Nuclear Magnetic Resonance (NMR) and liquid chromatography coupled to triple quadrupole mass spectrometry (LC-qTOF) platforms in a targeted metabolomics approach. Decreased glucose, insulin and the homeostatic model assessment of insulin resistance (HOMA-IR) is observed after the MedDiet compared to the nuts intervention. Relative abundances of Lachnospiraceae NK4A136 and an uncultured genera of Ruminococcaceae are significantly increased after the MedDiet compared to nuts supplementation. Changes in Lachnospiraceae NK4A136 are inversely associated with insulin levels and HOMA-IR, while positively and negatively with changes in cholate and cadaverine, respectively. CONCLUSIONS Following a MedDiet, rather than nuts, induces a significant increase in Lachnospiraceae NK4A136 and improves the metabolic risk. This genera seems to affect the bile acid metabolism and cadaverine which may account for the improvement in insulin levels.
Collapse
Affiliation(s)
- Serena Galié
- Department of Biochemistry and Biotechnology, Faculty of Medicine and Health Sciences, University RoviraiVirgili (URV), Reus, Spain.,IISPV, Institute of Health Pere Virgily, Reus, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús García-Gavilán
- Department of Biochemistry and Biotechnology, Faculty of Medicine and Health Sciences, University RoviraiVirgili (URV), Reus, Spain.,IISPV, Institute of Health Pere Virgily, Reus, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Lucía Camacho-Barcía
- Department of Biochemistry and Biotechnology, Faculty of Medicine and Health Sciences, University RoviraiVirgili (URV), Reus, Spain.,IISPV, Institute of Health Pere Virgily, Reus, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Alessandro Atzeni
- Department of Biochemistry and Biotechnology, Faculty of Medicine and Health Sciences, University RoviraiVirgili (URV), Reus, Spain.,IISPV, Institute of Health Pere Virgily, Reus, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Jananee Muralidharan
- Department of Biochemistry and Biotechnology, Faculty of Medicine and Health Sciences, University RoviraiVirgili (URV), Reus, Spain.,IISPV, Institute of Health Pere Virgily, Reus, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Christopher Papandreou
- Department of Biochemistry and Biotechnology, Faculty of Medicine and Health Sciences, University RoviraiVirgili (URV), Reus, Spain.,IISPV, Institute of Health Pere Virgily, Reus, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Pierre Arcelin
- IISPV, Institute of Health Pere Virgily, Reus, Spain.,SAGESSA, ABS Reus V. Centre d'Assistència Primària Marià Fortuny, Reus, Spain
| | - Antoni Palau-Galindo
- Department of Biochemistry and Biotechnology, Faculty of Medicine and Health Sciences, University RoviraiVirgili (URV), Reus, Spain.,SAGESSA, ABS Reus V. Centre d'Assistència Primària Marià Fortuny, Reus, Spain
| | - David Garcia
- ABS Alt Camp Oest. Centre d'Atenció Primària Alcover, Spain
| | - Josep Basora
- Tarragona-Reus Research Support Unit, Jordi Gol University Institute for Primary Care Research, Tarragona, 43202, Spain
| | - Alejandro Arias-Vasquez
- Department of Psychiatry, Radboudumc, Cognition and Behaviour, Donders Institute for Brain, Nijmegen, GA, 6525, The Netherlands.,Department of Human Genetics, Radboudumc, Cognition and Behaviour, Donders Institute for Brain, Nijmegen, GA, 6525, The Netherlands
| | - Mònica Bulló
- Department of Biochemistry and Biotechnology, Faculty of Medicine and Health Sciences, University RoviraiVirgili (URV), Reus, Spain.,IISPV, Institute of Health Pere Virgily, Reus, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
8
|
Bello-Medina PC, Hernández-Quiroz F, Pérez-Morales M, González-Franco DA, Cruz-Pauseno G, García-Mena J, Díaz-Cintra S, Pacheco-López G. Spatial Memory and Gut Microbiota Alterations Are Already Present in Early Adulthood in a Pre-clinical Transgenic Model of Alzheimer's Disease. Front Neurosci 2021; 15:595583. [PMID: 33994914 PMCID: PMC8116633 DOI: 10.3389/fnins.2021.595583] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 03/19/2021] [Indexed: 12/14/2022] Open
Abstract
The irreversible and progressive neurodegenerative Alzheimer's disease (AD) is characterized by cognitive decline, extracellular β-amyloid peptide accumulation, and tau neurofibrillary tangles in the cortex and hippocampus. The triple-transgenic (3xTg) mouse model of AD presents memory impairment in several behavioral paradigms and histopathological alterations from 6 to 16 months old. Additionally, it seems that dysbiotic gut microbiota is present in both mouse models and patients of AD at the cognitive symptomatic stage. The present study aimed to assess spatial learning, memory retention, and gut microbiota alterations in an early adult stage of the 3xTg-AD mice as well as to explore its sexual dimorphism. We evaluated motor activity, novel-object localization training, and retention test as well as collected fecal samples to characterize relative abundance, alpha- and beta-diversity, and linear discriminant analysis (LDA) effect size (LEfSe) analysis in gut microbiota in both female and male 3xTg-AD mice, and controls [non-transgenic mice (NoTg)], at 3 and 5 months old. We found spatial memory deficits in female and male 3xTg-AD but no alteration neither during training nor in motor activity. Importantly, already at 3 months old, we observed decreased relative abundances of Actinobacteria and TM7 in 3xTg-AD compared to NoTg mice, while the beta diversity of gut microbiota was different in female and male 3xTg-AD mice in comparison to NoTg. Our results suggest that gut microbiota modifications in 3xTg-AD mice anticipate and thus could be causally related to cognitive decline already at the early adult age of AD. We propose that microbiota alterations may be used as an early and non-invasive diagnostic biomarker of AD.
Collapse
Affiliation(s)
- Paola C. Bello-Medina
- División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana (UAM), Unidad Lerma, Lerma, Mexico
| | - Fernando Hernández-Quiroz
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV) del Instituto Politécnico Nacional (IPN), Unidad Zacatenco, Ciudad de México, Mexico
| | - Marcel Pérez-Morales
- División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana (UAM), Unidad Lerma, Lerma, Mexico
| | - Diego A. González-Franco
- División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana (UAM), Unidad Lerma, Lerma, Mexico
| | - Guadalupe Cruz-Pauseno
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana (UAM), Unidad Lerma, Lerma, Mexico
| | - Jaime García-Mena
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV) del Instituto Politécnico Nacional (IPN), Unidad Zacatenco, Ciudad de México, Mexico
| | - Sofía Díaz-Cintra
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Gustavo Pacheco-López
- División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana (UAM), Unidad Lerma, Lerma, Mexico
| |
Collapse
|
9
|
Metabolomic Biomarkers in the Diagnosis of Non-Alcoholic Fatty Liver Disease. HEPATITIS MONTHLY 2019. [DOI: 10.5812/hepatmon.92244] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|