1
|
Imoski R, Jarenko da Cruz L, Palacio-Cortés AM, Schafaschek AM, Schwamberger E, Mariotti PR, Bichibichi Borges AL, Rodrigues-Silva F, Tentler Prola LD, Navarro da Silva MA, Martins de Freitas A, Vinicius de Liz M. Ecotoxicological strategies employing biochemical markers and organisms to monitor the efficacy of malathion photolysis treatment. CHEMOSPHERE 2024; 357:142074. [PMID: 38657693 DOI: 10.1016/j.chemosphere.2024.142074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
The objective of this study was to assess the photolysis-mediated degradation of malathion in standard and commercial formulations, and to determine the toxicity of these degraded formulations. Degradation tests were carried out with 500 μg L-1 of malathion and repeated three times. The initial and residual toxicity was assessed by using Lactuca sativa seeds for phytotoxicity, Stegomyia aegypti larvae for acute toxicity, and Stegomyia aegypti mosquitoes (cultivated from the larval stage until emergence as mosquitoes) to evaluate the biochemical markers of sublethal concentrations. For the standard formulations the photolytic process efficiently reduced the initial concentration of malathion to levels below the regulatory limits however, the formation of byproducts was revealed by chromatography, which allowed for a more complete proposal of photolytic-mediated malathion degradation route. The degraded formulations inhibited the growth of L. sativa seeds, while only the untreated formulations showed larvicidal activity and mortality. Both formulations slightly inhibited acetylcholinesterase activity in S. aegypti mosquitoes, while the standard formulation decreased and the commercial formulation increased glutathione S-transferase activity. However, there were no significant differences for superoxide dismutase, esterase-α, esterase-β and lipid peroxidation. These findings indicate that in the absence of the target compound, the presence of byproducts can alter the enzymatic activity. In general, photolysis effectively degrade malathion lower than the legislation values; however, longer treatment times must be evaluated for the commercial formulation.
Collapse
Affiliation(s)
- Rafaela Imoski
- Research Group on Water and Wastewater Advanced Treatment Technologies (GPTec), Department of Academic Chemistry and Biology, Federal University of Technology-Paraná (UTFPR), Deputado Heitor de Alencar Furtado St., 5000, Ecoville, Curitiba, Paraná, 81280-340, Brazil
| | - Laís Jarenko da Cruz
- Research Group on Water and Wastewater Advanced Treatment Technologies (GPTec), Department of Academic Chemistry and Biology, Federal University of Technology-Paraná (UTFPR), Deputado Heitor de Alencar Furtado St., 5000, Ecoville, Curitiba, Paraná, 81280-340, Brazil
| | - Angela Maria Palacio-Cortés
- Laboratory of Culicidae and Chironomidae Morphology and Physiology (LAMFIC(2)), Department of Zoology, Federal University of Parana (UFPR), Curitiba, Parana, Brazil
| | - Ana Marta Schafaschek
- Laboratory of Culicidae and Chironomidae Morphology and Physiology (LAMFIC(2)), Department of Zoology, Federal University of Parana (UFPR), Curitiba, Parana, Brazil
| | - Eric Schwamberger
- Research Group on Water and Wastewater Advanced Treatment Technologies (GPTec), Department of Academic Chemistry and Biology, Federal University of Technology-Paraná (UTFPR), Deputado Heitor de Alencar Furtado St., 5000, Ecoville, Curitiba, Paraná, 81280-340, Brazil
| | - Pamella Regina Mariotti
- Research Group on Water and Wastewater Advanced Treatment Technologies (GPTec), Department of Academic Chemistry and Biology, Federal University of Technology-Paraná (UTFPR), Deputado Heitor de Alencar Furtado St., 5000, Ecoville, Curitiba, Paraná, 81280-340, Brazil
| | - Andre Luis Bichibichi Borges
- Research Group on Water and Wastewater Advanced Treatment Technologies (GPTec), Department of Academic Chemistry and Biology, Federal University of Technology-Paraná (UTFPR), Deputado Heitor de Alencar Furtado St., 5000, Ecoville, Curitiba, Paraná, 81280-340, Brazil
| | - Fernando Rodrigues-Silva
- Research Group on Water and Wastewater Advanced Treatment Technologies (GPTec), Department of Academic Chemistry and Biology, Federal University of Technology-Paraná (UTFPR), Deputado Heitor de Alencar Furtado St., 5000, Ecoville, Curitiba, Paraná, 81280-340, Brazil
| | - Liziê Daniela Tentler Prola
- Research Group on Water and Wastewater Advanced Treatment Technologies (GPTec), Department of Academic Chemistry and Biology, Federal University of Technology-Paraná (UTFPR), Deputado Heitor de Alencar Furtado St., 5000, Ecoville, Curitiba, Paraná, 81280-340, Brazil
| | - Mario Antônio Navarro da Silva
- Laboratory of Culicidae and Chironomidae Morphology and Physiology (LAMFIC(2)), Department of Zoology, Federal University of Parana (UFPR), Curitiba, Parana, Brazil
| | - Adriane Martins de Freitas
- Laboratory of Ecotoxicology, Department of Academic Chemistry and Biology, Federal University of Technology-Paraná (UTFPR), Deputado Heitor de Alencar Furtado St., 5000, Ecoville, Curitiba, Paraná, 81280-340, Brazil
| | - Marcus Vinicius de Liz
- Research Group on Water and Wastewater Advanced Treatment Technologies (GPTec), Department of Academic Chemistry and Biology, Federal University of Technology-Paraná (UTFPR), Deputado Heitor de Alencar Furtado St., 5000, Ecoville, Curitiba, Paraná, 81280-340, Brazil.
| |
Collapse
|
2
|
Rabbani D, Dehghani R, Akbari H, Rahmani H, Ahmadi E, Bagheri A, Allahi S. Study on diazinon toxicity reduction by electro-Fenton process: A bioassay using daphnia magna. Heliyon 2024; 10:e25928. [PMID: 38380001 PMCID: PMC10877300 DOI: 10.1016/j.heliyon.2024.e25928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 01/26/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024] Open
Abstract
The realm of diazinon reduction from polluted water has witnessed a surge in the significance of advanced oxidation processes (AOPs) in recent times. However, there is a dearth of research focusing on the mitigation of its toxicity through AOPs. Thus, the primary objective of this study was to evaluate the effectiveness of the Electro-Fenton process (EFP) in the eradication and detoxification of diazinon in aqueous solutions. Synthetic wastewater samples with concentrations of 2, 2.5 and 3 mg/L were prepared. A total of 27 samples were determined using Box Behnken Design. Reaction time, pH and iron to hydrogen peroxide ratio (Fe2+/H2O2) were examined as operational parameters under a constant current of 5.4 amps. The quantification of diazinon concentration was performed using High-Performance Liquid Chromatography (HPLC). To evaluate the detoxification of diazinon, the Daphnia magna bioassay was employed as a methodology in this study. According to the results, the EFP could reduce the diazinon to zero and the LC50 values are increased by applying the process. The LC50 values for diazinon were determined using the Daphnia magna bioassay, considering initial concentrations of 2, 2.5, and 3 mg/L at a pH of 5, a reaction time of 15 min, and an iron to hydrogen peroxide molar ratio of 2. The recorded LC50 values were 3.039, 3.076, and 3.106, respectively, indicating the lowest frequency of cumulative death in Daphnia magna. In this case, after 96 h, only 3 cases (30%) of Daphnia magna death were observed. However, for all the mentioned concentrations of diazinon, after 96 h of exposure to samples without applying the Daphnia Magna death process, it was observed between 60 and 100%. Reducing the diazinon concentration and increasing the 96-h LC50 showed that the EFP can reduce the toxicity of diazinon on Daphnia Magna at the same time. Therefore, EFP can be considered a superior method with low ecotoxicity.
Collapse
Affiliation(s)
- Davarkhah Rabbani
- Department of Environmental Health Engineering, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
- Social Determinants of Health (SDH) Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Rouhullah Dehghani
- Department of Environmental Health Engineering, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
- Social Determinants of Health (SDH) Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Akbari
- Social Determinants of Health (SDH) Research Center, Kashan University of Medical Sciences, Kashan, Iran
- Department of Public Health and Biostatics, Kashan University of Medical Sciences, Kashan, Iran
| | - Hasan Rahmani
- Department of Environmental Health Engineering, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Ehsan Ahmadi
- Department of Environmental Health Engineering, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Amin Bagheri
- Department of Health, Safety and Environmental Management, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Allahi
- Department of Environmental Health Engineering, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
3
|
Zhao MA, Gu H, Zhang CJ, Jeong IH, Kim JH, Zhu YZ. Metabolism of insecticide diazinon by Cunninghamella elegans ATCC36112. RSC Adv 2020; 10:19659-19668. [PMID: 35515422 PMCID: PMC9054078 DOI: 10.1039/d0ra02253e] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/23/2020] [Indexed: 02/04/2023] Open
Abstract
The fungal metabolism of diazinon was investigated and the microbial model (Cunninghamella elegans ATCC36112) could effectively degrade the organophosphorus pesticide (diazinon) mediated by cytochrome P450, which was mainly involved in oxidation and hydrolysis of phase I metabolism. Approximately 89% of diazinon was removed within 7 days and was not observed after 13 days with concomitant accumulation of eight metabolites. Structures of the metabolites were fully or tentatively identified with GC-MS and 1H, 13C NMR. The major metabolites of diazinon were diethyl (2-isopropyl-6-methylpyrimidin-4-yl) phosphate (diazoxon) and 2-isopropyl-6-methyl-4-pyrimidinol (pyrimidinol), and formation of minor metabolites was primarily the result of hydroxylation. To determine the responsible enzymes in diazinon metabolism, piperonyl butoxide and methimazole were treated, and the kinetic responses of diazinon and its metabolites by Cunninghamella elegans were measured. Results indirectly demonstrated that cytochrome P450 and flavin monooxygenase were involved in the metabolism of diazinon, but methimazole inhibited the metabolism less effectively. Based on the metabolic profiling, a possible metabolic pathway involved in phase I metabolism of diazinon was proposed, which would contribute to providing insight into understanding the toxicological effects of diazinon and the potential application of fungi on organophosphorus pesticides.
Collapse
Affiliation(s)
- Mei-Ai Zhao
- College of Life Sciences, Qingdao Agricultural University Changcheng Rd, Chengyang Qingdao City Shandong Province 266-109 China
| | - Hao Gu
- College of Chemistry and Pharmacy, Qingdao Agricultural University Changcheng Rd, Chengyang Qingdao City Shandong Province 266-109 China +86-532-8803-0220 +86-133-5532-5000
| | - Chuan-Jie Zhang
- College of Animal Science and Technology, Yangzhou University Yangzhou Jiangsu Province 225-009 China
| | - In-Hong Jeong
- Division of Crop Protection, National Institute of Agricultural Science, Rural Development Administration Jeollabuk-do 55365 Republic of Korea
| | - Jeong-Han Kim
- Department of Agricultural Biotechnology, Seoul National University 599 Gwanak-ro, Silim-dong, Gwanak-Gu Seoul 151-742 Republic of Korea
| | - Yong-Zhe Zhu
- College of Chemistry and Pharmacy, Qingdao Agricultural University Changcheng Rd, Chengyang Qingdao City Shandong Province 266-109 China +86-532-8803-0220 +86-133-5532-5000
| |
Collapse
|