1
|
Kim J, Yoon Y, Park HJ, Kim YH. Comparative Study of Classification Algorithms for Various DNA Microarray Data. Genes (Basel) 2022; 13:494. [PMID: 35328048 PMCID: PMC8951024 DOI: 10.3390/genes13030494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/07/2022] [Indexed: 12/19/2022] Open
Abstract
Microarrays are applications of electrical engineering and technology in biology that allow simultaneous measurement of expression of numerous genes, and they can be used to analyze specific diseases. This study undertakes classification analyses of various microarrays to compare the performances of classification algorithms over different data traits. The datasets were classified into test and control groups based on five utilized machine learning methods, including MultiLayer Perceptron (MLP), Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF), and k-Nearest Neighbors (KNN), and the resulting accuracies were compared. k-fold cross-validation was used in evaluating the performance and the result was analyzed by comparing the performances of the five machine learning methods. Through the experiments, it was observed that the two tree-based methods, DT and RF, showed similar trends in results and the remaining three methods, MLP, SVM, and DT, showed similar trends. DT and RF generally showed worse performance than other methods except for one dataset. This suggests that, for the effective classification of microarray data, selecting a classification algorithm that is suitable for data traits is crucial to ensure optimum performance.
Collapse
Affiliation(s)
- Jingeun Kim
- Department of IT Convergence Engineering, Gachon University, Seongnam-daero 1342, Seongnam-si 13120, Korea;
| | - Yourim Yoon
- Department of Computer Engineering, College of Information Technology, Gachon University, Seongnam-daero 1342, Sujeong-gu, Seongnam-si 13120, Korea
| | - Hye-Jin Park
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam-daero 1342, Sujeong-gu, Seongnam-si 13120, Korea;
| | - Yong-Hyuk Kim
- School of Software, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Korea;
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI 53705, USA
| |
Collapse
|
2
|
Filist S, Al-Kasasbeh RT, Shatalova O, Aikeyeva A, Korenevskiy N, Shaqadan A, Trifonov A, Ilyash M. Developing neural network model for predicting cardiac and cardiovascular health using bioelectrical signal processing. Comput Methods Biomech Biomed Engin 2021; 25:908-921. [PMID: 34882035 DOI: 10.1080/10255842.2021.1986486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Coronary vascular disease (CHD) is one of the most fatal diseases worldwide. Cardio vascular diseases are not easily diagnosed in early disease stages. Early diagnosis is important for effective treatment, however, medical diagnoses are based on physician's personal experiences of the disease which increase time and testing cost to reach diagnosis. Physicians assess patients' condition based on electrocardiography, sonography and blood test results. In this research we develop classification model of the functional state of the cardiovascular system based on the monitoring of the evolution of the amplitudes of the first and second harmonics of the system rhythm of 0.1 Hz. We separate the signal to three streams; the first stream works with natural electro cardio signal, the other two streams are obtained as a result of frequency analysis of the amplitude- and frequency-detected electro cardio signal. We use sliding window of a demodulated electro cardio signal by means of amplitude and frequency detectors. The developed NN model showed an increase in accuracy of diagnostic efficiency by 11%. The neural network model can be trained to give accurate early detection of disease class.
Collapse
Affiliation(s)
- Sergey Filist
- Department of Biomedical Engineering, Southwest State University, Kursk, Russia
| | | | - Olga Shatalova
- Department of Biomedical Engineering, Southwest State University, Kursk, Russia
| | - Altyn Aikeyeva
- Gumilyov Eurasian National University, Faculty of Transport and Energy, Electric power industry Department, Astana, Kazakhstan
| | - Nikolay Korenevskiy
- Department of Biomedical Engineering, Southwest State University, Kursk, Russia
| | - Ashraf Shaqadan
- Civil Engineering Department, Zarqa University, Zarqa, Jordan
| | - Andrey Trifonov
- Department of Biomedical Engineering, Southwest State University, Kursk, Russia
| | - Maksim Ilyash
- Mechanics and Optics, Saint-Petersburg National Research University of Information Technologies, Sankt Peterburg, Russia
| |
Collapse
|
3
|
Alizadehsani R, Khosravi A, Roshanzamir M, Abdar M, Sarrafzadegan N, Shafie D, Khozeimeh F, Shoeibi A, Nahavandi S, Panahiazar M, Bishara A, Beygui RE, Puri R, Kapadia S, Tan RS, Acharya UR. Coronary artery disease detection using artificial intelligence techniques: A survey of trends, geographical differences and diagnostic features 1991-2020. Comput Biol Med 2020; 128:104095. [PMID: 33217660 DOI: 10.1016/j.compbiomed.2020.104095] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/24/2020] [Accepted: 10/24/2020] [Indexed: 02/06/2023]
Abstract
While coronary angiography is the gold standard diagnostic tool for coronary artery disease (CAD), but it is associated with procedural risk, it is an invasive technique requiring arterial puncture, and it subjects the patient to radiation and iodinated contrast exposure. Artificial intelligence (AI) can provide a pretest probability of disease that can be used to triage patients for angiography. This review comprehensively investigates published papers in the domain of CAD detection using different AI techniques from 1991 to 2020, in order to discern broad trends and geographical differences. Moreover, key decision factors affecting CAD diagnosis are identified for different parts of the world by aggregating the results from different studies. In this study, all datasets that have been used for the studies for CAD detection, their properties, and achieved performances using various AI techniques, are presented, compared, and analyzed. In particular, the effectiveness of machine learning (ML) and deep learning (DL) techniques to diagnose and predict CAD are reviewed. From PubMed, Scopus, Ovid MEDLINE, and Google Scholar search, 500 papers were selected to be investigated. Among these selected papers, 256 papers met our criteria and hence were included in this study. Our findings demonstrate that AI-based techniques have been increasingly applied for the detection of CAD since 2008. AI-based techniques that utilized electrocardiography (ECG), demographic characteristics, symptoms, physical examination findings, and heart rate signals, reported high accuracy for the detection of CAD. In these papers, the authors ranked the features based on their assessed clinical importance with ML techniques. The results demonstrate that the attribution of the relative importance of ML features for CAD diagnosis is different among countries. More recently, DL methods have yielded high CAD detection performance using ECG signals, which drives its burgeoning adoption.
Collapse
Affiliation(s)
- Roohallah Alizadehsani
- Institute for Intelligent Systems Research and Innovations (IISRI), Deakin University, Geelong, Australia
| | - Abbas Khosravi
- Institute for Intelligent Systems Research and Innovations (IISRI), Deakin University, Geelong, Australia
| | - Mohamad Roshanzamir
- Department of Engineering, Fasa Branch, Islamic Azad University, Post Box No 364, Fasa, Fars, 7461789818, Iran
| | - Moloud Abdar
- Institute for Intelligent Systems Research and Innovations (IISRI), Deakin University, Geelong, Australia
| | - Nizal Sarrafzadegan
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Khorram Ave, Isfahan, Iran; Faculty of Medicine, SPPH, University of British Columbia, Vancouver, BC, Canada.
| | - Davood Shafie
- Heart Failure Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fahime Khozeimeh
- Institute for Intelligent Systems Research and Innovations (IISRI), Deakin University, Geelong, Australia
| | - Afshin Shoeibi
- Computer Engineering Department, Ferdowsi University of Mashhad, Mashhad, Iran; Faculty of Electrical and Computer Engineering, Biomedical Data Acquisition Lab, K. N. Toosi University of Technology, Tehran, Iran
| | - Saeid Nahavandi
- Institute for Intelligent Systems Research and Innovations (IISRI), Deakin University, Geelong, Australia
| | - Maryam Panahiazar
- Institute for Computational Health Sciences, University of California, San Francisco, USA
| | - Andrew Bishara
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, USA
| | - Ramin E Beygui
- Cardiovascular Surgery Division, Department of Surgery, University of California, San Francisco, CA, USA
| | - Rishi Puri
- Department of Cardiovascular Medicine, Cleveland Clinic, OH, USA
| | - Samir Kapadia
- Department of Cardiovascular Medicine, Cleveland Clinic, OH, USA
| | - Ru-San Tan
- Department of Cardiology, National Heart Centre Singapore, Singapore
| | - U Rajendra Acharya
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore; Department of Biomedical Engineering, School of Science and Technology, Singapore University of Social Sciences, Singapore; Department of Bioinformatics and Medical Engineering, Asia University, Taiwan
| |
Collapse
|
4
|
Alizadehsani R, Abdar M, Roshanzamir M, Khosravi A, Kebria PM, Khozeimeh F, Nahavandi S, Sarrafzadegan N, Acharya UR. Machine learning-based coronary artery disease diagnosis: A comprehensive review. Comput Biol Med 2019; 111:103346. [PMID: 31288140 DOI: 10.1016/j.compbiomed.2019.103346] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/26/2019] [Accepted: 06/26/2019] [Indexed: 02/02/2023]
Abstract
Coronary artery disease (CAD) is the most common cardiovascular disease (CVD) and often leads to a heart attack. It annually causes millions of deaths and billions of dollars in financial losses worldwide. Angiography, which is invasive and risky, is the standard procedure for diagnosing CAD. Alternatively, machine learning (ML) techniques have been widely used in the literature as fast, affordable, and noninvasive approaches for CAD detection. The results that have been published on ML-based CAD diagnosis differ substantially in terms of the analyzed datasets, sample sizes, features, location of data collection, performance metrics, and applied ML techniques. Due to these fundamental differences, achievements in the literature cannot be generalized. This paper conducts a comprehensive and multifaceted review of all relevant studies that were published between 1992 and 2019 for ML-based CAD diagnosis. The impacts of various factors, such as dataset characteristics (geographical location, sample size, features, and the stenosis of each coronary artery) and applied ML techniques (feature selection, performance metrics, and method) are investigated in detail. Finally, the important challenges and shortcomings of ML-based CAD diagnosis are discussed.
Collapse
Affiliation(s)
- Roohallah Alizadehsani
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Australia.
| | - Moloud Abdar
- Département d'informatique, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Mohamad Roshanzamir
- Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Abbas Khosravi
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Australia
| | - Parham M Kebria
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Australia
| | - Fahime Khozeimeh
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeid Nahavandi
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Australia
| | - Nizal Sarrafzadegan
- Faculty of Medicine, SPPH, University of British Columbia, Vancouver, BC, Canada; Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Khorram Ave, Isfahan, Iran
| | - U Rajendra Acharya
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore; Department of Biomedical Engineering, School of Science and Technology, Singapore University of Social Sciences, Singapore; Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Malaysia
| |
Collapse
|