1
|
Ijaz MU, Imtiaz S, Hayat MF, Batool M, Al-Ghanim KA, Riaz MN. Sudachitin Alleviates Paraquat Instigated Testicular Toxicity in Albino Rats via Regulating Nrf-2/Keap-1, Inflammatory, Steroidogenic, and Histological Profile. ENVIRONMENTAL TOXICOLOGY 2024; 39:5284-5295. [PMID: 39179512 DOI: 10.1002/tox.24408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/14/2024] [Accepted: 08/10/2024] [Indexed: 08/26/2024]
Abstract
Paraquat (PQ) is a noxious herbicide which adversely affects the vital organs including male reproductive system. Sudachitin (SCN) is a naturally occurring flavonoid that demonstrates a wide range of biological potentials. The current study was designed to investigate the alleviative potential of SCN to avert PQ-induced testicular toxicity in rats. Forty-eight male rats (Rattus norvegicus) were apportioned into four groups including control, PQ (5 mg/kg), PQ + SCN (5 mg/kg + 30 mg/kg), and SCN (30 mg/kg) only treated group. Our findings elucidated that PQ treatment reduced the expression of nuclear factor erythroid 2-related factor 2 (Nrf-2) and its antioxidant genes as well as the activities of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GSR) and glutathione peroxidase (GPx), while elevating the levels of reactive oxygen species (ROS), and malondialdehyde (MDA). Furthermore, PQ intoxication upregulated the expressions of Keap-1 while downregulating the expression of 3-beta hydroxysteroid dehydrogenase (3β-HSD), 17-beta hydroxysteroid dehydrogenase (17β-HSD), and steroidogenic acute regulatory protein (StAR). Moreover, sperm anomalies were increased following the exposure to PQ. Besides, PQ exposure decreased the levels of plasma testosterone, luteinizing hormone (LH), and follicle stimulating hormone (FSH) while increasing the levels of interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), nuclear factor-kappa B (NF-κB), interleukin-1beta (IL-1β), and cyclooxygenase-2 (COX-2). Additionally, PQ treatment escalated the expressions of cysteinyl aspartate-specific proteases-3 (Caspase-3) and Bcl-2-associated X-protein (Bax) while downregulating the expressions of B-cell lymphoma-2 (Bcl-2). Furthermore, PQ exposure disrupted the normal architecture of testicular tissues. However, SCN treatment remarkably protected the testicular tissues via regulating the aforementioned disruptions owing to its antioxidant, anti-inflammatory, and androgenic potential.
Collapse
Affiliation(s)
- Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Sana Imtiaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Faisal Hayat
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Moazama Batool
- Department of Zoology, Govt. College Women University, Sialkot, Pakistan
| | - Khalid A Al-Ghanim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
2
|
Liu X, Li C, Hou C, Jiang Y, Chen F, Zhu Y, Zou L. Dissecting the effects of paraquat-induced pulmonary injury in rats using UPLC-Q-TOF-MS/MS-based metabonomics. Toxicol Res (Camb) 2023; 12:527-538. [PMID: 37397915 PMCID: PMC10311158 DOI: 10.1093/toxres/tfad040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 02/22/2023] [Accepted: 05/14/2023] [Indexed: 07/04/2023] Open
Abstract
Objective Paraquat (PQ) is a toxic compound that selectively accumulates in the lungs, inducing severe pulmonary inflammation and fibrosis. However, data on the metabolomic changes induced by the PQ remain scant. This study aimed to determine the metabolic changes in Sprague-Dawley rats subjected to PQ using UPLC-Q-TOF-MS/MS. Methods We established groups of PQ-induced pulmonary injury rats for 14 or 28 days. Results Our data showed that PQ decreased the survival of the rats and induced pulmonary inflammation at day 14 or pulmonary fibrosis at day 28. There was upregulation of IL-1β expression in the inflammation group as well as upregulation of fibronectin, collagen and α-SMA in the pulmonary fibrosis group. OPLS-DA revealed differential expression of 26 metabotites between the normal and the inflammation groups; 31 plasma metabotites were also differently expressed between the normal and the fibrosis groups. There was high expression of lysoPc160-, hydroxybutyrylcarnitine, stearic acid, and imidazolelactic acid in the pulmonary injury group compared to the normal group. Conclusion Metabolomics analysis confirmed that the PQ-induced lung injury was not only related to the aggravation of inflammation and apoptosis but also to mediated histidine, serine, glycerophospholipid, and lipid metabolism. This study gives insights into the mechanisms of PQ-induced lung injury and highlights the potential therapeutic targets. Nonstructured abstract The effect of PQ on lung injury in rats was detected by metabonomics, and the possible metabolic mechanism was investigated by KEGG analysis. OPLS-DA revealed the differential expression of 26 metabotites and 31 plasma metabotites between the normal and the pulmonary injury groups. Metabolomics analysis confirmed that the PQ-induced lung injury was not only related to the aggravation of inflammation and apoptosis but also to mediated histidine, serine, glycerophospholipid, and lipid metabolism. Oleoylethanolamine, stearic acid, and imidazolelactic acid are potential molecular markers in PQ-induced pulmonary injury.
Collapse
Affiliation(s)
- Xiehong Liu
- Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, 61 Jiefang West Road, Changsha, Hunan, PC 410005, China
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics,61 Jiefang West Road, Changsha, Hunan, PC 410005, China
- Hunan Provinicial Institute of Emergency Medicine, 61 Jiefang West Road, Changsha, Hunan, PC 410005, China
| | - Chi Li
- Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, 61 Jiefang West Road, Changsha, Hunan, PC 410005, China
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics,61 Jiefang West Road, Changsha, Hunan, PC 410005, China
- Hunan Provinicial Institute of Emergency Medicine, 61 Jiefang West Road, Changsha, Hunan, PC 410005, China
| | - Changmiao Hou
- Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, 61 Jiefang West Road, Changsha, Hunan, PC 410005, China
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics,61 Jiefang West Road, Changsha, Hunan, PC 410005, China
- Hunan Provinicial Institute of Emergency Medicine, 61 Jiefang West Road, Changsha, Hunan, PC 410005, China
- School of Clinical Medicine, Hunan University of Chinese Medicine, 113 Shaoshan Middle Road, Changsha, Hunan, PC 410000, China
| | - Yu Jiang
- Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, 61 Jiefang West Road, Changsha, Hunan, PC 410005, China
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics,61 Jiefang West Road, Changsha, Hunan, PC 410005, China
- Hunan Provinicial Institute of Emergency Medicine, 61 Jiefang West Road, Changsha, Hunan, PC 410005, China
| | - Fang Chen
- Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, 61 Jiefang West Road, Changsha, Hunan, PC 410005, China
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics,61 Jiefang West Road, Changsha, Hunan, PC 410005, China
- Hunan Provinicial Institute of Emergency Medicine, 61 Jiefang West Road, Changsha, Hunan, PC 410005, China
| | - Yimin Zhu
- Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, 61 Jiefang West Road, Changsha, Hunan, PC 410005, China
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics,61 Jiefang West Road, Changsha, Hunan, PC 410005, China
- Hunan Provinicial Institute of Emergency Medicine, 61 Jiefang West Road, Changsha, Hunan, PC 410005, China
| | - Lianhong Zou
- Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, 61 Jiefang West Road, Changsha, Hunan, PC 410005, China
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics,61 Jiefang West Road, Changsha, Hunan, PC 410005, China
- Hunan Provinicial Institute of Emergency Medicine, 61 Jiefang West Road, Changsha, Hunan, PC 410005, China
| |
Collapse
|
3
|
Mustafa S, Anwar H, Ain QU, Ahmed H, Iqbal S, Ijaz MU. Therapeutic effect of gossypetin against paraquat-induced testicular damage in male rats: a histological and biochemical study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:62237-62248. [PMID: 36940025 DOI: 10.1007/s11356-023-26469-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 03/11/2023] [Indexed: 05/10/2023]
Abstract
Paraquat (PQ) is an organic compound, which is commonly used as a herbicide in the agriculture sector, and it is also known to stimulate critical damages in the male reproductive system. Gossypetin (GPTN) is one of important members of the flavonoid family, which is an essential compound in flowers and calyx of Hibiscus sabdariffa with potential pharmacological properties. The current investigation was aimed to examine the ameliorative potential of GPTN against PQ-instigated testicular damages. Adult male Sprague-Dawley rats (n = 48) were distributed into four groups: control, PQ (5 mg/kg), PQ + GPTN (5 mg/kg + 30 mg/kg respectively), and GPTN (30 mg/kg). After 56 days of treatment, biochemical, spermatogenic indices, hormonal, steroidogenic, pro-or-anti-apoptotic, and histopathological parameters were estimated. PQ exposure disturbed the biochemical profile by reducing the activities of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GSR), while it increased the concentration of reactive oxygen species (ROS) and malondialdehyde (MDA) level. Furthermore, PQ exposure decreased the sperm motility, viability, number of hypo-osmotic tail swelled spermatozoa, and epididymal sperm count; additionally, it increased sperm morphological (head mid-piece and tail) abnormalities. Moreover, PQ lessened the follicle-stimulating hormone (FSH), luteinizing hormone (LH), and plasma testosterone levels. Besides, PQ-intoxication downregulated the gene expression of steroidogenic enzymes (StAR, 3β-HSD, and 17β-HSD) and anti-apoptotic marker (Bcl-2), whereas upregulated the gene expression of apoptotic markers (Bax and Caspase-3). PQ exposure led to histopathological damages in testicular tissues as well. Nonetheless, GPTN inverted all the illustrated impairments in testes. Taken together, GPTN could potently ameliorate PQ-induced reproductive dysfunctions due to its antioxidant, androgenic, and anti-apoptotic potential.
Collapse
Affiliation(s)
- Shama Mustafa
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Haseeb Anwar
- Department of Physiology, Government College University, Faisalabad, Pakistan
| | - Qurat Ul Ain
- Department of Zoology, Government College Women University, Sialkot, Pakistan
| | - Hussain Ahmed
- Department of Zoology, The University of Buner, Khyber Pakhtunkhwa, Pakistan
| | - Shabnoor Iqbal
- Department of Zoology, Government College University, Faisalabad, Pakistan
| | - Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan.
| |
Collapse
|
4
|
Palipoch S, Punsawad C, Koomhin P, Na-Ek P, Poonsawat W, Kimseng R, Chotipong P, Bunluepuech K, Yusakul G, Suwannalert P. Aqueous Thunbergia laurifolia leaf extract alleviates paraquat-induced lung injury in rats by inhibiting oxidative stress and inflammation. BMC Complement Med Ther 2022; 22:83. [PMID: 35317802 PMCID: PMC8939148 DOI: 10.1186/s12906-022-03567-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/11/2022] [Indexed: 11/30/2022] Open
Abstract
Background Paraquat (PQ) has been reported to have a high mortality rate. The major target organ of PQ poisoning is the lungs. The pathogenesis of PQ-induced lung injury involves oxidative stress and inflammation. Unfortunately, there is still no effective antidote for PQ poisoning. We hypothesized that aqueous Thunbergia laurifolia (TL) leaf extract is a possible antidote for PQ-induced lung injury. Methods The total phenolic content and caffeic acid content of an aqueous extract of TL leaves were analyzed. Male Wistar rats were randomly divided into four groups (n = 4 per group): the control group (administered normal saline), the PQ group (administered 18 mg/kg body weight (BW) PQ dichloride subcutaneously), the PQ + TL-low-dose (LD) group (administered PQ dichloride subcutaneously and 100 mg/kg BW aqueous TL leaf extract by oral gavage) and the PQ + TL-high-dose (HD) group (administered PQ dichloride subcutaneously and 200 mg/kg BW aqueous TL leaf extract by oral gavage). Malondialdehyde (MDA) levels and lung histopathology were analyzed. In addition, the mRNA expression of NADPH oxidase (NOX), interleukin 1 beta (IL-1β), and tumor necrosis factor alpha (TNF-α) was assessed using reverse transcription-polymerase chain reaction (RT-PCR), and the protein expression of IL-1β and TNF-α was analyzed using immunohistochemistry. Results The total phenolic content of the extract was 20.1 ± 0.39 μg gallic acid equivalents (Eq)/mg extract, and the caffeic acid content was 0.31 ± 0.01 μg/mg. The PQ group showed significantly higher MDA levels and NOX, IL-1β and TNF-α mRNA expression than the control group. Significant pathological changes, including alveolar edema, diffuse alveolar collapse, hemorrhage, leukocyte infiltration, alveolar septal thickening and vascular congestion, were observed in the PQ group compared with the control group. However, the aqueous TL leaf extract significantly attenuated the PQ-induced increases in MDA levels and NOX, IL-1β and TNF-α expressions. Moreover, the aqueous TL leaf extract ameliorated PQ-induced lung pathology. Conclusion This study indicates that aqueous TL leaf extract can ameliorate PQ-induced lung pathology by modulating oxidative stress through inhibition of NOX and by regulating inflammation through inhibition of IL-1β and TNF-α expressions. We suggest that aqueous TL leaf extract can be used as an antidote for PQ-induced lung injury. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03567-4.
Collapse
Affiliation(s)
- Sarawoot Palipoch
- School of Medicine, Walailak University, 222 Thaiburi, Thasala District, Nakhon Si Thammarat, 80161, Thailand.
| | - Chuchard Punsawad
- School of Medicine, Walailak University, 222 Thaiburi, Thasala District, Nakhon Si Thammarat, 80161, Thailand
| | - Phanit Koomhin
- School of Medicine, Walailak University, 222 Thaiburi, Thasala District, Nakhon Si Thammarat, 80161, Thailand
| | - Prasit Na-Ek
- School of Medicine, Walailak University, 222 Thaiburi, Thasala District, Nakhon Si Thammarat, 80161, Thailand
| | - Wasinee Poonsawat
- Research Institute for Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Rungruedi Kimseng
- Research Institute for Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Potiga Chotipong
- Center of Scientific and Technological Equipment, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Kingkan Bunluepuech
- School of Medicine, Walailak University, Nakhon Si Thammarat, 80160, Thailand.,Research Excellence Center for Innovation and Health Product, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Gorawit Yusakul
- School of Pharmacy, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Prasit Suwannalert
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| |
Collapse
|
5
|
Wijerathna TM, Mohamed F, Gawarammana IB, Wunnapuk K, Dissanayake DM, Shihana F, Buckley NA. Cellular injury leading to oxidative stress in acute poisoning with potassium permanganate/oxalic acid, paraquat, and glyphosate surfactant herbicide. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 80:103510. [PMID: 33031936 DOI: 10.1016/j.etap.2020.103510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/30/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
Previous studies on human acute kidney injury (AKI) following poisoning with potassium permanganate/oxalic acid (KMnO4/H2C2O4), paraquat, and glyphosate surfactant herbicide (GPSH) have shown rapid and large increases in serum creatinine (sCr) that cannot be entirely explained by direct nephrotoxicity. One plausible mechanism for a rapid increase in sCr is oxidative stress. Thus, we aimed to explore biomarkers of oxidative stress, cellular injury, and their relationship with sCr, after acute KMnO4/H2C2O4, paraquat, and GPSH poisonings. Serum biomarkers [sCr, creatine (sCn), cystatin C (sCysC)] and urinary biomarkers [cytochrome C (CytoC), 8-isoprostane (8-IsoPs)] were evaluated in 105 patients [H2C2O4/KMnO4 (N = 57), paraquat, (N = 21), GPSH (N = 27)] recruited to a multicenter cohort study. We used area under the receiver operating characteristics curve (AUC-ROC) to quantify the extent of prediction of moderate to severe AKI (acute kidney injury network stage 2/3 (AKIN2/3)). Patients with AKIN2/3 showed increased levels of CytoC. Early high CytoC predicted AKIN2/3 in poisoning with KMnO4/H2C2O4 (AUC-ROC4-8h: 0.81), paraquat (AUC-ROC4-8h: 1.00), and GPSH (AUC-ROC4-8h: 0.91). 8-Isoprostane levels were not significantly elevated. Reduced sCn and increased sCr/sCn ratios were observed for 48 h post KMnO4/H2C2O4 ingestion. Paraquat exhibited a similar pattern (N = 11), however only 3 were included in our study. Increased CytoC suggests there is mitochondrial injury coupled with energy depletion. The increased sCr within 24 h could be due to increased conversion of cellular creatine to creatinine during the process of adenosine triphosphate (ATP) generation and then efflux from cells. Later increases of sCr are more likely to represent a true decrease in kidney function.
Collapse
Affiliation(s)
- Thilini Madushanka Wijerathna
- South Asian Clinical Toxicology Research Collaboration, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka.
| | - Fahim Mohamed
- South Asian Clinical Toxicology Research Collaboration, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka; Department of Pharmacy, Faculty of Allied Health Sciences, University of Peradeniya, Peradeniya, Sri Lanka; Australian Kidney Biomarker Reference Laboratory, Department of Nephrology, Prince of Wales Hospital and Clinical School, University of New South Wales, Sydney, Australia; The University of Sydney, Faculty of Medicine and Health, Discipline of Biomedical Informatics and Digital Health, Clinical Pharmacology and Toxicology Research Group, Sydney, 2006 NSW, Australia
| | - Indika Bandara Gawarammana
- South Asian Clinical Toxicology Research Collaboration, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka; Department of Medicine, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Klintean Wunnapuk
- Toxicology Division, Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Fathima Shihana
- South Asian Clinical Toxicology Research Collaboration, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka; The University of Sydney, Faculty of Medicine and Health, Discipline of Biomedical Informatics and Digital Health, Clinical Pharmacology and Toxicology Research Group, Sydney, 2006 NSW, Australia
| | - Nicholas Allan Buckley
- South Asian Clinical Toxicology Research Collaboration, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka; The University of Sydney, Faculty of Medicine and Health, Discipline of Biomedical Informatics and Digital Health, Clinical Pharmacology and Toxicology Research Group, Sydney, 2006 NSW, Australia
| |
Collapse
|
6
|
Li S, Wang J, Wei BK, Dong G, Wang X. Protective Effect of Taurine on Paraquat-Induced Lung Epithelial Cell Injury. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1155:739-746. [PMID: 31468444 DOI: 10.1007/978-981-13-8023-5_64] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The herbicide Paraquat induce oxidative stress-mediated lung injury. Taurine is a well-known antioxidant. This study was designed to explore the effect of taurine on paraquat-induced injury and its related mechanism in A549 cells. The cells were pretreated with various concentrations of taurine for 30 min prior to paraquat exposure. 24 h later, cell viability was examined by the MTT assay. The level of glutathione (GSH) and the activity of glutathione peroxidase (GPx) were analyzed. The results show that taurine treatment significantly attenuates the decrease in cell viability mediated by paraquat in A549 cells. Taurine also reversed paraquat-induced disturbances in GSH content and GPx activity. Taurine exerts protection against paraquat-mediated A549 cell toxicity likely through modulation of oxidative stress.
Collapse
Affiliation(s)
- Shuangxing Li
- Department of Emergency Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jinhua Wang
- Clinical Medicine (5+3), Dalian Medical University, Dalian, Liaoning, China
| | - Bin Kai Wei
- Clinical Medicine (5+3), Dalian Medical University, Dalian, Liaoning, China
| | - Guangtao Dong
- Department of Emergency Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiujie Wang
- Department of Emergency Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
7
|
Sun R, Li Y, Chen W, Zhang F, Li T. Total ginsenosides synergize with ulinastatin against septic acute lung injury and acute respiratory distress syndrome. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:7385-7390. [PMID: 26261640 PMCID: PMC4525974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 05/04/2015] [Indexed: 06/04/2023]
Abstract
Total ginsenosides synergize with ulinastatin (UTI) against septic acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). We randomly divided 80 cases of severe sepsis-induced ALI and ARDS into a UTI group and a ginsenosides (GS)+UTI group. Continuous electrocardiac monitoring of pulse, respiratory rate, blood pressure, and heart rate; invasive hemodynamic monitoring; ventilator-assisted breathing and circulation support; and anti-infection as well as UTI treatment were given in the UTI group with GS treatment added for 7 consecutive days in the GS+UTI group. The indicators of pulmonary vascular permeability, pulmonary circulation, blood gases, and hemodynamics as well as APACHE II and ALI scores were detected on days 1, 3, and 7. The ALI score in the GS+UTI group was significantly decreased (P < 0.05) compared with that of the UTI group, and the indicators of pulmonary capillary permeability such as pulmonary vascular permeability index, extravascular lung water index, and oxygenation index, in the GS+UTI group improved significantly more than that of the UTI group. The indicators of hemodynamics and pulmonary circulation such as cardiac index, intrathoracic blood volume index, and central venous pressure improved significantly (P < 0.05), and the APACHE II score in the GS+UTI group was lower than that of the UTI group. GS can effectively collaborate with UTI against ALI and/or ARDS.
Collapse
Affiliation(s)
- Rongju Sun
- Department of Emergency, General Hospital of PLABeijing 100853, China
| | - Yana Li
- Department of Emergency or Respiration, No. 2 Hospital Affiliated to Traditional Chinese Medicine College of GuiyangGuiyang 550003, China
| | - Wei Chen
- Department of Emergency, General Hospital of PLABeijing 100853, China
| | - Fei Zhang
- Department of Emergency, General Hospital of PLABeijing 100853, China
| | - Tanshi Li
- Department of Emergency, General Hospital of PLABeijing 100853, China
| |
Collapse
|
8
|
Li SP, Han JY, Sun P, Wu GY, Bai XY. Effect of SP-A/B in lipoic acid on acute paraquat poisoning. World J Emerg Med 2014; 5:57-62. [PMID: 25215149 DOI: 10.5847/wjem.j.issn.1920-8642.2014.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 02/01/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND This study was undertaken to observe the concentration of SP-A/B and the pulmonary surfactant in the lung tissue of rats with acute lung injury/acute respiratory distress syndrome caused by paraquat poisoning after the treatment of metabolic antioxidant-lipoic acid and whether its influence was related to TNF-α. METHODS Sixty-six male Sprage-Dawley rats were randomly divided into three groups: normal control group (NS group), 6 rats; paraquat poisoning group (PQ group), 30 rats; and paraquat+lipoic acid treatment group (LA group), 30 rats. The rats in the PQ and LA groups were subdivided into 3-, 6-, 12-, 24-, 48-hour subgroups, with 6 rats in each group. After the rats were sacrificed, lung tissue from the same part was taken from the rats. After HE staining, histological changes were observed in the tissue under a light microscope. Lung tissue was also taken to test the levels of superoxide dismutase (SOD) and malondialdehyde (MDA). Whole blood (0.8 mL) without anticoagulant was drawn from the tail vein of rats for the determination of the TNF-α level. The total RNA of the lung tissue was collected, and the Rt-PCR method was used to measure the levels of SP-A and SP-B mRNA. RESULTS HE staining showed that histopathological changes were milder in the LA group than in the PQ group. There were significant differences in MDA and SOD levels between different intervals both in intergroups and intragroups except the 3-hour subgroup (P<0.01). Likewise, the significant differences in the levels of TNF-α were also present between the three groups and between different intervals (P<0.01). The significant differences in SP-A mRNA and SP-B mRNA amplification ratio were seen between the three groups at the same intervals (P<0.01), but the differences between different intervals in the PQ group were statistically significant (P<0.05). The differences between different intervals in the LA group were statistically significant (P<0.01). CONCLUSION Lipoic acid in acute paraquat poisoning could diminish lung tissue damage by regulating directly tumor necrosis factor and indirectly the content of pulmonary surfactant so as to reduce pulmonary edema, improve lung compliance, and finally protect lung tissues.
Collapse
Affiliation(s)
- Shou-Peng Li
- Department of Emergency Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ji-Yuan Han
- Department of Emergency Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Peng Sun
- Department of Emergency Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guo-Yan Wu
- Department of Emergency Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiang-Yan Bai
- Department of Emergency Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|