1
|
Bentley S, Cheong J, Gudka N, Makhecha S, Hadjisymeou-Andreou S, Standing JF. Therapeutic drug monitoring-guided dosing for pediatric cystic fibrosis patients: recent advances and future outlooks. Expert Rev Clin Pharmacol 2023; 16:715-726. [PMID: 37470695 DOI: 10.1080/17512433.2023.2238597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023]
Abstract
INTRODUCTION Medicine use in children with cystic fibrosis (CF) is complicated by inconsistent pharmacokinetics at variance with the general population, a lack of research into this and its effects on clinical outcomes. In the absence of established dose regimens, therapeutic drug monitoring (TDM) is a clinically relevant tool to optimize drug exposure and maximize therapeutic effect by the bedside. In clinical practice though, use of this is variable and limited by a lack of expert recommendations. AREAS COVERED We aimed to review the use of TDM in children with CF to summarize recent developments, current recommendations, and opportunities for future directions. We searched PubMed for relevant publications using the broad search terms "cystic fibrosis" in combination with the specific terms "therapeutic drug monitoring (TDM)" and "children." Further searches were undertaken using the name of identified drugs combined with the term "TDM." EXPERT OPINION Further research into the use of Bayesian forecasting and the relationship between exposure and response is required to personalize dosing, with the opportunity for the development of expert recommendations in children with CF. Use of noninvasive methods of TDM has the potential to improve accessibility to TDM in this cohort.
Collapse
Affiliation(s)
- Siân Bentley
- Pharmacy Department, Royal Brompton Hospital, London, UK
| | - Jamie Cheong
- Pharmacy Department, Royal Brompton Hospital, London, UK
| | - Nikesh Gudka
- Pharmacy Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | | | | | - Joseph F Standing
- Pharmacy Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Infection, Immunity and Inflammation,great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
2
|
Epps QJ, Epps KL, Young DC, Zobell JT. State of the art in cystic fibrosis pharmacology optimization of antimicrobials in the treatment of cystic fibrosis pulmonary exacerbations: III. Executive summary. Pediatr Pulmonol 2021; 56:1825-1837. [PMID: 33656280 DOI: 10.1002/ppul.25353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/23/2021] [Accepted: 02/27/2021] [Indexed: 12/14/2022]
Abstract
Acute pulmonary exacerbations are complications of cystic fibrosis (CF) and are associated with increased morbidity and mortality. Methicillin-resistant Staphylococcus aureus (MRSA) and Aspergillus fumigatus are organisms that have been detected in the lungs of CF patients. The focus of this review is to provide an overview of the classes of antimicrobials used for MRSA and allergic bronchopulmonary aspergillosis (ABPA), a hypersensitivity reaction caused by A. fumigatus. The current anti-MRSA antibiotics and medications for ABPA dosing recommendations are discussed. This article also reviews the findings from the MRSA utilization surveys and the pharmacokinetic and pharmacodynamic differences between CF and non-CF patients. Antimethicillin S. aureus antibiotics include ceftaroline, clindamycin, fluoroquinolone derivatives (ciprofloxacin, levofloxacin), glycopeptide derivatives (telavancin, vancomycin), linezolid, rifampin, sulfamethoxazole/trimethoprim, and tetracycline derivatives (doxycycline, minocycline, tigecycline). Medications used for ABPA include corticosteroids, amphotericin B, azole antifungals (isavuconazole, itraconazole, posaconazole, voriconazole), and a monoclonal antibody, omalizumab.
Collapse
Affiliation(s)
- Quovadis J Epps
- Florida Agricultural and Mechanical University College of Pharmacy and Pharmaceutical Sciences, Jacksonville, Florida, USA
| | - Kevin L Epps
- Department of Pharmacy, The Mayo Clinic, Jacksonville, Florida, USA
| | - David C Young
- Department of Pharmacotherapy, L.S. Skaggs Pharmacy Institute, University of Utah College of Pharmacy, Salt Lake City, Utah, USA.,Department of Pharmacy, University of Utah Adult Cystic Fibrosis Center, Salt Lake City, Utah, USA
| | - Jeffery T Zobell
- Department of Pharmacy, Intermountain Primary Children's Hospital, Salt Lake City, Utah, USA.,Department of Pharmacy, Primary Children's Cystic Fibrosis Center, Salt Lake City, Utah, USA
| |
Collapse
|
3
|
Pharmacokinetic and Pharmacodynamic Optimization of Antibiotic Therapy in Cystic Fibrosis Patients: Current Evidences, Gaps in Knowledge and Future Directions. Clin Pharmacokinet 2021; 60:409-445. [PMID: 33486720 DOI: 10.1007/s40262-020-00981-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2020] [Indexed: 10/22/2022]
Abstract
Antibiotic therapy is one of the main treatments for cystic fibrosis (CF). It aims to eradicate bacteria during early infection, calms down the inflammatory process, and leads to symptom resolution of pulmonary exacerbations. CF can modify both the pharmacokinetic (PK) and pharmacodynamic (PD) profiles of antibiotics, therefore specific PK/PD endpoints should be determined in the context of CF. Currently available data suggest that optimal PK/PD targets cannot be attained in sputum with intravenous aminoglycosides. Continuous infusion appears preferable for β-lactam antibiotics, but optimal concentrations in sputum are unlikely to be reached, with some possible exceptions such as meropenem and ceftolozane. Usual doses are likely suboptimal for fluoroquinolones and linezolid, whereas daily doses of 45-60 mg/kg and 200 mg could be convenient for vancomycin and doxycycline, respectively. Weekly azithromycin doses of 22-30 mg/kg could also be appropriate for its anti-inflammatory effect. The difficulty with achieving optimal concentrations supports the use of combined treatments and the inhaled administration route, as very high local concentrations, concomitantly with low systemic exposure, can be obtained with the inhaled route for aminoglycosides, colistin, and fluoroquinolones, thus minimizing the risk of toxicity.
Collapse
|
4
|
Epps QJ, Epps KL, Young DC, Zobell JT. State of the art in cystic fibrosis pharmacology-Optimization of antimicrobials in the treatment of cystic fibrosis pulmonary exacerbations: I. Anti-methicillin-resistant Staphylococcus aureus (MRSA) antibiotics. Pediatr Pulmonol 2020; 55:33-57. [PMID: 31609097 DOI: 10.1002/ppul.24537] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 09/19/2019] [Indexed: 12/22/2022]
Abstract
Acute pulmonary exacerbations (APE) are a complication of cystic fibrosis (CF) and are associated with morbidity and mortality. Methicillin-resistant Staphylococcus aureus (MRSA) is one of many organisms that has been detected in the airways of patients with CF. This review provides an evidence-based summary of pharmacokinetic/pharmacodynamic (PK/PD), tolerability, and efficacy studies utilizing anti-MRSA antibiotics (ie, ceftaroline, clindamycin, fluoroquinolone derivatives (ciprofloxacin, levofloxacin), glycopeptide derivatives (telavancin, vancomycin), linezolid, rifampin, sulfamethoxazole/trimethoprim (SMZ/TMP), and tetracycline derivatives (doxycycline, minocycline, tigecycline) in the treatment of APE and identifies areas where further study is warranted. A recent utilization study of antimicrobials for anti-MRSA has shown some CF Foundation accredited care centers and affiliate programs are using doses higher than the FDA-approved doses. Further studies are needed to determine the PK/PD properties in CF patients with clindamycin, minocycline, rifampin, SMZ/TMP, telavancin, and tigecycline; as well as, efficacy and tolerability studies with ciprofloxacin, clindamycin, doxycycline, levofloxacin, minocycline, rifampin, SMZ/TMP, in CF patients with MRSA.
Collapse
Affiliation(s)
- Quovadis J Epps
- Florida Agricultural and Mechanical University College of Pharmacy and Pharmaceutical Sciences, Jacksonville, Florida
| | - Kevin L Epps
- Department of Pharmacy, The Mayo Clinic, Jacksonville, Florida
| | - David C Young
- L.S. Skaggs Pharmacy Institute, University of Utah College of Pharmacy, Salt Lake City, Utah
- University of Utah Adult Cystic Fibrosis Center, Salt Lake City, Utah
| | - Jeffery T Zobell
- Department of Pharmacy, Intermountain Primary Children's Hospital, Salt Lake City, Utah
- Primary Children's Cystic Fibrosis Center, Salt Lake City, Utah
| |
Collapse
|
5
|
Fusco NM, Meaney CJ, Frederick CA, Prescott WA. Comparative Effectiveness of Vancomycin Versus Linezolid for the Treatment of Acute Pulmonary Exacerbations of Cystic Fibrosis. Ann Pharmacother 2019; 54:197-204. [DOI: 10.1177/1060028019885651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Data are limited regarding the preferred antibiotics for treatment of acute pulmonary exacerbations (APEs) of cystic fibrosis (CF), when methicillin-resistant Staphylococcus aureus (MRSA) is suspected. Objective: To compare the rate of return to baseline lung function among individuals with APEs of CF treated with either vancomycin or linezolid. Methods: This retrospective study included individuals hospitalized for APEs of CF from May 1, 2015, to April 30, 2017 who were infected with MRSA and treated with vancomycin or linezolid. The primary outcome was the return to baseline lung function, as measured by forced expiratory volume in 1 s (FEV1). Descriptive and inferential statistics were used. All tests were 2-tailed with α set at 0.05. Results: A total of 122 encounters were included (vancomycin: n = 66; linezolid: n = 66). No difference existed in return to baseline FEV1 between vancomycin (53 [80.3%]) and linezolid (50 [75.8%]; P = 0.53); nor was there a difference in median percentage change in FEV1 from admission to follow-up between vancomycin (24.7%) and linezolid (20.7%; P = 0.61). Adverse drug events occurred more frequently in patient encounters treated with vancomycin (10 [15.2%]) compared with linezolid (2 [3%]; P = 0.002). Conclusion and Relevance: Our study observed no difference in the effectiveness of vancomycin compared with linezolid in terms of change in lung function for APEs of CF. The rate of adverse drug events was low. In individuals with CF infected with MRSA who are experiencing an APE, either vancomycin or linezolid appear to be viable treatment options.
Collapse
Affiliation(s)
- Nicholas M. Fusco
- University at Buffalo School of Pharmacy and Pharmaceutical Sciences, Buffalo, NY, USA
| | - Calvin J. Meaney
- University at Buffalo School of Pharmacy and Pharmaceutical Sciences, Buffalo, NY, USA
| | | | - William A. Prescott
- University at Buffalo School of Pharmacy and Pharmaceutical Sciences, Buffalo, NY, USA
| |
Collapse
|
6
|
Akil N, Muhlebach MS. Biology and management of methicillin resistant Staphylococcus aureus in cystic fibrosis. Pediatr Pulmonol 2018; 53:S64-S74. [PMID: 30073802 DOI: 10.1002/ppul.24139] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/20/2018] [Indexed: 02/06/2023]
Abstract
Staphylococcus aureus is one of the earliest bacteria isolated from the respiratory tract in people with cystic fibrosis (CF). Its methicillin resistant form, MRSA, has gained attention due to the rapid increase in the last decades and worse outcomes with chronic infection. In the United States, prevalence of MRSA in CF is around 27%, but is much lower (3-18%) in most other countries. Methicillin is typically genetically encoded by the mecA gene, which encodes for an alternative penicillin binding protein (PRBa). This PRBa has low affinity to β-lactams, thereby enabling growth of S. aureus in the presence of penicillinase resistant penicillins and most other β-lactams. Non-mecA positive strains of MRSA, so-called borderline resistant (BORSA) have also been described. In addition to production of toxins, the virulence of S. aureus is conferred by its adaptability allowing persistence in face of antibiotic therapies and host defense. These adaptive growth mechanisms include small colony variants, biofilms, and growth under anaerobic conditions. Several reports have described successful eradication of MRSA, yet only two randomized trials of eradication during early infection have been conducted. A list of MRSA specific antibiotics with dosing relevant to CF patients is presented here. Many of these require special dosing in people with CF. Novel antibiotics are in trials for skin and soft tissue infections and it is unclear if and when those might be available for lung infections. Thus the best strategies for MRSA would be primary prevention.
Collapse
Affiliation(s)
- Nour Akil
- Division of Pulmonology, Department of Pediatrics, University of NC at Chapel Hill, Chapel Hill, North Carolina
| | - Marianne S Muhlebach
- Division of Pulmonology, Department of Pediatrics, University of NC at Chapel Hill, Chapel Hill, North Carolina.,Marisco Lung Institute, University of NC at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
7
|
Monteiro JF, Hahn SR, Gonçalves J, Fresco P. Vancomycin therapeutic drug monitoring and population pharmacokinetic models in special patient subpopulations. Pharmacol Res Perspect 2018; 6:e00420. [PMID: 30156005 PMCID: PMC6113434 DOI: 10.1002/prp2.420] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 06/20/2018] [Indexed: 01/02/2023] Open
Abstract
Vancomycin is a fundamental antibiotic in the management of severe Gram-positive infections. Inappropriate vancomycin dosing is associated with therapeutic failure, bacterial resistance and toxicity. Therapeutic drug monitoring (TDM) is acknowledged as an important part of the vancomycin therapy management, at least in specific patient subpopulations, but implementation in clinical practice has been difficult because there are no consensus and agglutinator documents. The aims of the present work are to present an overview of the current knowledge on vancomycin TDM and population pharmacokinetic (PPK) models relevant to specific patient subpopulations. Based on three published international guidelines (American, Japanese and Chinese) on vancomycin TDM and a bibliographic review on available PPK models for vancomycin in distinct subpopulations, an analysis of evidence was carried out and the current knowledge on this topic was summarized. The results of this work can be useful to redirect research efforts to address the detected knowledge gaps. Currently, TDM of vancomycin presents a moderate level of evidence and practical recommendations with great robustness in neonates, pediatric and patients with renal impairment. However, it is important to investigate in other subpopulations known to present altered vancomycin pharmacokinetics (eg neurosurgical, oncological and cystic fibrosis patients), where evidence is still unsufficient.
Collapse
Affiliation(s)
- Joaquim F. Monteiro
- Faculdade de Medicina da Universidade do Porto (FMUP)PortoPortugal
- Instituto de Investigação e Formação Avançadas em Ciências e Tecnologias da Saúde (IINFACTS)Instituto Universitário de Ciências da Saúde (IUCS)GandraPortugal
| | - Siomara R. Hahn
- Instituto de Ciências BiológicasCurso de FarmáciaUniversidade de Passo Fundo (UPF)Passo FundoBrasil
- Laboratório de FarmacologiaDepartamento de Ciências do MedicamentoFaculdade de Farmácia da Universidade do Porto (FFUP)PortoPortugal
| | - Jorge Gonçalves
- Laboratório de FarmacologiaDepartamento de Ciências do MedicamentoFaculdade de Farmácia da Universidade do Porto (FFUP)PortoPortugal
- I3SInstituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
| | - Paula Fresco
- Laboratório de FarmacologiaDepartamento de Ciências do MedicamentoFaculdade de Farmácia da Universidade do Porto (FFUP)PortoPortugal
- I3SInstituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
| |
Collapse
|
8
|
Determining the optimal vancomycin daily dose for pediatrics: a meta-analysis. Eur J Clin Pharmacol 2017; 73:1341-1353. [DOI: 10.1007/s00228-017-2306-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/17/2017] [Indexed: 10/19/2022]
|