1
|
Chan L, Da‐Long C, Tseng Y, Liang C. Halobacteria Formula Improvement of Skin Care-A Randomized, Double-Blind, Placebo-Controlled Clinical Study. J Cosmet Dermatol 2025; 24:e16648. [PMID: 39485052 PMCID: PMC11743324 DOI: 10.1111/jocd.16648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/25/2024] [Indexed: 11/03/2024]
Abstract
BACKGROUND Halobacteria trueperi, an extremophilic microorganism thriving in high-salt environments, produces extracellular polysaccharides with potential anti-inflammatory and anti-aging properties. However, its clinical efficacy in skin improvement remains unclear. This study focuses on H. trueperi TCI66207, isolated from the Pacific Ocean at a depth of 662 m near Hualien, and its potential to enhance skin parameters, aiming to develop a novel functional formulation for pharmaceutical and cosmetic use. AIMS This sudy aims to evaluate the clinical efficacy of H. trueperi TCI66207 on various skin parameters and its potential for developing new functional cosmetic formulations. PATIENTS/METHODS A total of 40 subjects were recruited and randomly divided into two groups: the test group applied a serum containing H. trueperi TCI66207, while the placebo group used a basic serum. Subjects were instructed to apply the serum twice daily for 4 weeks. Skin parameters, including moisture, brightness, elasticity, pigmentation (spots and UV spots), texture, wrinkles, pores, and collagen density, were assessed before and after the 4-week application period. RESULTS After 4 weeks of using the H. trueperi TCI66207 serum, significant improvements were observed in all measured skin parameters compared to baseline, with notable enhancements in moisture, brightness, elasticity, texture, and collagen density, along with reductions in wrinkles, spots, and pore size. CONCLUSIONS Halobacteria trueperi TCI66207 serum demonstrates a clear ability to improve skin conditions and delay signs of aging, making it a promising candidate for the development of new cosmetic formulations with potent anti-aging and skin-rejuvenating properties.
Collapse
Affiliation(s)
- Leong‐Perng Chan
- Department of Otorhinolaryngology‐Head and Neck Surgery, Kaohsiung Municipal ta‐Tung HospitalKaohsiung Medical UniversityKaohsiungTaiwan
- Department of Otorhinolaryngology‐Head and Neck Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University HospitalKaohsiung Medical UniversityKaohsiungTaiwan
| | - Cheng Da‐Long
- Department of Computer and CommunicationShu‐Te UniversityKaohsiungTaiwan
| | - Ya‐Ping Tseng
- Institute of Basic Medical SciencesNational Cheng Kung UniversityTainanTaiwan
| | - Chia‐Hua Liang
- Department of Cosmetic Science and Institute of Cosmetic ScienceChia Nan University of Pharmacy and ScienceTainanTaiwan
| |
Collapse
|
2
|
Niknezhad SV, Kianpour S, Jafarzadeh S, Alishahi M, Najafpour Darzi G, Morowvat MH, Ghasemi Y, Shavandi A. Biosynthesis of exopolysaccharide from waste molasses using Pantoea sp. BCCS 001 GH: a kinetic and optimization study. Sci Rep 2022; 12:10128. [PMID: 35710936 PMCID: PMC9203581 DOI: 10.1038/s41598-022-14417-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/07/2022] [Indexed: 11/08/2022] Open
Abstract
The bacterium Pantoea sp. BCCS 001 GH produces an exopolysaccharide (EPS) named Pantoan through using sugar beet molasses (SBM) as an inexpensive and widely available carbon source. This study aims to investigate the kinetics and optimization of the Pantoan biosynthesis using Pantoea sp. BCCS 001 GH in submerged culture. During kinetics studies, the logistic model and Luedeking-Piret equation are precisely fit with the obtained experimental data. The response surface methodology (RSM)-central composite design (CCD) method is applied to evaluate the effects of four factors (SBM, peptone, Na2HPO4, and Triton X-100) on the concentration of Pantoan in batch culture of Pantoea sp. BCCS 001 GH. The experimental and predicted maximum Pantoan production yields are found 9.9 ± 0.5 and 10.30 g/L, respectively, and the best prediction factor concentrations are achieved at 31.5 g/L SBM, 2.73 g/L peptone, 3 g/L Na2HPO4, and 0.32 g/L Triton X-100 after 48 h of submerged culture fermentation, at 30 °C. The functional groups and major monosaccharides (glucose and galactose) of a purified Pantoan are described and confirmed by 1HNMR and FTIR. The produced Pantoan is also characterized by thermogravimetric analysis and the rheological properties of the biopolymer are investigated. The present work guides the design and optimization of the Pantoea sp. BCCS 001 GH culture media, to be fine-tuned and applied to invaluable EPS, which can be applicable in food and biotechnology applications.
Collapse
Affiliation(s)
- Seyyed Vahid Niknezhad
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, 71987-54361, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P.O. Box 71468-64685, Shiraz, Iran
| | - Sedigheh Kianpour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P.O. Box 71468-64685, Shiraz, Iran
| | - Sina Jafarzadeh
- Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej, 2800 Kgs, Lyngby, Denmark
| | - Mohsen Alishahi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, 71987-54361, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P.O. Box 71468-64685, Shiraz, Iran
| | - Ghasem Najafpour Darzi
- Department of Chemical Engineering, Faculty of Engineering, Noshirvani University of Technology, Babol, Iran
| | - Mohammad Hossein Morowvat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P.O. Box 71468-64685, Shiraz, Iran.
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71468-64685, Shiraz, Iran.
| | - Younes Ghasemi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P.O. Box 71468-64685, Shiraz, Iran.
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71468-64685, Shiraz, Iran.
| | - Amin Shavandi
- Université Libre de Bruxelles (ULB), École Polytechnique de Bruxelles-BioMatter Unit, Avenue F. D. Roosevelt, 50-CP 165/61, 1050, Brussels, Belgium
| |
Collapse
|
3
|
Saha S, Shukla SK, Singh HR, Pradhan KK, Jha SK. Production and purification of bioflocculants from newly isolated bacterial species: a comparative decolourization study of cationic and anionic textile dyes. ENVIRONMENTAL TECHNOLOGY 2021; 42:3663-3674. [PMID: 32114960 DOI: 10.1080/09593330.2020.1737737] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/26/2020] [Indexed: 06/10/2023]
Abstract
Bioflocculant-producing bacteria were isolated from various water reservoirs and sediments of the water treatment plant. Four promising strains were identified by standard biochemical methods and 16s rRNA gene sequencing. Bioflocculants were produced in a batch bioreactor of 3 L under optimized conditions. Fourier transformed infrared spectroscopy and scanning electron microscopy (SEM) were used to confirm the chemical and morphological nature of bioflocculants. Anionic and cationic textile dyes congo red (CR) and rhodamine-B (RB) decolourization efficiency by ethanol precipitated bioflocculants were accessed under different values of pH, temperature, dose of flocculant and presence of monovalent, divalent and trivalent cations. Bioflocculants of all the four isolates were found to be highly efficient in decolourization of dye from an aqueous medium with the removal rate up to 99.56%. The removal rate of CR and RB from aqueous medium was largely influenced by the physiochemical condition of the solution viz. pH, temperature, concentration of ions and dose of flocculants. The microbial bioflocculants are biodegradable and highly stable as well as possess abroad range of pH, temperature and ions tolerance range. So, they may be economical and can be greener substitutes for the present harsh chemical-based wastewater effluent treatment methods.
Collapse
Affiliation(s)
- Swastika Saha
- Department of Bioengineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Sushil Kumar Shukla
- Department of Transport Science and Technology, Central University of Jharkhand, Brambe, Ranchi, Jharkhand, India
| | - Hare Ram Singh
- Department of Bioengineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Kishanta Kumar Pradhan
- Department of Pharmaceutical Science and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Santosh Kumar Jha
- Department of Bioengineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| |
Collapse
|
4
|
Fathollahi A, Coupe SJ, El-Sheikh AH, Nnadi EO. Cu(II) biosorption by living biofilms: Isothermal, chemical, physical and biological evaluation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 282:111950. [PMID: 33465714 DOI: 10.1016/j.jenvman.2021.111950] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/13/2020] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
Dissolved copper in stormwater runoff is a significant environmental problem. Biosorption of dissolved metals using microorganisms is known as a green, low-cost and efficient method. However, the role of live biological agents in the remediation of dissolved copper in Sustainable Drainage (SuDS) has not been reported. In this study, the effect of pH, initial concentration and temperature, on bacteria in different stages of biofilm development on a geotextile, along with Cu(II) removal efficiencies, were evaluated. Maximum Cu(II) removal efficiency (92%) was observed at pH 6. By decreasing the pH from 6 to 2, a log 5 reduction in bacteria was observed and Carboxyl groups transformed from -COO- to -COOH. The maximum biosorption capacity (119 mg g-1) was detected on day 1 of biofilm development, however, maximum removal efficiency (97%) was measured on day 21 of biofilm incubation. Exteracellular Polymeric Substance (EPS) showed a better protection of CFUs in more mature biofilms (day 21) with less than 0.1 log decrease when exposed to 200 mL-1 Cu(II), whereas, biofilm on day 1 of incubation showed a 2 log reduction in CFUs number. Thermodynamic studies showed that the maximum Cu(II) biosorption capacity of biofilms, incubated for 7 days (117 mg g-1) occurred at 35 °C. Thermodynamic and kinetic modelling of data revealed that a physical, feasible, spontaneous and exothermic process controlled the biosorption, with a diffusion process observed in external layers of the biofilm, fitting a pseudo-second order model. Equilibrium data modelling and high R2 values of Langmuir model indicated that the biosorption took place by a monolayer on the living biofilm surface in all stages of biofilm development.
Collapse
Affiliation(s)
- Alireza Fathollahi
- Centre for Agroecology Water and Resilience (CAWR), Coventry University, Wolston Lane, Ryton on Dunsmore, CV8 3LG, UK.
| | - Stephen J Coupe
- Centre for Agroecology Water and Resilience (CAWR), Coventry University, Wolston Lane, Ryton on Dunsmore, CV8 3LG, UK
| | - Amjad H El-Sheikh
- Department of Chemistry, Faculty of Science, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
| | - Ernest O Nnadi
- School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, M13 9PL, Manchester, UK
| |
Collapse
|
5
|
Ibrahim IM, Konnova SA, Sigida EN, Lyubun EV, Muratova AY, Fedonenko YP, Elbanna К. Bioremediation potential of a halophilic Halobacillus sp. strain, EG1HP4QL: exopolysaccharide production, crude oil degradation, and heavy metal tolerance. Extremophiles 2019; 24:157-166. [DOI: 10.1007/s00792-019-01143-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/29/2019] [Indexed: 10/25/2022]
|
6
|
Khalikova E, Somersalo S, Korpela T. Metabolites Produced by Alkaliphiles with Potential Biotechnological Applications. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 172:157-193. [PMID: 31240347 DOI: 10.1007/10_2019_96] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Alkaliphiles are a diverse group of relatively less known microorganisms living in alkaline environments. To thrive in alkaline environments, alkaliphiles require special adaptations. This adaptation may have evolved metabolites which can be useful for biotechnological processes or other applications. In fact, certain metabolites are found unique to alkaliphiles or are effectively produced by alkaliphiles. This probably aroused the interest in metabolites of alkaliphiles. During recent years, many alkaliphilic microbes have been isolated, especially in countries having alkaline environments, like soda lakes. Even if the number of such isolated alkaliphiles is large, their metabolites have not yet been extensively analyzed and exploited. This is expected to come in the years ahead. So far, the focus of interests in metabolites from alkaliphiles falls into categories such as organic acids, ingredients for foodstuffs and cosmetics, antibiotics, and substances which modify properties of other materials used in industry. This chapter deals with biotechnologically important metabolites of alkaliphiles including compatible solutes, biosurfactants, siderophores, carotenoids, exopolysaccharides, and antimicrobial agents. It also covers the promising potential of alkaliphiles as sources of bioplastic raw materials. Moreover, an overview of the patent literature related to alkaliphiles is highlighted. Graphical Abstract.
Collapse
Affiliation(s)
- Elvira Khalikova
- Joint Biotechnology Laboratory, University of Turku, Turku, Finland
| | | | - Timo Korpela
- Department of Future Technologies, University of Turku, Turku, Finland.
| |
Collapse
|
7
|
|
8
|
Ramamoorthy S, Gnanakan A, S. Lakshmana S, Meivelu M, Jeganathan A. Structural characterization and anticancer activity of extracellular polysaccharides from ascidian symbiotic bacterium Bacillus thuringiensis. Carbohydr Polym 2018; 190:113-120. [DOI: 10.1016/j.carbpol.2018.02.047] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 02/15/2018] [Accepted: 02/16/2018] [Indexed: 01/12/2023]
|
9
|
In vitro antioxidant activities of an exopolysaccharide from a salt pan bacterium Halolactibacillus miurensis. Carbohydr Polym 2017; 155:400-406. [DOI: 10.1016/j.carbpol.2016.08.085] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 08/24/2016] [Accepted: 08/26/2016] [Indexed: 01/22/2023]
|