1
|
Pareek C, Gajbe U, Bawaskar PA, Bandre GR, Badge AK. Laser-Guided Sperm Selection: Optimizing the Reproductive Success Rate in Assisted Reproductive Technology. Cureus 2023; 15:e49052. [PMID: 38116358 PMCID: PMC10728578 DOI: 10.7759/cureus.49052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/19/2023] [Indexed: 12/21/2023] Open
Abstract
Assisted reproductive technologies (ART) enable these patient's spermatozoa to fertilize the oocyte and create viable and healthy offspring, but the effectiveness of the various procedures still has room to increase. In the field of assisted reproductive technology, the need to improve fertility results has led to the development of novel sperm selection strategies. Laser-assisted selection of immotile sperm (LAISS) appears to be a promising strategy, harnessing the power of modern optical instruments to better the selection process and, ultimately, maximize the probability of successful fertilization. This technology takes advantage of sperm cells' distinctive features, such as shape, form, and motility patterns, that can be sensitively changed by laser forces. Using precision laser manipulation, spermatozoa with desirable features can be precisely targeted, improving the overall quality and viability of the sperm population. The existence of an elevated percentage of DNA-damaged sperm in a patient's ejaculation may be one of the key factors decreasing ART outcomes. As a result, one of the most difficult tasks in reproductive medicine is ensuring the best quality of spermatozoa utilized in ART, particularly with regard to genetic integrity. The most recent approaches for preparing and selecting human spermatozoa by LAISS techniques are covered here, with an emphasis on those that have been shown to improve.
Collapse
Affiliation(s)
- Charu Pareek
- Clinical Embryology, Datta Meghe Medical College, Datta Meghe Institute of Higher Education and Research (Deemed to Be University), Nagpur, IND
| | - Ujwal Gajbe
- Anatomy, Datta Meghe Medical College, Datta Meghe Institute of Higher Education and Research (Deemed to Be University), Nagpur, IND
| | - Pranita A Bawaskar
- Clinical Embryology, Datta Meghe Medical College, Datta Meghe Institute of Higher Education and Research (Deemed to Be University), Nagpur, IND
| | - Gulshan R Bandre
- Microbiology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research (Deemed to Be University), Wardha, IND
| | - Ankit K Badge
- Microbiology, Datta Meghe Medical College, Datta Meghe Institute of Higher Education and Research (Deemed to Be University), Nagpur, IND
| |
Collapse
|
2
|
Vasilescu SA, Ding L, Parast FY, Nosrati R, Warkiani ME. Sperm quality metrics were improved by a biomimetic microfluidic selection platform compared to swim-up methods. MICROSYSTEMS & NANOENGINEERING 2023; 9:37. [PMID: 37007605 PMCID: PMC10050147 DOI: 10.1038/s41378-023-00501-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/02/2022] [Accepted: 01/20/2023] [Indexed: 06/19/2023]
Abstract
Sperm selection is an essential component of all assisted reproductive treatments (ARTs) and is by far the most neglected step in the ART workflow in regard to technological innovation. Conventional sperm selection methodologies typically produce a higher total number of sperm with variable motilities, morphologies, and levels of DNA integrity. Gold-standard techniques, including density gradient centrifugation (DGC) and swim-up (SU), have been shown to induce DNA fragmentation through introducing reactive oxygen species (ROS) during centrifugation. Here, we demonstrate a 3D printed, biologically inspired microfluidic sperm selection device (MSSP) that utilizes multiple methods to simulate a sperms journey toward selection. Sperm are first selected based on their motility and boundary-following behavior and then on their expression of apoptotic markers, yielding over 68% more motile sperm than that of previously reported methods with a lower incidence of DNA fragmentation and apoptosis. Sperm from the MSSP also demonstrated higher motile sperm recovery after cryopreservation than that of SU or neat semen. Experiments were conducted side-by-side against conventional SU methods using human semen (n = 33) and showed over an 85% improvement in DNA integrity with an average 90% reduction in sperm apoptosis. These results that the platform is easy-to-use for sperm selection and mimics the biological function of the female reproductive tract during conception.
Collapse
Affiliation(s)
| | - Lin Ding
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW 2007 Australia
| | - Farin Yazdan Parast
- Department of Mechanical & Aerospace Engineering, Monash University, Clayton, VIC 3800 Australia
| | - Reza Nosrati
- Department of Mechanical & Aerospace Engineering, Monash University, Clayton, VIC 3800 Australia
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW 2007 Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007 Australia
| |
Collapse
|
3
|
Ribas-Maynou J, Barranco I, Sorolla-Segura M, Llavanera M, Delgado-Bermúdez A, Yeste M. Advanced Sperm Selection Strategies as a Treatment for Infertile Couples: A Systematic Review. Int J Mol Sci 2022; 23:ijms232213859. [PMID: 36430331 PMCID: PMC9695162 DOI: 10.3390/ijms232213859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Assisted reproductive technology (ART) is an essential tool to overcome infertility, and is a worldwide disease that affects millions of couples at reproductive age. Sperm selection is a crucial step in ART treatment, as it ensures the use of the highest quality sperm for fertilization, thus increasing the chances of a positive outcome. In recent years, advanced sperm selection strategies for ART have been developed with the aim of mimicking the physiological sperm selection that occurs in the female genital tract. This systematic review sought to evaluate whether advanced sperm selection techniques could improve ART outcomes and sperm quality/functionality parameters compared to traditional sperm selection methods (swim-up or density gradients) in infertile couples. According to preferred reporting items for systematic reviews and meta-analyses (PRISMA guidelines), the inclusion and exclusion criteria were defined in a PICOS (population, intervention, comparator, outcome, study) table. A systematic search of the available literature published in MEDLINE-PubMed until December 2021 was subsequently conducted. Although 4237 articles were recorded after an initial search, only 47 studies were finally included. Most reports (30/47; 63.8%) revealed an improvement in ART outcomes after conducting advanced vs. traditional sperm selection methods. Among those that also assessed sperm quality/functionality parameters (12/47), there was a consensus (10/12; 83.3%) about the beneficial effect of advanced sperm selection methods on these variables. In conclusion, the application of advanced sperm selection methods improves ART outcomes. In spite of this, as no differences in the reproductive efficiency between advanced methods has been reported, none can be pointed out as a gold standard to be conducted routinely. Further research addressing whether the efficiency of each method relies on the etiology of infertility is warranted.
Collapse
Affiliation(s)
- Jordi Ribas-Maynou
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, 17003 Girona, Spain
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, 17003 Girona, Spain
- Correspondence: (J.R.-M.); (I.B.); Tel.: +34-972-419-514 (J.R.-M.); +39-051-209-7011 (I.B.); Fax: +34-972-418-150 (J.R.-M.)
| | - Isabel Barranco
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, 40126 Bologna, Italy
- Correspondence: (J.R.-M.); (I.B.); Tel.: +34-972-419-514 (J.R.-M.); +39-051-209-7011 (I.B.); Fax: +34-972-418-150 (J.R.-M.)
| | - Maria Sorolla-Segura
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, 17003 Girona, Spain
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, 17003 Girona, Spain
| | - Marc Llavanera
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, 17003 Girona, Spain
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, 17003 Girona, Spain
| | - Ariadna Delgado-Bermúdez
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, 17003 Girona, Spain
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, 17003 Girona, Spain
| | - Marc Yeste
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, 17003 Girona, Spain
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, 17003 Girona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| |
Collapse
|