1
|
Lin JG, Sun YW, Wu WL, Jiang WP, Zhung FY, Huang GJ. Multi-Target Protective Effects of Sanghuangporus sanghuang Against 5-Fluorouracil-Induced Intestinal Injury Through Suppression of Inflammation, Oxidative Stress, Epitheli-Al-Mesenchymal Transition, and Tight Junction. Int J Mol Sci 2025; 26:3444. [PMID: 40244381 PMCID: PMC11989720 DOI: 10.3390/ijms26073444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/28/2025] [Accepted: 04/03/2025] [Indexed: 04/18/2025] Open
Abstract
Sanghuang (Sanghuangporus sanghuang, SS) is a medicinal fungus with multiple pharmacological effects, including antioxidant, anti-inflammatory, immune-boosting, and anti-cancer activities. 5-fluorouracil (5-FU) is a commonly used chemotherapeutic agent for the treatment of colorectal cancer. It primarily exerts its antitumor effect by inhibiting DNA and RNA synthesis, leading to cell apoptosis. However, it frequently induces adverse effects These issues limit the clinical application of 5-FU. This research aims to determine the potential of SS as a therapeutic agent in reducing 5-FU-induced intestinal mucositis in a mouse model. The results indicated that 5-FU administration significantly increased diarrhea severity, reduced colon length, caused small intestinal villus atrophy, disrupted intestinal architecture, led to insufficient crypt cell proliferation, and resulted in weight loss. It also significantly upregulated inflammatory responses, apoptosis, oxidative stress, and epithelial-mesenchymal transition (EMT) pathways, and disrupted the integrity of intestinal mucosal tight junction, while elevating pro-inflammatory cytokines and reducing antioxidant capacity. However, SS significantly ameliorating alleviating the adverse impacts of the chemotherapeutic agent on the intestinal mucosa. In conclusion, this investigation provides the first evidence of the protective effects of SS on 5-FU-induced mucositis. These findings suggest SS as a potential therapeutic application, offering a promising strategy for reducing the adverse effects of 5-FU chemotherapy and improving the treatment and quality of life for colorectal cancer patients.
Collapse
Affiliation(s)
- Jaung-Geng Lin
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan; (J.-G.L.); (W.-L.W.)
- Chinese Medicine Research Center, China Medical University, Taichung 404, Taiwan
| | - Yu-Wen Sun
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan
| | - Wen-Liang Wu
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan; (J.-G.L.); (W.-L.W.)
| | - Wen-Ping Jiang
- Department of Pharmacy, China Medical University, Taichung 404, Taiwan;
| | - Fang-Yu Zhung
- Department of Nutrition, China Medical University, Taichung 404, Taiwan
| | - Guan-Jhong Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan
- Department of Food Nutrition and Healthy Biotechnology, Asia University, Taichung 413, Taiwan
| |
Collapse
|
2
|
Xu HB, Yang YG, Xu HL, Yuan MM, Chen SZ, Song ZX, Tang ZS. Screening 5-lipoxygenase inhibitors from selected traditional Chinese medicines and isolation of the active compounds from Polygoni Cuspidati Rhizoma by an on-line bioactivity evaluation system. Biomed Chromatogr 2022; 36:e5426. [PMID: 35707928 DOI: 10.1002/bmc.5426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 11/08/2022]
Abstract
To identify natural products as new prototypes for 5-lipoxygenase (5-LOX), 12 traditional Chinese medicines (TCMs), were selected for screening their 5-LOX inhibition activities. The results showed that all of the methanol extracts of 12 selected TCMs possessed inhibitory activities of 5-LOX at 200 μg/mL, of which six extracts of the TCMs showed significant inhibitory effects with IC50 values ranged from 33.2 ± 1.4 μg/mL to 153.5 ± 1.7 μg/mL, and the extract of Polygoni Cuspidati Rhizoma (RPC) was the most active sample. An on-line UPLC-PDA-MSn -5-LOX-FLD method was applied to further identify the potential 5-LOX inhibitory constituents in RPC extracts, which resulted in the identification of 7 components with 5-LOX-binding activities. Finally, four compounds (polydatin, resveratrol, emodin-8-O-glucoside and emodin) were successfully purified from RPC extracts. The 5-LOX inhibition action was assayed in vitro, and the results showed that these compounds possessed potent inhibitory effects against 5-LOX with IC50 values of 15.3 ± 2.1, 4.5 ± 1.2, 23.8 ± 0.4 and 11.8 ± 1.5 μg/mL, respectively. This was the first study to reveal the 5-LOX inhibitory constituents of RPC, and the present investigation might provide a valuable approach for the rapid discovery of natural inhibitors from TCMs.
Collapse
Affiliation(s)
- Hong-Bo Xu
- Shaanxi Collaborative Innovation Center of Chinese Medicine Resources Industrialization, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center and College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, People's Republic of China
| | - Yuan-Gui Yang
- Shaanxi Collaborative Innovation Center of Chinese Medicine Resources Industrialization, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center and College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, People's Republic of China
| | - Huai-Li Xu
- Shaanxi Collaborative Innovation Center of Chinese Medicine Resources Industrialization, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center and College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, People's Republic of China
| | - Meng-Meng Yuan
- Shaanxi Collaborative Innovation Center of Chinese Medicine Resources Industrialization, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center and College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, People's Republic of China.,School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Shi-Zhong Chen
- Shaanxi Collaborative Innovation Center of Chinese Medicine Resources Industrialization, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center and College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, People's Republic of China.,School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Zhong-Xing Song
- Shaanxi Collaborative Innovation Center of Chinese Medicine Resources Industrialization, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center and College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, People's Republic of China
| | - Zhi-Shu Tang
- Shaanxi Collaborative Innovation Center of Chinese Medicine Resources Industrialization, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center and College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, People's Republic of China
| |
Collapse
|
3
|
Zhao Y, Zheng W. Deciphering the antitumoral potential of the bioactive metabolites from medicinal mushroom Inonotus obliquus. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113321. [PMID: 32877719 DOI: 10.1016/j.jep.2020.113321] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/09/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The crude extracts of the medicinal mushroom Inonotus obliquus have been used as an effective traditional medicine to treat malicious tumors, gastritis, gastric ulcers, and other inflammatory conditions in Russia and most Baltic countries. AIM OF THIS REVIEW Deciphering the antitumoral potential of the bioactive metabolites from I. obliquus and addressing its possibility to be used as effective agents for tumor treatment, restoration of compromised immunity and protection of gastrointestinal damage caused by chemotherapy. MATERIALS AND METHODS We analysed the current achievements and dilemma in tumor chemo- or immunotherapy. In this context, we searched the published literatures on I. obliquus covering from 1990 to 2020, and summarized the activities of antitumor, antioxidation, and immunomodulation by the polysaccharides, triterpenoids, small phenolic compounds, and hispidin polyphenols. By comparing the merits and shortcomings of current and traditional methodology for tumor treatment, we further addressed feasibility for the use of I. obliquus as an effective natural drug for tumor treatment and prevention. RESULTS The diverse bioactive metabolites confer I. obliquus great potential to inhibit tumor growth and metastasis. Its antitumor activities are achieved either through suppressing multiple oncogenic signals including but not limited to the activation of NF-κB and FAK, and the expression of RhoA/MMP-9 via ERK1/2 and PI3K/Akt signaling pathway. The antitumor activities can also be achieved by inhibiting tyrosinase activity via PAK1-dependent signaling pathway or altering lysosomal membrane permeabilization through blocking tubulin polymerization and/or disturbing energy metabolism through LKB1/AMPK pathway. In addition, the metabolites from I. obliquus also harbour the potentials to reverse MDR either through selective inhibition on P-gp/ABCB1 or MRP1/ABCC1 proteins or the induction of G2/M checkpoint arrest in tumor cells of chemoresistant phenotypes mediated by Nox/ROS/NF-kB/STAT3 signaling pathway. In addition to the eminent effects in tumor inhibition, the metabolites in I. obliquus also exhibit immunomodulatory potential to restore the compromised immunity and protect against ulcerative damage of GI tract caused by chemotherapy. CONCLUSIONS I. obliquus possesses the potential to reduce incidence of tumorigenesis in healthy people. For those whose complete remission has been achieved by chemotherapy, administration of the fungus will inhibit the activation of upstream oncogenic signals and thereby prevent metastasis; for those who are in the process of chemotherapy administration of the fungus will not only chemosensitize the tumor cells and thereby increasing the chemotherapeutic effects, but also help to restore the compromised immunity and protect against ulcerative GI tract damage and other side-effects induced by chemotherapy.
Collapse
Affiliation(s)
- Yanxia Zhao
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou, 221116, China.
| | - Weifa Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou, 221116, China.
| |
Collapse
|
4
|
Polysaccharide isolated from Phellinus linteus mycelia exerts anti-inflammatory effects via MAPK and PPAR signaling pathways. Carbohydr Polym 2018; 200:487-497. [PMID: 30177190 DOI: 10.1016/j.carbpol.2018.08.021] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/18/2018] [Accepted: 08/06/2018] [Indexed: 12/30/2022]
Abstract
In the present study, the anti-inflammatory function of Phellinus linteus polysaccharide (PLP) was investigated in animal and cell inflammation models, and the anti-inflammatory mechanism of PLP was also explored. Sixty 8-week ICR mice were randomly divided into 3 groups, and DSS group and DSS + PLP group mice received 2.0% DSS and PLP was orally administered at 500 mg/kg/day. Our data showed that PLP administration obviously improved the health status of mice and inhibited DSS-induced pathological alterations and significantly reduced inflammatory cytokine expressions in the colonic tissues. In lipopolysaccharide-induced inflammation cell model, PLP supplement also significantly reduced inflammatory cytokine expressions and inhibited MAPK pathway as well as the translocations of NF-κB and AP-1. Meanwhile, PLP supplement regulated PPARα and PPARγ phosphorylation and blocked MAPK activation. Taken together, PLP exhibits anti-inflammatory function and its molecular mechanism may be involved in MAPK and PPAR signal pathways, which reduce the expressions of inflammatory cytokines.
Collapse
|
5
|
Characterization of Compounds with Tumor-Cell Proliferation Inhibition Activity from Mushroom (Phellinus baumii) Mycelia Produced by Solid-State Fermentation. Molecules 2017; 22:molecules22050698. [PMID: 28448441 PMCID: PMC6154627 DOI: 10.3390/molecules22050698] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/24/2017] [Accepted: 04/24/2017] [Indexed: 01/06/2023] Open
Abstract
The inhibition of tumor-cell proliferationbyan organicsolvent extract from the solid-state fermentation of Phellinus baumii mycelia inoculated in rice medium was investigated in vitro. The active compounds inhibiting tumor-cell proliferation were characterized. Results revealed that all (petroleum ether, chloroform, ethyl acetate, and butanol) fractions inhibited tumor-cell proliferation in a dose-dependent fashion. The ethyl acetate extract had the highest inhibitory effecton tumor-cell proliferation, and the butanol fraction had the lowest. Six compounds were isolated and purified from the ethyl acetate extract of P. baumii mycelia by the tandem application of silica-gel column chromatography (SGCC), high-speed countercurrent chromatography (HSCCC), and preparative HPLC. These compounds were identified by NMR and electrospray ionization-mass spectrometry (ESI-MS) spectroscopic methods as ergosterol (RF1), ergosta-7,22-dien-3β-yl pentadecanoate (RF3), 3,4-dihydroxy benzaldehyde(RF6), inoscavinA (RF7), baicalein(RF10), and 24-ethylcholesta-5,22-dien-3β-ol (RF13). To further clarify the activity of these compounds, the cell-proliferation-inhibition tests of these compounds on various tumor cells were carried out and evaluatedin vitro. Results suggested that compounds RF6, RF7, and RF10 had potent inhibition effects on the proliferation of a series of tumor cell lines, including K562, L1210, SW620, HepG2, LNCaP, and MCF-7cells. These findings indicated that P. baumii mycelia produced by solid-state fermentation in rice canbe used to obtain active compounds with the ability to inhibittumor-cell proliferation.
Collapse
|
6
|
Chen H, Tian T, Miao H, Zhao YY. Traditional uses, fermentation, phytochemistry and pharmacology of Phellinus linteus: A review. Fitoterapia 2016; 113:6-26. [PMID: 27343366 DOI: 10.1016/j.fitote.2016.06.009] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/18/2016] [Accepted: 06/20/2016] [Indexed: 02/02/2023]
Abstract
Medicinal mushroom Phellinus linteus ("Sanghuang" in Chinese, ) is a famous fungus which is widely used in China, Korea, and other Asian countries. As a traditional Chinese medicine with a 2000-year long history, medicinal applications of Phellinus linteus mainly include treating hemorrhage, hemostasis and diseases related to female menstruation according to Chinese clinical empirical practice. A number of studies reported Phellinus linteus possessed good therapeutic effects on various ailments including tumor, diabetes, inflammation, obesity, etc. The present paper comprehensively reviewed the traditional uses, fermentation, constituent and pharmacology of Phellinus linteus based on scientific literature as well as critical analysis of the research. This review aimed to provide latest information and new foundations and directions for further investigations on Phellinus linteus. All available information about Phellinus linteus was supplied by library database and electronic search (CNKI, Google Scholar, ScienceDirect, Web of Science, PubMed, etc.). Some local and ancient books as well as brilliant scholars were also important information resources. Improvement of fermentation techniques promoted the production of Phellinus linteus. Studies of constituents showed the main chemical composition of Phellinus linteus included polysaccharides, flavones, triterpenes, aromatic acids, amino acids, etc. and polysaccharides were found to account for the largest proportion. Pharmacological researches revealed Phellinus linteus possessed a variety of biological activities including anti-cancer, immuno-regulation, anti-diabetes, anti-oxidation and anti-inflammation. Based on these summarized information, this review was presented to provide helpful references and beneficial directions for future studies of Phellinus linteus.
Collapse
Affiliation(s)
- Hua Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Ting Tian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Hua Miao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Ying-Yong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
7
|
Evaluation of the Antioxidant Activities and Tyrosinase Inhibitory Property from Mycelium Culture Extracts. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:616298. [PMID: 26345142 PMCID: PMC4540982 DOI: 10.1155/2015/616298] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/14/2015] [Accepted: 07/16/2015] [Indexed: 11/17/2022]
Abstract
Since mushrooms have many bioactive components, they have been used as components in folk medicine. Because mycelium has an advantage when it comes to large-scale production, this study aimed to evaluate the antioxidant properties and anti-tyrosinase activity from 55 mycelia in culture media. Relatively high 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging capacity was detected from the ethanol extract of culture media including mycelium (EECiM) of Morchella esculenta var. esculenta (MEVE), Auricularia polytricha (APO), Tremella aurantia (TAU), Volvariella bombycina (VBO), and Oudemansiella sp. (Osp), which also showed strong reducing power and inhibitory activity in relation to the thiobarbituric acid (TBA) value. On the other hand, relatively high tyrosinase inhibitory activity was detected in Inonotus mikadoi (IMI), Coriolus versicolor (CVE), Volvariella volvacea (VVO), Panellus serotinus (PSE), Auricularia auricula (AAU), and Fomitopsis sp. (Fsp). Interestingly, the APO EECiM exhibited the highest DPPH radical scavenging rate (77.5 ± 4.3%) and reducing power (1.18 ± 0.041), while the highest inhibitory power of the TBA value and antityrosinase activity were detected in that of TAU (64.5 ± 4.1%) and IMI (46.0 ± 7.5%), respectively. Overall, our study suggested potential candidates for EECiMs that exhibited powerful antioxidant and tyrosinase inhibitory properties and might be used as natural antioxidant tyrosinase inhibitor.
Collapse
|