1
|
Madkor HR, Abd El-Aziz MK, Abd El-Maksoud MS, Ibrahim IM, Ali FEM. Stem Cells Reprogramming in Diabetes Mellitus and Diabetic Complications: Recent Advances. Curr Diabetes Rev 2025; 21:21-37. [PMID: 38173073 DOI: 10.2174/0115733998275428231210055650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/09/2023] [Accepted: 11/21/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND The incidence of diabetes mellitus (DM) is dramatically increasing worldwide, and it is expected to affect 700 million cases by 2045. Diabetes influences health care economics, human quality of life, morbidity, and mortality, which were primarily seen extensively in developing countries. Uncontrolled DM, which results in consistent hyperglycemia, may lead to severe life-threatening complications such as nephropathy, retinopathy, neuropathy, and cardiovascular complications. METHODOLOGY In addition to traditional therapies with insulin and oral anti-diabetics, researchers have developed new approaches for treatment, including stem cell (SC) therapy, which exhibits promising outcomes. Besides its significant role in treating type one DM (T1DM) and type two DM (T2DM), it can also attenuate diabetic complications. Furthermore, the development of insulin- producing cells can be achieved by using the different types of SCs, such as embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and multiple types of adult stem cells, such as pancreatic, hepatic, and mesenchymal stem cells (MSC). All these types have been extensively studied and proved their ability to develop insulin-producing cells, but every type has limitations. CONCLUSION This review aims to enlighten researchers about recent advances in stem cell research and their potential benefits in DM and diabetic complications.
Collapse
Affiliation(s)
- Hafez R Madkor
- Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt
| | | | | | - Islam M Ibrahim
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Fares E M Ali
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| |
Collapse
|
2
|
Ghassemifard L, Hasanlu M, Parsamanesh N, Atkin SL, Almahmeed W, Sahebkar A. Cell Therapies and Gene Therapy for Diabetes: Current Progress. Curr Diabetes Rev 2025; 21:e130524229899. [PMID: 38747221 DOI: 10.2174/0115733998292392240425122326] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/07/2024] [Accepted: 03/21/2024] [Indexed: 04/23/2025]
Abstract
The epidemic of diabetes continues to be an increasing problem, and there is a need for new therapeutic strategies. There are several promising drugs and molecules in synthetic medicinal chemistry that are developing for diabetes. In addition to this approach, extensive studies with gene and cell therapies are being conducted. Gene therapy is an existing approach in treating several diseases, such as cancer, autoimmune diseases, heart disease and diabetes. Several reports have also suggested that stem cells have the differentiation capability to functional pancreatic beta cell development in vitro and in vivo, with the utility to treat diabetes and prevent the progression of diabetes-related complications. In this current review, we have focused on the different types of cell therapies and vector-based gene therapy in treating or preventing diabetes.
Collapse
Affiliation(s)
- Leila Ghassemifard
- Department of Physiology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Persian Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Masumeh Hasanlu
- Department of Internal Medicine, Vali-e-Asr Hospital, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Negin Parsamanesh
- Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Genetics and Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Stephen L Atkin
- Research Department, Royal College of Surgeons in Ireland Bahrain, Adliya, Bahrain
| | - Wael Almahmeed
- Heart and Vascular Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Wang R, Wang Z, Tong L, Wang R, Yao S, Chen D, Hu H. Microfluidic Mechanoporation: Current Progress and Applications in Stem Cells. BIOSENSORS 2024; 14:256. [PMID: 38785730 PMCID: PMC11117831 DOI: 10.3390/bios14050256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/08/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024]
Abstract
Intracellular delivery, the process of transporting substances into cells, is crucial for various applications, such as drug delivery, gene therapy, cell imaging, and regenerative medicine. Among the different approaches of intracellular delivery, mechanoporation stands out by utilizing mechanical forces to create temporary pores on cell membranes, enabling the entry of substances into cells. This method is promising due to its minimal contamination and is especially vital for stem cells intended for clinical therapy. In this review, we explore various mechanoporation technologies, including microinjection, micro-nano needle arrays, cell squeezing through physical confinement, and cell squeezing using hydrodynamic forces. Additionally, we highlight recent research efforts utilizing mechanoporation for stem cell studies. Furthermore, we discuss the integration of mechanoporation techniques into microfluidic platforms for high-throughput intracellular delivery with enhanced transfection efficiency. This advancement holds potential in addressing the challenge of low transfection efficiency, benefiting both basic research and clinical applications of stem cells. Ultimately, the combination of microfluidics and mechanoporation presents new opportunities for creating comprehensive systems for stem cell processing.
Collapse
Affiliation(s)
- Rubing Wang
- Zhejiang University-University of Illinois Urbana-Champaign Institute (ZJU-UIUC Institute), International Campus, Haining 314400, China;
| | - Ziqi Wang
- Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, China; (Z.W.); (L.T.)
| | - Lingling Tong
- Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, China; (Z.W.); (L.T.)
| | - Ruoming Wang
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), International Campus, Zhejiang University, Haining 314400, China; (R.W.); (S.Y.)
| | - Shuo Yao
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), International Campus, Zhejiang University, Haining 314400, China; (R.W.); (S.Y.)
| | - Di Chen
- Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, China; (Z.W.); (L.T.)
- Center for Reproductive Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310003, China
- National Key Laboratory of Biobased Transportation Fuel Technology, Haining 314400, China
| | - Huan Hu
- Zhejiang University-University of Illinois Urbana-Champaign Institute (ZJU-UIUC Institute), International Campus, Haining 314400, China;
| |
Collapse
|
4
|
Banerjee A, Singla DK. MSC exosomes attenuate sterile inflammation and necroptosis associated with TAK1-pJNK-NFKB mediated cardiomyopathy in diabetic ApoE KO mice. Front Immunol 2024; 15:1348043. [PMID: 38390337 PMCID: PMC10881775 DOI: 10.3389/fimmu.2024.1348043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/19/2024] [Indexed: 02/24/2024] Open
Abstract
Introduction Diabetes is a debilitating disease that leads to complications like cardiac dysfunction and heart failure. In this study, we investigated the pathophysiology of diabetes-induced cardiac dysfunction in mice with dyslipidemia. We hypothesize diabetes in ApoE knockout (ApoE-/-) mice induces cardiac dysfunction by increasing inflammation and necroptosis. Methods ApoE-/- mice were divided into experimental groups: Control, Streptozotocin (STZ), STZ + MSC-Exo (mesenchymal stem cell-derived exosomes), and STZ+MEF-Exo (Mouse embryonic fibroblast derived exosomes). At Day 42, we assessed cardiac function, collected blood and heart tissues. Heart tissue samples were analyzed for inflammation, necroptosis, signaling mechanism, hypertrophy and adverse structural remodeling using histology, immunohistochemistry, western blotting, RT-PCR, cytokine array and TF array. Results and Discussion STZ treated ApoE-/- mice developed diabetes, with significantly (p<0.05) increased blood glucose and body weight loss. These mice developed cardiac dysfunction with significantly (p<0.05) increased left ventricular internal diameter end diastole and end systole, and decreased ejection fraction, and fractional shortening. We found significant (p<0.05) increased expression of inflammatory cytokines TNF- a, IL-6, IL-1a, IL-33 and decreased IL-10 expression. Diabetic mice also exhibited significantly (p<0.05) increased necroptosis marker expression and infiltration of inflammatory monocytes and macrophages. MSC-Exos treated mice showed recovery of diabetes associated pathologies with significantly reduced blood glucose, recovered body weight, increased IL-10 secretion and M2 polarized macrophages in the heart. These mice showed reduced TAK1-pJNK-NFKB inflammation associated expression and improved cardiac function with significantly reduced cardiac hypertrophy and fibrosis compared to diabetic mice. Treatment with MEF-Exos did not play a significant role in attenuating diabetes-induced cardiomyopathy as these treatment mice presented with cardiac dysfunction and underlying pathologies observed in STZ mice. Conclusion Thus, we conclude that cardiac dysfunction develops in diabetic ApoE-/- mice, arising from inflammation, necroptosis, and adverse tissue remodeling, which is ameliorated by MSC-Exos, a potential therapeutic for diabetes-induced cardiomyopathy.
Collapse
Affiliation(s)
| | - Dinender K. Singla
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
5
|
Ahmadzadeh F, Esmaili M, Ehsan Enderami S, Ghasemi M, Azadeh H, Abediankenari S. Epigallocatechin-3-gallate maintains Th1/Th2 response balance and mitigates type-1 autoimmune diabetes induced by streptozotocin through promoting the effect of bone-marrow-derived mesenchymal stem cells. Gene 2024; 894:148003. [PMID: 37977318 DOI: 10.1016/j.gene.2023.148003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/01/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Stem-cell-based therapy is one of the most promising therapeutic strategies owing to its regenerative and immunomodulatory properties. Epigallocatechin-3-gallate (EGCG), a known antioxidant and anti-inflammatory agent, has beneficial effects on cellular protection. We aimed to elucidate the feasibility of using EGCG, along with bone marrow-derived mesenchymal stem cells (BM-MSCs), to improve pancreatic damage through their immune regulatory functions in an experimental model of type 1 diabetes mellitus (T1DM) induced by multiple injections of streptozotocin (STZ). BM-MSCs were isolated from C57BL/6 mice and characterized. The diabetic groups were treated intraperitoneally with PBS, MSCs, EGCG, and a combination of MSCs and EGCG. Real-time PCR assays showed that MSCs with EGCG modulated T-bet and GATA-3 expression and upregulated the mRNA levels of Foxp-3 more efficiently. Analyses of spleen-isolated lymphocytes revealed that combinational treatment pronouncedly increased regulatory cytokines and decreased pro-inflammatory cytokines and splenocyte proliferation. The histopathological assessment demonstrated that co-treatment significantly reduced insulitis and recovered pancreatic islet morphology. Furthermore, the combination of MSCs and EGCG is associated with downregulated blood glucose and enhanced insulin levels. Therefore, combined therapy with EGCG and MSCs holds clinical potential for treating T1DM through synergetic effects in maintaining the Th1/Th2 response balance and promoting the regeneration of damaged pancreatic tissues.
Collapse
Affiliation(s)
- Fatemeh Ahmadzadeh
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Immunogenetics Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mozhgan Esmaili
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Ehsan Enderami
- Immunogenetics Research Center, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maryam Ghasemi
- Department of Pathology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hossein Azadeh
- Department of Internal Medicine, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeid Abediankenari
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Immunogenetics Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
6
|
Lin HL, Mohamed Shukri FN, Yih ES, Sha GH, Jing GS, Jin GW, Hoong CW, Ying CQ, Panda BP, Candasamy M, Bhattamisra SK. Newer therapeutic approaches towards the management of diabetes mellitus: an update. Panminerva Med 2023; 65:362-375. [PMID: 31663302 DOI: 10.23736/s0031-0808.19.03655-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Diabetes mellitus is a chronic metabolic condition characterized by an elevation of blood glucose levels, resulting from defects in insulin secretion, insulin action, or both. The prevalence of the disease has been rapidly rising all over the globe at an alarming rate. Despite advances in the management of diabetes mellitus, it remains a growing epidemic that has become a significant public health burden due to its high healthcare costs and its complications. There is no cure has yet been found for the disease, however, treatment modalities include insulin and antidiabetic agents along with lifestyle modifications are still the mainstay of therapy for diabetes mellitus. The treatment spectrum for the management of diabetes mellitus has rapidly developed in recent years, with new class of therapeutics and expanded indications. This article focused on the emerging therapeutic approaches other than the conventional pharmacological therapies, which include stem cell therapy, gene therapy, siRNA, nanotechnology and theranostics.
Collapse
Affiliation(s)
- Heng L Lin
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | | | - Eric S Yih
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Grace H Sha
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Grace S Jing
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Gan W Jin
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Chow W Hoong
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Choong Q Ying
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Bibhu P Panda
- Department of Pharmaceutical Technology, School of Pharmacy, Taylor's University, Lakeside Campus, Subang Jaya, Selangor, Malaysia
| | - Mayuren Candasamy
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Subrat K Bhattamisra
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia -
| |
Collapse
|
7
|
Mikłosz A, Chabowski A. Adipose-derived Mesenchymal Stem Cells Therapy as a new Treatment Option for Diabetes Mellitus. J Clin Endocrinol Metab 2023; 108:1889-1897. [PMID: 36916961 PMCID: PMC10348459 DOI: 10.1210/clinem/dgad142] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/01/2023] [Accepted: 03/06/2023] [Indexed: 03/16/2023]
Abstract
The worldwide increase in the prevalence of diabetes mellitus has raised the demand for new therapeutic strategies targeting diabetic symptoms and its chronic complications. Among different treatment options for diabetes, adipose-derived mesenchymal stem cells (ADMSCs) therapy attract the most attention. The therapeutic effects of ADMSCs are based primarily on their paracrine release of immunomodulatory, anti-inflammatory, and trophic factors. Animal models of diabetes as well as human clinical trials have shown that ADMSCs can effectively facilitate endogenous β cell regeneration, preserve residual β cell mass, reduce islet graft rejection, regulate the immune system, and ultimately improve insulin sensitivity or ameliorate insulin resistance in peripheral tissues. Nevertheless, transplantation of mesenchymal stem cells is associated with certain risks; therefore recently much attention has been devoted to ADMSCs derivatives, such as exosomes or conditioned media, as therapeutic agents for the treatment of diabetes. Compared to ADMSCs, cell-free therapy has even better therapeutic potential. This narrative review summarizes recent outcomes and molecular mechanisms of ADMSCs action in the treatment for both type 1 DM and type 2 DM, as well as shows their feasibility, benefits, and current limitations.
Collapse
Affiliation(s)
- Agnieszka Mikłosz
- Department of Physiology, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, 15-222 Bialystok, Poland
| |
Collapse
|
8
|
Khazaei M, Khazaei F, Niromand E, Ghanbari E. Tissue engineering approaches and generation of insulin-producing cells to treat type 1 diabetes. J Drug Target 2023; 31:14-31. [PMID: 35896313 DOI: 10.1080/1061186x.2022.2107653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Tissue engineering (TE) has become a new effective solution to a variety of medical problems, including diabetes. Mesenchymal stem cells (MSCs), which have the ability to differentiate into endodermal and mesodermal cells, appear to be appropriate for this function. The purpose of this review was to evaluate the outcomes of various researches on the insulin-producing cells (IPCs) generation from MSCs with TE approaches to increase efficacy of type 1 diabetes treatments. The search was performed in PubMed/Medline, Scopus and Embase databases until 2021. Studies revealed that MSCs could also differentiate into IPCs under certain conditions. Therefore, a wide range of protocols have been used for this differentiation, but their effectiveness is very different. Scaffolds can provide a microenvironment that enhances the MSCs to IPCs differentiation, improves their metabolic activity and up-regulate pancreatic-specific transcription factors. They also preserve IPCs architecture and enhance insulin production as well as protect against cell death. This systematic review offers a framework for prospective research based on data. In vitro and in vivo evidence suggests that scaffold-based TE can improve the viability and function of IPCs.
Collapse
Affiliation(s)
- Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Khazaei
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Niromand
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Ghanbari
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
9
|
Farid A, Haridyy H, Ashraf S, Ahmed S, Safwat G. Co-treatment with grape seed extract and mesenchymal stem cells in vivo regenerated beta cells of islets of Langerhans in pancreas of type I-induced diabetic rats. Stem Cell Res Ther 2022; 13:528. [PMID: 36544223 PMCID: PMC9773570 DOI: 10.1186/s13287-022-03218-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Nowadays, diabetes mellitus is known as a silent killer because individual is not aware that he has the disease till the development of its complications. Many researchers have studied the use of stem cells in treatment of both types of diabetes. Mesenchymal stem cells (MSCs) hold a lot of potential for regenerative therapy. MSCs migrate and home at the damaged site, where they can aid in the repair of damaged tissues and restoring their function. Oxidative stress and inflammation represent a huge obstacle during MSCs transplantation. Therefore, the present study aimed to evaluate the role of grape seed extract (GSE) administration during MSCs transplantation in streptozotocin (STZ)-induced type I diabetes. Furthermore, testing some of GSE components [procyanidins(P)-B1 and P-C1] in conjunction with MSCs, in vivo, was performed to determine if one of them was more effective in relieving the measured attributes of diabetes more than the whole GSE. METHODS Firstly, GSE was prepared from the seeds of Muscat of Alexandria grapes and characterized to identify its phytochemical components. Experimental design was composed of control group I, untreated diabetic group II, GSE (300 mg/kg)-treated diabetic group III, MSCs (2 × 106 cells/rat)-treated diabetic group IV and GSE (300 mg/kg)/MSCs (2 × 106 cells/rat)-treated diabetic group V. Type I diabetes was induced in rats by intravenous injection with 65 mg/kg of STZ. Treatment started when fasting blood glucose (FBG) level was more than 200 mg/dl; GSE oral administration started in the same day after MSCs intravenous injection and continued daily for 30 consecutive days. RESULTS The results showed that GSE/MSCs therapy in type I-induced diabetic rats has dramatically managed homeostasis of glucose and insulin secretion; together with, improvement in levels of inflammatory markers and oxidative stress. CONCLUSION Co-treatment with GSE and MSCs in vivo regenerates beta cells in type I-induced diabetic rats.
Collapse
Affiliation(s)
- Alyaa Farid
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt.
- Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt.
| | - Hebatallah Haridyy
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Salma Ashraf
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Selim Ahmed
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Gehan Safwat
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| |
Collapse
|
10
|
Li F, Crumley K, Bealer E, King JL, Saito E, Grimany-Nuno O, Yolcu ES, Shirwan H, Shea LD. Fas Ligand-Modified Scaffolds Protect Stem Cell Derived β-Cells by Modulating Immune Cell Numbers and Polarization. ACS APPLIED MATERIALS & INTERFACES 2022; 15:50549-50559. [PMID: 36533683 DOI: 10.1021/acsami.2c12939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Stem cell derived β-cells have demonstrated the potential to control blood glucose levels and represent a promising treatment for Type 1 diabetes (T1D). Early engraftment post-transplantation and subsequent maturation of these β-cells are hypothesized to be limited by the initial inflammatory response, which impacts the ability to sustain normoglycemia for long periods. We investigated the survival and development of immature hPSC-derived β-cells transplanted on poly(lactide-co-glycolide) (PLG) microporous scaffolds into the peritoneal fat, a site being considered for clinical translation. The scaffolds were modified with biotin for binding of a streptavidin-FasL (SA-FasL) chimeric protein to modulate the local immune cell responses. The presence of FasL impacted infiltration of monocytes and neutrophils and altered the immune cell polarization. Conditioned media generated from SA-FasL scaffolds explanted at day 4 post-transplant did not impact hPSC-derived β-cell survival and maturation in vitro, while these responses were reduced with conditioned media from control scaffolds. Following transplantation, β-cell viability and differentiation were improved with SA-FasL modification. A sustained increase in insulin positive cell ratio was observed with SA-FasL-modified scaffolds relative to control scaffolds. These results highlight that the initial immune response can significantly impact β-cell engraftment, and modulation of cell infiltration and polarization may be a consideration for supporting long-term function at an extrahepatic site.
Collapse
Affiliation(s)
- Feiran Li
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kelly Crumley
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Elizabeth Bealer
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jessica L King
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Eiji Saito
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Orlando Grimany-Nuno
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, Kentucky 40202, United States
| | - Esma S Yolcu
- Department of Child Health and Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri 65211, United States
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, Kentucky 40202, United States
| | - Haval Shirwan
- Department of Child Health and Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri 65211, United States
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, Kentucky 40202, United States
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
11
|
La Noce M, Nicoletti GF, Papaccio G, Del Vecchio V, Papaccio F. Insulitis in Human Type 1 Diabetic Pancreas: From Stem Cell Grafting to Islet Organoids for a Successful Cell-Based Therapy. Cells 2022; 11:3941. [PMID: 36497199 PMCID: PMC9740394 DOI: 10.3390/cells11233941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease with immune cells' islet infiltration (called "insulitis"), which leads to beta cell loss. Despite being the critical element of T1D occurrence and pathogenesis, insulitis is often present in a limited percentage of islets, also at diagnosis. Therefore, it is needed to define reproducible methods to detect insulitis and beta-cell decline, to allow accurate and early diagnosis and to monitor therapy. However, this goal is still far due to the morphological aspect of islet microvasculature, which is rather dense and rich, and is considerably rearranged during insulitis. More studies on microvasculature are required to understand if contrast-enhanced ultrasound sonography measurements of pancreatic blood-flow dynamics may provide a clinically deployable predictive marker to predict disease progression and therapeutic reversal in pre-symptomatic T1D patients. Therefore, it is needed to clarify the relation between insulitis and the dynamics of β cell loss and with coexisting mechanisms of dysfunction, according to clinical stage, as well as the micro vessels' dynamics and microvasculature reorganization. Moreover, the ideal cell-based therapy of T1D should start from an early diagnosis allowing a sufficient isolation of specific Procr+ progenitors, followed by the generation and expansion of islet organoids, which could be transplanted coupled to an immune-regulatory therapy which will permit the maintenance of pancreatic islets and an effective and long-lasting insulitis reversal.
Collapse
Affiliation(s)
- Marcella La Noce
- Department of Experimental Medicine, University of Campania “L. Vanvitelli”, Via L. Armanni 5, 80138 Naples, Italy
| | - Giovanni Francesco Nicoletti
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania “L. Vanvitelli”, Via L. de Crecchio 6, 80138 Naples, Italy
| | - Gianpaolo Papaccio
- Department of Experimental Medicine, University of Campania “L. Vanvitelli”, Via L. Armanni 5, 80138 Naples, Italy
| | - Vitale Del Vecchio
- Department of Experimental Medicine, University of Campania “L. Vanvitelli”, Via L. Armanni 5, 80138 Naples, Italy
| | - Federica Papaccio
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvador Allende, 84081 Baronissi, Italy
| |
Collapse
|
12
|
Zhu L, Wang S, Qu J, Hui Z, Kan C, Hou N, Sun X. The Therapeutic Potential of Mesenchymal Stem Cells in the Treatment of Diabetes Mellitus. Cell Reprogram 2022; 24:329-342. [PMID: 35877064 DOI: 10.1089/cell.2022.0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Mesenchymal stem cells (MSCs) exist in many tissues and can differentiate into cells of multiple lineages, such as adipocytes, osteoblasts, or chondrocytes. MSC administration has demonstrated therapeutic potential in various degenerative and inflammatory diseases (e.g., graft-vs.-host disease, multiple sclerosis, Crohn's disease, organ fibrosis, and diabetes mellitus [DM]). The mechanisms involved in the therapeutic effects of MSCs are multifaceted. Generally, implanted MSCs can migrate to sites of injury, where they establish an anti-inflammatory and regenerative microenvironment in damaged tissues. In addition, MSCs can modulate innate and adaptive immune responses through immunosuppressive mechanisms that involve immune cells, inflammatory cytokines, chemokines, and immunomodulatory factors. DM has a high prevalence worldwide; it also contributes to a high rate of mortality worldwide. MSCs offer a promising therapeutic agent to prevent or repair damage from DM and diabetic complications through properties such as multilineage differentiation, homing, promotion of angiogenesis, and immunomodulation (e.g., prevention of oxidative stress, fibrosis, and cell death). In this study, we review current findings regarding the immunomodulatory and regenerative mechanisms of MSCs, as well as their therapeutic applications in DM and DM-related complications.
Collapse
Affiliation(s)
- Liang Zhu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Sheng Wang
- Department of Spinal Surgery, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - JunSheng Qu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Zongguang Hui
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
13
|
Challenges with Cell-based Therapies for Type 1 Diabetes Mellitus. Stem Cell Rev Rep 2022; 19:601-624. [PMID: 36434300 DOI: 10.1007/s12015-022-10482-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2022] [Indexed: 11/27/2022]
Abstract
Type 1 diabetes (T1D) is a chronic, lifelong metabolic disease. It is characterised by the autoimmune-mediated loss of insulin-producing pancreatic β cells in the islets of Langerhans (β-islets), resulting in disrupted glucose homeostasis. Administration of exogenous insulin is the most common management method for T1D, but this requires lifelong reliance on insulin injections and invasive blood glucose monitoring. Replacement therapies with beta cells are being developed as an advanced curative treatment for T1D. Unfortunately, this approach is limited by the lack of donated pancreatic tissue, the difficulties in beta cell isolation and viability maintenance, the longevity of the transplanted cells in vivo, and consequently high costs. Emerging approaches to address these limitations are under intensive investigations, including the production of insulin-producing beta cells from various stem cells, and the development of bioengineered devices including nanotechnologies for improving islet transplantation efficacy without the need for recipients taking toxic anti-rejection drugs. These emerging approaches present promising prospects, while the challenges with the new techniques need to be tackled for ultimately clinical treatment of T1D. This review discussed the benefits and limitations of the cell-based therapies for beta cell replacement as potential curative treatment for T1D, and the applications of bioengineered devices including nanotechnology to overcome the challenges associated with beta cell transplantation.
Collapse
|
14
|
Lawand PV, Desai S. Nanobiotechnology-Modified Cellular and Molecular Therapy as a Novel Approach for Autoimmune Diabetes Management. Pharm Nanotechnol 2022; 10:279-288. [PMID: 35927916 DOI: 10.2174/2211738510666220802111315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/26/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Several cellular and molecular therapies such as stem cell therapy, cell replacement therapy, gene modification therapy, and tolerance induction therapy have been researched to procure a permanent cure for Type 1 Diabetes. However, due to the induction of undesirable side effects, their clinical utility is questionable. These anti-diabetic therapies can be modified with nanotechnological tools for reducing adverse effects by selectively targeting genes and/or receptors involved directly or indirectly in diabetes pathogenesis, such as the glucagon-like peptide 1 receptor, epidermal growth factor receptor, human leukocyte antigen (HLA) gene, miRNA gene and hepatocyte growth factor (HGF) gene. This paper will review the utilities of nanotechnology in stem cell therapy, cell replacement therapy, beta-cell proliferation strategies, immune tolerance induction strategies, and gene therapy for type 1 diabetes management.
Collapse
Affiliation(s)
- Priyanka Vasant Lawand
- Department of Pharmacology, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India
| | - Shivani Desai
- Department of Pharmacy Practice, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India
| |
Collapse
|
15
|
Horiguchi M, Tsurudome Y, Ushijima K. AMFR and DCTN2 genes cause transplantation resistance of adipose-derived mesenchymal stem cells in type 1 diabetes mellitus. Front Pharmacol 2022; 13:1005293. [PMID: 36267277 PMCID: PMC9577117 DOI: 10.3389/fphar.2022.1005293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/12/2022] [Indexed: 11/20/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is characterized by pancreatic beta cell destruction by autoantibodies and other factors, resulting in insulin secretion deficiency. Therefore, beta cell regeneration would be necessary to cure the disease. Nevertheless, the impact of type 1 diabetes on the stemness and transplantation efficiency of stem cells has not been previously described. In this study, we used next-generation sequencing to identify genes differentially expressed in T1DM adipose-derived stem cells (T1DM ADSCs) that originate from patients with type 1 diabetes. Furthermore, we evaluated their effects on transplantation efficiency following xenotransplantation into immunodeficient mice. In the T1DM ADSCs transplant group, the volume and weight of the graft were significantly reduced and the transplant efficiency was reduced. Next-generation sequencing and quantitative PCR results showed that T1DM ADSCs had significantly increased expression of AMFR and DCTN2. AMFR and DCTN2 gene knockdown in T1DM ADSC significantly restored cell proliferation and stem cell marker expression. Therefore, transplantation of T1DM ADSCs, in which AMFR and DCTN2 were knocked down, into immunodeficient mice improved transplant efficiency. This study revealed that AMFR and DCTN2 can reduce transplantation efficiency of T1DM ADSCs. Focusing on AMFR and DCTN2 is expected to increase the efficiency of stem cell transplantation therapy for diabetic patients.
Collapse
|
16
|
Aloe vera gel as a stimulant for mesenchymal stem cells differentiation and a natural therapy for radiation induced liver damage. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2022. [DOI: 10.1016/j.jrras.2022.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Jabbarpour Z, Aghayan S, Arjmand B, Fallahzadeh K, Alavi-Moghadam S, Larijani B, Aghayan HR. Xeno-free protocol for GMP-compliant manufacturing of human fetal pancreas-derived mesenchymal stem cells. Stem Cell Res Ther 2022; 13:268. [PMID: 35729640 PMCID: PMC9210668 DOI: 10.1186/s13287-022-02946-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/07/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have been suggested as an appropriate source for diabetes cell-based therapies. The high proliferation and differentiation capacity of fetal MSCs and the role of fetal pancreatic-derived MSCs (FPMSCs) in islet generation make them good candidates for diabetes treatment. To manufacture clinical-grade MSCs, animal-free culture protocols are preferred. The current study aimed to establish a xeno-free/GMP-compliant protocol for FPMSCs manufacturing. The focus was on the effects of fetal bovine serum (FBS) replacement with pooled human serum (HS). MATERIAL AND METHODS FPMSCs were isolated and expanded from the pancreas of legally aborted fetuses with few modifications in our previously established protocol. The cells were expanded in two different culture media, including DMEM supplemented with 10% FBS or 10% pooled HS. A side-by-side comparison was made to evaluate the effect of each serum on proliferation rate, cell cycle, senescence, multi-lineage differentiation capacity, immunophenotype, and tumorigenesis of FPMSCs. RESULTS Flow cytometry analysis and three-lineage differentiation ability demonstrated that fibroblast-like cells obtained from primary culture had MSCs' characteristics. The FPMSCs displayed similar morphology and CD markers expression in both sera. HS had a higher proliferative effect on FPMSCs than FBS. In FBS, the cells reached senescence earlier. In addition to normal karyotypes and anchorage-dependent growth, in vivo tumor formation was not seen. CONCLUSION Our results demonstrated that HS was a better serum alternative than FBS for in vitro expansion of FPMSCs. Compared with FBS, HS increased FPMSCs' proliferation rate and decreased their senescence. In conclusion, HS can effectively replace FBS for clinical-grade FPMSCs manufacturing.
Collapse
Affiliation(s)
- Zahra Jabbarpour
- Gene Therapy Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajjad Aghayan
- Gene Therapy Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, No 111, 19th Allay., North Kargar St., P.O.Box:14117-13137, Tehran, Iran
| | - Khadijeh Fallahzadeh
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, No 111, 19th Allay., North Kargar St., P.O.Box:14117-13137, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, No 111, 19th Allay., North Kargar St., P.O.Box:14117-13137, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Aghayan
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, No 111, 19th Allay., North Kargar St., P.O.Box:14117-13137, Tehran, Iran.
| |
Collapse
|
18
|
Nigam S, Bishop JO, Hayat H, Quadri T, Hayat H, Wang P. Nanotechnology in Immunotherapy for Type 1 Diabetes: Promising Innovations and Future Advances. Pharmaceutics 2022; 14:644. [PMID: 35336018 PMCID: PMC8955746 DOI: 10.3390/pharmaceutics14030644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetes is a chronic condition which affects the glucose metabolism in the body. In lieu of any clinical "cure," the condition is managed through the administration of pharmacological aids, insulin supplements, diet restrictions, exercise, and the like. The conventional clinical prescriptions are limited by their life-long dependency and diminished potency, which in turn hinder the patient's recovery. This necessitated an alteration in approach and has instigated several investigations into other strategies. As Type 1 diabetes (T1D) is known to be an autoimmune disorder, targeting the immune system in activation and/or suppression has shown promise in reducing beta cell loss and improving insulin levels in response to hyperglycemia. Another strategy currently being explored is the use of nanoparticles in the delivery of immunomodulators, insulin, or engineered vaccines to endogenous immune cells. Nanoparticle-assisted targeting of immune cells holds substantial potential for enhanced patient care within T1D clinical settings. Herein, we summarize the knowledge of etiology, clinical scenarios, and the current state of nanoparticle-based immunotherapeutic approaches for Type 1 diabetes. We also discuss the feasibility of translating this approach to clinical practice.
Collapse
Affiliation(s)
- Saumya Nigam
- Precision Health Program, Michigan State University, East Lansing, MI 48824, USA; (S.N.); (J.O.B.); (H.H.); (T.Q.); (H.H.)
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Jack Owen Bishop
- Precision Health Program, Michigan State University, East Lansing, MI 48824, USA; (S.N.); (J.O.B.); (H.H.); (T.Q.); (H.H.)
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Hanaan Hayat
- Precision Health Program, Michigan State University, East Lansing, MI 48824, USA; (S.N.); (J.O.B.); (H.H.); (T.Q.); (H.H.)
- Lyman Briggs College, Michigan State University, East Lansing, MI 48824, USA
| | - Tahnia Quadri
- Precision Health Program, Michigan State University, East Lansing, MI 48824, USA; (S.N.); (J.O.B.); (H.H.); (T.Q.); (H.H.)
- Lyman Briggs College, Michigan State University, East Lansing, MI 48824, USA
| | - Hasaan Hayat
- Precision Health Program, Michigan State University, East Lansing, MI 48824, USA; (S.N.); (J.O.B.); (H.H.); (T.Q.); (H.H.)
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Ping Wang
- Precision Health Program, Michigan State University, East Lansing, MI 48824, USA; (S.N.); (J.O.B.); (H.H.); (T.Q.); (H.H.)
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
19
|
Critical Considerations in Bioluminescence Imaging of Transplanted Islets: Dynamic Signal Change in Early Posttransplant Phase and Signal Absorption by Tissues. Pancreas 2022; 51:234-242. [PMID: 35584380 DOI: 10.1097/mpa.0000000000002004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES In pancreatic islet transplantation studies, bioluminescence imaging enables quantitative and noninvasive tracking of graft survival. Amid the recent heightened interest in extrahepatic sites for islet and stem cell-derived beta-like cell transplantations, proper understanding the nature of bioluminescence imaging in these sites is important. METHODS Islets isolated from Firefly rats ubiquitously expressing luciferase reporter gene in Lewis rats were transplanted into subcutaneous or kidney capsule sites of wild-type Lewis rats or immunodeficient mice. Posttransplant changes of bioluminescence signal curves and absorption of bioluminescence signal in transplantation sites were examined. RESULTS The bioluminescence signal curve dynamically changed in the early posttransplantation phase; the signal was low within the first 5 days after transplantation. A substantial amount of bioluminescence signal was absorbed by tissues surrounding islet grafts, correlating to the depth of the transplanted site from the skin surface. Grafts in kidney capsules were harder to image than those in the subcutaneous site. Within the kidney capsule, locations that minimized depth from the skin surface improved the graft detectability. CONCLUSIONS Posttransplant phase and graft location/depth critically impact the bioluminescence images captured in islet transplantation studies. Understanding these parameters is critical for reducing experimental biases and proper interpretation of data.
Collapse
|
20
|
Kannan P, Raghunathan M, Mohan T, Palanivelu S, Periandavan K. Gymnemic Acid Ameliorates Pancreatic β-Cell Dysfunction by Modulating Pdx1 Expression: A Possible Strategy for β-Cell Regeneration. Tissue Eng Regen Med 2022; 19:603-616. [PMID: 35212973 PMCID: PMC9130387 DOI: 10.1007/s13770-022-00435-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/08/2022] [Accepted: 01/19/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Endogenous pancreatic β-cell regeneration is a promising therapeutic approach for enhancing β-cell function and neogenesis in diabetes. Various findings have reported that regeneration might occur via stimulating β-cell proliferation, neogenesis, or conversion from other pancreatic cells to β-like cells. Although the current scenario illustrates numerous therapeutic strategies and approaches that concern endogenous β-cell regeneration, all of them have not been successful to a greater extent because of cost effectiveness, availability of suitable donors and rejection in case of transplantation, or lack of scientific evidence for many phytochemicals derived from plants that have been employed in traditional medicine. Therefore, the present study aims to investigate the effect of gymnemic acid (GA) on β-cell regeneration in streptozotocin-induced type 1 diabetic rats and high glucose exposed RIN5-F cells. METHODS The study involves histopathological and immunohistochemical analysis to examine the islet's architecture. Quantitative polymerase chain reaction (qPCR) and/or immunoblot were employed to quantify the β-cell regeneration markers and cell cycle proliferative markers. RESULTS The immunoexpression of E-cadherin, β-catenin, and phosphoinositide 3-kinases/protein kinase B were significantly increased in GA-treated diabetic rats. On the other hand, treatment with GA upregulated the pancreatic regenerative transcription factor viz. pancreatic duodenal homeobox 1, Neurogenin 3, MafA, NeuroD1, and β-cells proliferative markers such as CDK4, and Cyclin D1, with a simultaneous downregulation of the forkhead box O, glycogen synthase kinase-3, and p21cip1 in diabetic treated rats. Adding to this, we noticed increased nuclear localization of Pdx1 in GA treated high glucose exposed RIN5-F cells. CONCLUSION Our results suggested that GA acts as a potential therapeutic candidate for endogenous β-cell regeneration in treating type 1 diabetes.
Collapse
Affiliation(s)
- Pugazhendhi Kannan
- Department of Medical Biochemistry, Dr ALM PG IBMS, University of Madras, Taramani Campus, Taramani, Chennai, 600 113 India
| | - Malathi Raghunathan
- Department of Pathology, Dr ALM PG IBMS, University of Madras, Taramani Campus, Taramani, Chennai, India
| | - Thangarajeswari Mohan
- Department of Medical Biochemistry, Dr ALM PG IBMS, University of Madras, Taramani Campus, Taramani, Chennai, 600 113 India
| | - Shanthi Palanivelu
- Department of Pathology, Dr ALM PG IBMS, University of Madras, Taramani Campus, Taramani, Chennai, India
| | - Kalaiselvi Periandavan
- Department of Medical Biochemistry, Dr ALM PG IBMS, University of Madras, Taramani Campus, Taramani, Chennai, 600 113, India.
| |
Collapse
|
21
|
Savoj S, Esfahani MHN, Karimi A, Karamali F. Integrated stem cells from apical papilla in a 3D culture system improve human embryonic stem cell derived retinal organoid formation. Life Sci 2022; 291:120273. [PMID: 35016877 DOI: 10.1016/j.lfs.2021.120273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/15/2021] [Accepted: 12/23/2021] [Indexed: 01/08/2023]
Abstract
AIM Eye organoids are 3D models of the retina that provide new possibilities for studying retinal development, drug toxicity and the molecular mechanisms of diseases. Although there are several protocols that can be used to generate functional tissues, none have been used to assemble human retinal organoids containing mesenchymal stem cells (MSCs). MAIN METHODS In this study we intend to assess the effective interactions of MSCs and human embryonic stem cells (hESCs) during retinal organoid formation. We evaluated the inducing activities of bone marrow MSCs (BM-MSCs), trabecular meshwork (TM), and stem cells from apical papilla (SCAP)-derived MSCs in differentiation of hESCs in a three-dimensional (3D) direct co-culture system. KEY FINDINGS In comparison with the two other MSC sources, the induction potential of SCAP was confirmed in the co-culture system. Although the different SCAP cell ratios did not show any significant morphology changes during the first seven days, increasing the number of SCAPs improved formation of the optic vesicle (OV) structure, which was confirmed by assessment of specific markers. The OVs subsequently developed to an optic cup (OC), which was similar to the in vivo environment. These arrangements expressed MITF in the outer layer and CHX10 in the inner layer. SIGNIFICANCE We assessed the inducing activity of SCAP during differentiation of hESCs towards a retinal fate in a 3D organoid system. However, future studies be conducted to gather additional details about the development of the eye field, retinal differentiation, and the molecular mechanisms of diseases.
Collapse
Affiliation(s)
- Soraya Savoj
- Department of Biology, University of Payam Noor, Isfahan, Iran; Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr Esfahani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Akbar Karimi
- Department of Biology, University of Payam Noor, Isfahan, Iran.
| | - Fereshteh Karamali
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|
22
|
Zhang XB, Chen XY, Qi J, Zhou HY, Zhao XB, Hu YC, Zhang RH, Yu DC, Gao XD, Wang KP, Ma L. New hope for intervertebral disc degeneration: bone marrow mesenchymal stem cells and exosomes derived from bone marrow mesenchymal stem cell transplantation. Curr Gene Ther 2021; 22:291-302. [PMID: 34636308 DOI: 10.2174/1566523221666211012092855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/30/2021] [Accepted: 09/08/2021] [Indexed: 11/22/2022]
Abstract
Bone marrow mesenchymal stem cells (BMSCs), multidirectional cells with self-renewal capacity, can differentiate into many cell types and play essential roles in tissue healing and regenerative medicine. Cell experiments and in vivo research in animal models have shown that BMSCs can repair degenerative discs by promoting cell proliferation and expressing extracellular matrix (ECM) components, such as type II collagen and protein-polysaccharides. Delaying or reversing the intervertebral disc (IVD) degeneration (IDD) process at an etiological level may be an effective strategy. However, despite increasingly in-depth research, some deficiencies in cell transplantation timing and strategy remain, preventing the clinical application of cell transplantation. Exosomes exhibit the characteristics of the mother cells from which they were secreted and can inhibit nucleus pulposus (NP) cell (NPC) apoptosis and delay IDD through intercellular communication. Furthermore, the use of exosomes effectively avoids problems associated with cell transplantation, such as immune rejection. This manuscript introduces almost all of the BMSCs and exosomes derived from BMSCs (BMSCs-Exos) described in the IDD literature. Many challenges regarding the use of cell transplantation and therapeutic exosome intervention for IDD remain to be overcome.
Collapse
Affiliation(s)
- Xiao-Bo Zhang
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Shanxi 710000. China
| | - Xiang-Yi Chen
- Department of Orthopedics, Lanzhou University Second Hospital, Gansu 730000. China
| | - Jin Qi
- Department of Orthopedics, Lanzhou University Second Hospital, Gansu 730000. China
| | - Hai-Yu Zhou
- Department of Orthopedics, Lanzhou University Second Hospital, Gansu 730000. China
| | - Xiao-Bing Zhao
- Department of Orthopedics, Lanzhou University Second Hospital, Gansu 730000. China
| | - Yi-Cun Hu
- Department of Orthopedics, Lanzhou University Second Hospital, Gansu 730000. China
| | - Rui-Hao Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Gansu 730000. China
| | - De-Chen Yu
- Department of Orthopedics, Lanzhou University Second Hospital, Gansu 730000. China
| | - Xi-Dan Gao
- Department of Orthopedics, Lanzhou University Second Hospital, Gansu 730000. China
| | - Ke-Ping Wang
- Department of Orthopedics, Lanzhou University Second Hospital, Gansu 730000. China
| | - Lin Ma
- Department of Orthopedics, Lanzhou University Second Hospital, Gansu 730000. China
| |
Collapse
|
23
|
Exosome Degeneration in Mesenchymal Stem Cells Derived from Patients with Type 1 Diabetes Mellitus. Int J Mol Sci 2021; 22:ijms222010906. [PMID: 34681566 PMCID: PMC8536020 DOI: 10.3390/ijms222010906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 01/06/2023] Open
Abstract
Type 1 diabetes mellitus is characterized by the destruction of pancreatic β-cells and requires the regeneration of these destroyed pancreatic β-cells for radical treatment. The degeneration of organelles in stem cells compromises stem cell quality; however, organelles in the mesenchymal stem cells of patients with type 1 diabetes mellitus have not been characterized previously. In this study, we use transmission electron microscopy to evaluate the degeneration of organelles in adipose-derived stem cells of patients with type 1 diabetes mellitus (T1DM ADSCs). Compared to adipose-derived stem cells from healthy humans, T1DM ADSCs degenerate differently, characterized by prominent enlarged spherical vesicles. The exosomes of T1DM ADSCs are found to be enlarged, reduced in number, and increased in the percentage of those positive for tetraspanin CD9. The findings of this study provide insight into the characteristics of stem cells in patients with type 1 diabetes mellitus.
Collapse
|
24
|
The Synergistic Beneficial Effect of Thyme Honey and Olive Oil against Diabetes and Its Complications Induced by Alloxan in Wistar Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9949056. [PMID: 34594393 PMCID: PMC8478563 DOI: 10.1155/2021/9949056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/08/2021] [Accepted: 09/08/2021] [Indexed: 12/25/2022]
Abstract
Diabetes is a metabolic disorder characterized by a chronic increase in blood glucose. Owing to the limitations observed with antidiabetics in modern medicine, medicinal plants and bee products are known as good matrices for the search for new antidiabetic molecules. The present study focused on the evaluation of the hypoglycemic and the protective properties of two natural products widely used in complementary and alternative medicine (thyme honey and olive oil). To achieve this, the study was carried out on Wistar rats rendered diabetic by the injection of a single dose of alloxan monohydrate (65 mg/kg body weight (BW)). First, the physicochemical characterization and the phytochemical analysis of thyme honey and olive oil were carried out, and then in vivo study was conducted on 42 Wistar rats divided into seven groups: three groups were normal, one group was untreated diabetic, and three groups were diabetic rats treated with thyme honey (2 g/kg BW) or olive oil (10 mL/kg BW) or their combination ((1 g/kg BW of thyme honey) and (5 mL/kg BW of olive oil)). During the experiment, the glycemia was measured regularly every 10 days. After 30 days of treatment, the rats were sacrificed. The serum and urine were analyzed to determine hepatic enzymes levels (AST, ALT, ALP, and LDH), lipidic profile (total cholesterol, triglycerides, high-density lipoprotein, low-density lipoprotein), and kidney parameters (urea, uric acid, creatinine, total protein, sodium, potassium, and chloride). The liver, pancreas, and kidneys were analyzed to evaluate their histological changes and to determine their enzymatic antioxidant content (catalase, GSH, and GPx) and the levels of MDA. The results obtained showed that thyme honey or olive oil, and especially their combination, improved significantly the blood glucose levels and they protect against metabolic changes and the complications induced by diabetes.
Collapse
|
25
|
Kim DS, Lee G, Cho H, Bae S. Regenerative Medicine in South Korea: Bridging the Gap Between Authorization and Reimbursement. Front Bioeng Biotechnol 2021; 9:737504. [PMID: 34527662 PMCID: PMC8435711 DOI: 10.3389/fbioe.2021.737504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/11/2021] [Indexed: 11/26/2022] Open
Abstract
Regenerative medicine (RM) has considerable potential to address the needs of aging-related and uncurable diseases. However, its incorporation into reimbursement of health insurance benefits poses many challenges, including uncertain evidence and insufficient investment. This paper examines the wide gap between manufacturers, regulatory bodies, and health technology bodies regarding reimbursements for RMs focused cell therapy products. In this mixed-methods study, we first analyzed the sales of RMs approved in South Korea. In addition to exploring beliefs related to the market value of RMs, in-depth interviews were conducted with 24 experts (17 from bio-industries, two from the regulatory body, three from a health technology assessment (HTA) body, and two from the Pharmaceutical Benefit Coverage Assessment Committee [PBCAC]). Lastly, we surveyed PBCAC members about the market value of RMs. In total, 15 of the 20 developed cell therapy products are on the market in South Korea, and amounted to 0.24% of total pharmaceutical expenditures in 2018. We identified a wide gap between stakeholders and regulators regarding the market value and pricing of RMs. The interviewees from the pharmaceutical manufacturer association raised the issue of rising manufacturing costs and proposed a specific pricing policy for RMs. To bridge the gap between approval and reimbursement, stakeholders demand an alternative framework of value-based pricing. Conditional health insurance reimbursement may be an alternative to the traditional process in order to generate evidence of the effects of RMs using “risk-based” or “outcome-based” approaches.
Collapse
Affiliation(s)
- Dong-Sook Kim
- Department of Research, Health Insurance Review and Assessment Service, Chuncheon, South Korea
| | - Geunwoo Lee
- Department of Research, Health Insurance Review and Assessment Service, Chuncheon, South Korea
| | - Hyungyung Cho
- College of Pharmacy, Ewha Womans University, Seoul, South Korea
| | - SeungJin Bae
- College of Pharmacy, Ewha Womans University, Seoul, South Korea
| |
Collapse
|
26
|
Dantas JR, Araújo DB, Silva KR, Souto DL, de Fátima Carvalho Pereira M, Luiz RR, Dos Santos Mantuano M, Claudio-da-Silva C, Gabbay MAL, Dib SA, Couri CEB, Maiolino A, Rebelatto CLK, Daga DR, Senegaglia AC, Brofman PRS, Baptista LS, de Oliveira JEP, Zajdenverg L, Rodacki M. Adipose tissue-derived stromal/stem cells + cholecalciferol: a pilot study in recent-onset type 1 diabetes patients. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2021; 65:342-351. [PMID: 33939911 PMCID: PMC10065343 DOI: 10.20945/2359-3997000000368] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Objective Adipose tissue-derived stromal/stem cells (ASCs) and vitamin D have immunomodulatory actions that could be useful for type 1 diabetes (T1D). We aimed in this study to investigate the safety and efficacy of ASCs + daily cholecalciferol (VIT D) for 6 months in patients with recent-onset T1D. Methods In this prospective, dual-center, open trial, patients with recent onset T1D received one dose of allogenic ASC (1 × 106 cells/kg) and cholecalciferol 2,000 UI/day for 6 months (group 1). They were compared to patients who received chol-ecalciferol (group 2) and standard treatment (group 3). Adverse events were recorded; C-peptide (CP), insulin dose and HbA1c were measured at baseline (T0), after 3 (T3) and 6 months (T6). Results In group 1 (n = 7), adverse events included transient headache (all), mild local reactions (all), tachycardia (n = 4), abdominal cramps (n = 1), thrombophlebitis (n = 4), scotomas (n = 2), and central retinal vein occlusion at T3 (n = 1, resolution at T6). Group 1 had an increase in basal CP (p = 0.018; mean: 40.41+/-40.79 %), without changes in stimulated CP after mixed meal (p = 0.62), from T0 to T6. Basal CP remained stable in groups 2 and 3 (p = 0.58 and p = 0.116, respectively). Group 1 had small insulin requirements (0.31+/- 0.26 UI/kg) without changes at T6 (p = 0.44) and HbA1c decline (p = 0.01). At T6, all patients (100%; n = 7) in group 1 were in honeymoon vs 75% (n = 3/4) and 50% (n = 3/6) in groups 2 and 3, p = 0.01. Conclusion Allogenic ASC + VIT D without immunosuppression was safe and might have a role in the preservation of β-cells in patients with recent-onset T1D. ClinicalTrials.gov: NCT03920397.
Collapse
Affiliation(s)
- Joana Rodrigues Dantas
- Departamento de Nutrologia e Diabetes, Universidade Federal do Rio de Janeiro, RJ, Brasil
| | - Débora Batista Araújo
- Departamento de Nutrologia e Diabetes, Universidade Federal do Rio de Janeiro, RJ, Brasil
| | - Karina Ribeiro Silva
- Laboratório de Bioengenharia de Tecidos, Instituto Nacional de Metrologia, Qualidade e Tecnologia (Inmetro), Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Débora Lopes Souto
- Departamento de Nutrologia e Diabetes, Universidade Federal do Rio de Janeiro, RJ, Brasil,
| | | | - Ronir Raggio Luiz
- Instituto de Estudos de Saúde Pública, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | | | - Cesar Claudio-da-Silva
- Departamento de Cirurgia Plástica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | | | | | | | - Angelo Maiolino
- Departamento de Hematologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | | | - Débora Regina Daga
- Core Cell Technology, Pontifícia Universidade Católica do Paraná, Curitiba, PR, Brasil
| | | | | | - Leandra S Baptista
- Centro Multidisciplinar de Pesquisas Biológicas (Numpex-Bio), Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil; Laboratório de Bioengenharia de Tecidos, Instituto Nacional de Metrologia, Qualidade e Tecnologia (Inmetro), Rio de Janeiro, RJ, Brasil
| | | | - Lenita Zajdenverg
- Departamento de Nutrologia e Diabetes, Universidade Federal do Rio de Janeiro, RJ, Brasil
| | - Melanie Rodacki
- Departamento de Nutrologia e Diabetes, Universidade Federal do Rio de Janeiro, RJ, Brasil
| |
Collapse
|
27
|
Zhang Y, Yan Y, Ning N, Shen Z, Ye Y. A signature of 24 aging‑related gene pairs predict overall survival in gastric cancer. Biomed Eng Online 2021; 20:35. [PMID: 33823856 PMCID: PMC8025368 DOI: 10.1186/s12938-021-00871-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 03/18/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Aging is the major risk factor for most human cancers. We aim to develop and validate a reliable aging-related gene pair signature (ARGPs) to predict the prognosis of gastric cancer (GC) patients. METHODS The mRNA expression data and clinical information were obtained from two public databases, The Cancer Genome Atlas (TCGA) dataset, and Gene Expression Omnibus (GEO) dataset, respectively. The best prognostic signature was established using Cox regression analysis (univariate and least absolute shrinkage and selection operator). The optimal cut-off value to distinguish between high- and low-risk patients was found by time-dependent receiver operating characteristic (ROC). The prognostic ability of the ARGPS was evaluated by a log-rank test and a Cox proportional hazards regression model. RESULTS The 24 ARGPs were constructed for GC prognosis. Using the optimal cut-off value - 0.270, all patients were stratified into high risk and low risk. In both TCGA and GEO cohorts, the results of Kaplan-Meier analysis showed that the high-risk group has a poor prognosis (P < 0.001, P = 0.002, respectively). Then, we conducted a subgroup analysis of age, gender, grade and stage, and reached the same conclusion. After adjusting for a variety of clinical and pathological factors, the results of multivariate COX regression analysis showed that the ARGPs is still an independent prognostic factor of OS (HR, 4.919; 95% CI 3.345-7.235; P < 0.001). In comparing with previous signature, the novel signature was superior, with an area under the receiver operating characteristic curve (AUC) value of 0.845 vs. 0.684 vs. 0.695. The results of immune infiltration analysis showed that the abundance of T cells follicular helper was significantly higher in the low-risk group, while the abundance of monocytes was the opposite. Finally, we identified and incorporated independent prognostic factors and developed a superior nomogram to predict the prognosis of GC patients. CONCLUSION Our study has developed a robust prognostic signature that can accurately predict the prognostic outcome of GC patients.
Collapse
Affiliation(s)
- Yankai Zhang
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Peking University People's Hospital, No.11 Xizhimen South Street, Xicheng, Beijing, 100044, People's Republic of China
| | - Yichao Yan
- Department of Gastrointestinal Surgery, Peking University International Hospital, No.1 Life Park Road, Life Science Park of Zhong Guancun, Changping, Beijing, 102206, People's Republic of China.
| | - Ning Ning
- Department of Gastrointestinal Surgery, Peking University International Hospital, No.1 Life Park Road, Life Science Park of Zhong Guancun, Changping, Beijing, 102206, People's Republic of China
| | - Zhanlong Shen
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Peking University People's Hospital, No.11 Xizhimen South Street, Xicheng, Beijing, 100044, People's Republic of China
| | - Yingjiang Ye
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Peking University People's Hospital, No.11 Xizhimen South Street, Xicheng, Beijing, 100044, People's Republic of China.
| |
Collapse
|
28
|
Komatsu H, Gonzalez N, Ortiz J, Rawson J, Omori K, Kandeel F, Mullen Y. Early-Phase Luciferase Signals of Islet Grafts Predicts Successful Subcutaneous Site Transplantation in Rats. Mol Imaging Biol 2021; 23:173-179. [PMID: 33140260 PMCID: PMC9870595 DOI: 10.1007/s11307-020-01560-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/16/2020] [Accepted: 10/22/2020] [Indexed: 01/25/2023]
Abstract
PURPOSE The transplantation of pancreatic islets is a promising cell replacement therapy for type 1 diabetes. Subcutaneous islet transplantation is currently under investigation as a means to circumvent problems associated with standard intra-hepatic islet transplantation. As modifications are being developed to improve the efficacy of subcutaneous islet transplantation, it is important to have robust methods to assess engraftment. Experimentally, ATP-dependent bioluminescence imaging using luciferase reporter genes has been effective for non-invasively tracking engraftment. However, it was heretofore unknown if the bioluminescence of subcutaneously transplanted luciferase-expressing islet grafts correlates with diabetes reversal, a primary outcome of transplantation. PROCEDURES A retrospective analysis was conducted using data obtained from subcutaneous islet transplantations in Lewis rats. The analysis included transplantations from our laboratory in which islet donors were transgenic rats ubiquitously expressing luciferase and recipients were wild type, streptozotocin-induced diabetic rats. Data from 79 bioluminescence scans were obtained from 27 islet transplantations during the post-transplant observation period (up to 6 weeks). The bioluminescence intensity of the subcutaneously transplanted grafts, captured after the intravenous administration of luciferin, was correlated with diabetes reversal. RESULTS After subcutaneous transplantation, islet bioluminescence decreased over time, dropping > 50 % from 1 to 3 weeks post-transplant. Bioluminescence intensity in the early post-transplant phase (1-2 weeks) correlated with the subsequent reversal of diabetes; based on optimized bioluminescence cutoff values, the bioluminescence intensity of islets at 1 and 2 weeks predicted successful transplantations. However, intensity in the late post-transplant phase (≥ 4 weeks) did not reflect transplantation outcomes. CONCLUSIONS Early-phase bioluminescence imaging of luciferase-expressing islets could serve as a useful tool to predict the success of subcutaneous islet transplantations by preceding changes in glucose homeostasis.
Collapse
Affiliation(s)
- Hirotake Komatsu
- Department of Translational Research & Cellular Therapeutics, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA, 91010, USA.
| | - Nelson Gonzalez
- Department of Translational Research & Cellular Therapeutics, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA, 91010, USA
| | - Jose Ortiz
- Department of Translational Research & Cellular Therapeutics, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA, 91010, USA
| | - Jeffrey Rawson
- Department of Translational Research & Cellular Therapeutics, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA, 91010, USA
| | - Keiko Omori
- Department of Translational Research & Cellular Therapeutics, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA, 91010, USA
| | - Fouad Kandeel
- Department of Translational Research & Cellular Therapeutics, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA, 91010, USA
| | - Yoko Mullen
- Department of Translational Research & Cellular Therapeutics, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA, 91010, USA
| |
Collapse
|
29
|
Kh S, Haider KH. Stem Cells: A Renewable Source of Pancreatic β-Cells and Future for Diabetes Treatment. Stem Cells 2021. [DOI: 10.1007/978-3-030-77052-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
30
|
Goenka V, Borkar T, Desai A, Das RK. Therapeutic potential of mesenchymal stem cells in treating both types of diabetes mellitus and associated diseases. J Diabetes Metab Disord 2020; 19:1979-1993. [PMID: 33520872 PMCID: PMC7843693 DOI: 10.1007/s40200-020-00647-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/24/2020] [Indexed: 10/23/2022]
Abstract
Diabetes mellitus is a common lifestyle disease which can be classified into type 1 diabetes mellitus and type 2 diabetes mellitus. While both result in hyperglycemia due to lack of insulin action and further associated chronic ailments, there is a marked distinction in the cause for each type due to which both require a different prophylaxis. As observed, type 1 diabetes is caused due to the autoimmune action of the body resulting in the destruction of pancreatic islet cells. On the other hand, type 2 diabetes is caused either due to insulin resistance of target cells or lack of insulin production as per physiological requirements. Attempts to cure the disease have been made by bringing drastic changes in the patients' lifestyle; parenteral administration of insulin; prescription of drugs such as biguanides, meglitinides, and amylin; pancreatic transplantation; and immunotherapy. While these attempts cause a certain degree of relief to the patient, none of these can cure diabetes mellitus. However, a new treatment strategy led by the discovery of mesenchymal stem cells and their unique immunomodulatory and multipotent properties has inspired therapies to treat diabetes by essentially reversing the conditions causing the disease. The current review aims to enumerate the role of various mesenchymal stem cells and the different approaches to treat both types of diabetes and its associated diseases as well.
Collapse
Affiliation(s)
- Vidul Goenka
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu India
| | - Tanhai Borkar
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu India
| | - Aska Desai
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu India
| | - Raunak Kumar Das
- Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology, Vellore, Tamil Nadu India
| |
Collapse
|
31
|
Generation of Insulin-Producing Cells from Canine Adipose Tissue-Derived Mesenchymal Stem Cells. Stem Cells Int 2020; 2020:8841865. [PMID: 33133196 PMCID: PMC7591982 DOI: 10.1155/2020/8841865] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/30/2020] [Accepted: 10/03/2020] [Indexed: 12/18/2022] Open
Abstract
The potential of mesenchymal stem cells (MSCs) to differentiate into nonmesodermal cells such as pancreatic beta cells has been reported. New cell-based therapy using MSCs for diabetes mellitus is anticipated as an alternative treatment option to insulin injection or islet transplantation in both human and veterinary medicine. Several protocols were reported for differentiation of MSCs into insulin-producing cells (IPCs), but no studies have reported IPCs generated from canine MSCs. The purpose of this study was to generate IPCs from canine adipose tissue-derived MSCs (AT-MSCs) in vitro and to investigate the effects of IPC transplantation on diabetic mice in vivo. Culturing AT-MSCs with the differentiation protocol under a two-dimensional culture system did not produce IPCs. However, spheroid-like small clusters consisting of canine AT-MSCs and human recombinant peptide μ-pieces developed under a three-dimensional (3D) culture system were successfully differentiated into IPCs. The generated IPCs under 3D culture condition were stained with dithizone and anti-insulin antibody. Canine IPCs also showed gene expression typical for pancreatic beta cells and increased insulin secretion in response to glucose stimulation. The blood glucose levels in streptozotocin-induced diabetic mice were decreased after injection with the supernatant of canine IPCs, but the hyperglycemic states of diabetic mice were not improved after transplanting IPCs subcutaneously or intramesenterically. The histological examination showed that the transplanted small clusters of IPCs were successfully engrafted to the mice and included cells positive for insulin by immunofluorescence. Several factors, such as the transplanted cell number, the origin of AT-MSCs, and the differentiation protocol, were considered potential reasons for the inability to improve the hyperglycemic state after IPC transplantation. These findings suggest that canine AT-MSCs can be differentiated into IPCs under a 3D culture system and IPC transplantation may be a new treatment option for dogs with diabetes mellitus.
Collapse
|
32
|
Komatsu H, Gonzalez N, Kandeel F, Mullen Y. Intermittent normobaric oxygen inhalation enhances subcutaneous prevascularization for cell transplantation. Microvasc Res 2020; 132:104070. [PMID: 32890600 DOI: 10.1016/j.mvr.2020.104070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 01/16/2023]
Abstract
PURPOSE Subcutaneous tissue is a promising site for cell transplantation; advantages include minimally invasive procedures and easy post-transplant monitoring. However, limited vascularity is the major known challenge. To address this challenge, a prevascularized graft bed is prepared in recipients. We aimed to establish an improved, clinically applicable approach to promote prevascularization of the subcutaneous graft bed prior to cell transplantation. METHODS We applied a conventional prevascularization approach by subcutaneously implanting nylon discs into the backs of Lewis rats. After disc implantation, we treated rats with or without intermittent normobaric 100% oxygen inhalation (1 h, twice a day, for consecutive 7 days). We used histology to compare vascular density between the oxygen-treated or control groups. To assess the functional effects of prevascularization, we transplanted three hundred islets isolated from luciferase-transgenic Lewis rats into the oxygen-treated or control wild type Lewis recipients, then used bioluminescence imaging to track engraftment for 4 weeks. RESULTS Oxygen treatment significantly augmented prevascularization in the subcutaneous site compared to controls. Islet transplantation into prevascularized graft beds demonstrated significant improvement in engraftment efficiency in oxygen-treated recipients compared to controls at 2-4 weeks post-transplantation. CONCLUSION Combining intermittent normobaric 100% oxygen inhalation with a conventional vascularization approach promotes a functional vasculature within a week. A simple approach using normobaric oxygen has the potential for translation into clinical application in subcutaneous site cell transplantations.
Collapse
Affiliation(s)
- Hirotake Komatsu
- Department of Translational Research & Cellular Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA, USA.
| | - Nelson Gonzalez
- Department of Translational Research & Cellular Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Fouad Kandeel
- Department of Translational Research & Cellular Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Yoko Mullen
- Department of Translational Research & Cellular Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA, USA
| |
Collapse
|
33
|
Wu Q, Zheng S, Qin Y, Zheng X, Chen H, Yang T, Zhang M. Efficacy and safety of stem cells transplantation in patients with type 1 diabetes mellitus-a systematic review and meta-analysis. Endocr J 2020; 67:827-840. [PMID: 32321876 DOI: 10.1507/endocrj.ej20-0050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Stem cells (SCs) therapy is a new promising therapeutic modality for type 1 diabetes (T1DM). We performed a systematic review and meta-analysis to evaluate the efficacy and safety of stem cells transplantation (SCT) in patients with T1DM. We searched five literature databases (MEDLINE, EMBASE, Web of Science, WanFang and CENTRAL) up to 31 October 2019. 29 studies (487 patients with T1DM) were included in our meta-analysis. There was no substantial publication bias. Meta-analysis showed the SCT had significant effect to decrease HbA1c (SMD, 1.40; 95% CI, 0.93 to 1.86; p < 0.00001; I2 = 89%) and to improve C-peptide levels (SMD, -0.62; 95% CI, -1.22 to -0.02; p = 0.04; I2 = 92%) at 1 year follow-up. Subgroup analyses showed the heterogeneity level of the results was high. Significant improvement of metabolic outcomes was observed in the subgroups of mesenchymal stem cells (MSCs) combined with hematopoietic stem cells (HSCs) and HSCs. The older age showed significant association with the efficacy in HSCs subgroup. The higher GADA positive rate before treatment also significantly associated with the decrease of daily insulin requirement. The transient insulin independence rate at last follow-up was 9.6 per 100 person-years (95% CI: 5.8-13.5%). The mean length of insulin independence was 15.6 months (95% CI: 12.3-18.9). The mortality of SCT was 3.4% (95% CI: 2.1-5.5%). Therefore, SCT is an efficacious and safe method for treating patients with T1DM especially in the subgroups of MSCs + HSCs and HSCs. Well designed, double blind and randomized controlled trails with large sample size and long-term follow-up are needed for further evaluation.
Collapse
Affiliation(s)
- Qian Wu
- Department of Endocrinology, The First Affiliated Hospital with Nanjing Medical University, Nanjing Medical University, Nanjing, 210029, China
- Department of Endocrinology, Taikang Xianlin Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, 210046, China
| | - Shuai Zheng
- Department of Endocrinology, The First Affiliated Hospital with Nanjing Medical University, Nanjing Medical University, Nanjing, 210029, China
| | - Yao Qin
- Department of Endocrinology, The First Affiliated Hospital with Nanjing Medical University, Nanjing Medical University, Nanjing, 210029, China
| | - Xuqin Zheng
- Department of Endocrinology, The First Affiliated Hospital with Nanjing Medical University, Nanjing Medical University, Nanjing, 210029, China
| | - Heng Chen
- Department of Endocrinology, The First Affiliated Hospital with Nanjing Medical University, Nanjing Medical University, Nanjing, 210029, China
| | - Tao Yang
- Department of Endocrinology, The First Affiliated Hospital with Nanjing Medical University, Nanjing Medical University, Nanjing, 210029, China
| | - Mei Zhang
- Department of Endocrinology, The First Affiliated Hospital with Nanjing Medical University, Nanjing Medical University, Nanjing, 210029, China
| |
Collapse
|
34
|
Chen Y, Chen J, Sun X, Yu J, Qian Z, Wu L, Xu X, Wan X, Jiang Y, Zhang J, Gao S, Mao Z. The SIRT6 activator MDL-800 improves genomic stability and pluripotency of old murine-derived iPS cells. Aging Cell 2020; 19:e13185. [PMID: 33089974 PMCID: PMC7431819 DOI: 10.1111/acel.13185] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/12/2020] [Accepted: 06/06/2020] [Indexed: 12/28/2022] Open
Abstract
Cellular reprogramming is an emerging strategy for delaying the aging processes. However, a number of challenges, including the impaired genome integrity and decreased pluripotency of induced pluripotent stem cells (iPSCs) derived from old donors, may hinder their potential clinical applications. The longevity gene, Sirtuin 6 (SIRT6), functions in multiple biological processes such as the maintenance of genome integrity and the regulation of somatic cell reprogramming. Here, for the first time, we demonstrate that MDL‐800, a recently developed selective SIRT6 activator, improved genomic stability by activating two DNA repair pathways—nonhomologous end joining (NHEJ) and base excision repair (BER) in old murine‐derived iPSCs. More interestingly, we found that pretreating old murine iPSCs, which normally exhibit a restricted differentiation potential, with MDL‐800 promoted the formation of teratomas comprised of all three germ layers and robustly stimulated chimera generation. Our findings suggest that pharmacological activation of SIRT6 holds great promise in treating aging‐associated diseases with iPSC‐based cell therapy.
Collapse
Affiliation(s)
- Yu Chen
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology Tongji University Shanghai China
- Tsingdao Advanced Research Institute Tongji University Qingdao China
| | - Jiayu Chen
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology Tongji University Shanghai China
| | - Xiaoxiang Sun
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology Tongji University Shanghai China
- Tsingdao Advanced Research Institute Tongji University Qingdao China
| | - Jiayu Yu
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology Tongji University Shanghai China
| | - Zhen Qian
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology Tongji University Shanghai China
| | - Li Wu
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology Tongji University Shanghai China
| | - Xiaojun Xu
- State Key Laboratory of Natural Medicines China Pharmaceutical University Nanjing China
| | - Xiaoping Wan
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology Tongji University Shanghai China
| | - Ying Jiang
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology Tongji University Shanghai China
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education Shanghai Jiao‐Tong University School of Medicine Shanghai China
| | - Shaorong Gao
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology Tongji University Shanghai China
| | - Zhiyong Mao
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology Tongji University Shanghai China
- Tsingdao Advanced Research Institute Tongji University Qingdao China
| |
Collapse
|
35
|
Duggal S, Faulkner A. Promissory and protective imaginaries of regenerative medicine: Expectations work and scenario maintenance of disease research charities in the United Kingdom. PUBLIC UNDERSTANDING OF SCIENCE (BRISTOL, ENGLAND) 2020; 29:392-407. [PMID: 32434460 DOI: 10.1177/0963662520920824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This article draws upon recent scholarship on technoscientific imaginaries and the sociology of technology expectations to reveal the mediating roles played by a number of disease-focused research charities in the United Kingdom. We examine the expectations they deal with about regenerative medicine research, and how they develop strategies to support and 'protect' potential medical scenarios for new therapies for dread diseases. In so doing, we develop and detail a concept of scenario maintenance to denote the strategic discursive and practical work of preserving stakeholders' faith in specific disease research pathways in the face of obstacles. Semi-structured in-depth interviews (N = 10) of research managers at nine research charities were qualitatively analysed, alongside a variety of charities' documentary data. Our analysis yielded three themes: managing and moderating media expectations; specifying expectations about disease-specific appropriateness of regenerative medicine; and maintaining scenarios of possible pathways for future success taking challenges into account.
Collapse
|
36
|
Hashemi SM, Hassan ZM, Hossein-Khannazer N, Pourfathollah AA, Soudi S. Investigating the route of administration and efficacy of adipose tissue-derived mesenchymal stem cells and conditioned medium in type 1 diabetic mice. Inflammopharmacology 2020; 28:585-601. [PMID: 31741175 DOI: 10.1007/s10787-019-00661-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022]
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease destroying the insulin-producing beta cells. Recently, stem cell therapy has been tested to treat T1D. In the present study, we aim to investigate the effects of intraperitoneal and intravenous infusion of multipotent mesenchymal stem/stromal cells (MSCs) and MSC-conditioned medium (MSC-CM) in an experimental model of diabetes, induced by multiple injections of Streptozotocin (STZ). The adipose tissue-derived MSC and MSC-CM were isolated from C57Bl/6 male mice and characterized. Later, MSC and MSC-CM were injected intraperitoneally or intravenously into mice. The blood glucose, urinary glucose, and body weight were measured, and the percentages of CD4+ CD25+ FOXP3+ T cells as well as the levels of IFN-γ, TGF-β, IL-4, IL-17, and IL-10 were evaluated. Our results showed that both intraperitoneal and intravenous infusions of MSC and MSC-CM could decrease the blood glucose, recover pancreatic islets, and increase the levels of insulin-producing cells. Furthermore, the percentage of CD4+ CD25+ FOXP3+ T cells was increased after intraperitoneal injection of MSC or MSC-CM and intravenous injection of MSCs. After intraperitoneal injection of the MSC and MSC-CM, the levels of inflammatory cytokines reduced, while the levels of anti-inflammatory cytokines increased. Together current data showed that although both intraperitoneal and intravenous administration had beneficial effects on T1D animal model, but intraperitoneal injection of AD-MSC and AD-MSC-CM was more effective than systemic administration.
Collapse
Affiliation(s)
- Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Zuhair Mohammad Hassan
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Nikoo Hossein-Khannazer
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Akbar Pourfathollah
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
37
|
Wartchow KM, Rodrigues L, Lissner LJ, Federhen BC, Selistre NG, Moreira A, Gonçalves CA, Sesterheim P. Insulin-producing cells from mesenchymal stromal cells: Protection against cognitive impairment in diabetic rats depends upon implant site. Life Sci 2020; 251:117587. [PMID: 32224027 DOI: 10.1016/j.lfs.2020.117587] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/21/2020] [Accepted: 03/22/2020] [Indexed: 12/11/2022]
Abstract
Diabetes mellitus (DM) is a serious public health problem and can cause long-term damage to the brain, resulting in cognitive impairment in these patients. Insulin therapy for type 1 DM (DM1) can achieve overall blood glucose control, but glycemic variations can occur during injection intervals, which may contribute to some complications. Among the additional therapies available for DM1 treatment is the implantation of insulin-producing cells (IPCs) to attenuate hyperglycemia and even reverse diabetes. Here, we studied the strategy of implanting IPCs obtained from mesenchymal stromal cells (MSCs) from adipose tissue, comparing two different IPC implant sites, subcapsular renal (SR) and subcutaneous (SC), to investigate their putative protection against hippocampal damage, induced by STZ, in a rat DM1 model. Both implants improved hyperglycemia and reduced the serum content of advanced-glycated end products in diabetic rats, but serum insulin was not observed in the SC group. The SC-implanted group demonstrated ameliorated cognitive impairment (evaluated by novel object recognition) and modulation of hippocampal astroglial reactivity (evaluated by S100B and GFAP). Using GFP+ cell implants, the survival of cells at the implant sites was confirmed, as well as their migration to the pancreas and hippocampus. The presence of undifferentiated MSCs in our IPC preparation may explain the peripheral reduction in AGEs and subsequent cognitive impairment recovery, mediated by autophagic depuration and immunomodulation at the hippocampus, respectively. Together, these data reinforce the importance of MSCs for use in neuroprotective strategies, and highlight the logistic importance of the subcutaneous route for their administration.
Collapse
Affiliation(s)
- Krista Minéia Wartchow
- Federal University of Rio Grande do Sul (UFRGS), Biochemistry Post-Graduate Program, Porto Alegre, Brazil
| | - Leticia Rodrigues
- Federal University of Rio Grande do Sul (UFRGS), Biochemistry Post-Graduate Program, Porto Alegre, Brazil
| | - Lílian Juliana Lissner
- Federal University of Rio Grande do Sul (UFRGS), Biochemistry Post-Graduate Program, Porto Alegre, Brazil
| | - Barbara Carolina Federhen
- Federal University of Rio Grande do Sul (UFRGS), Biochemistry Post-Graduate Program, Porto Alegre, Brazil
| | - Nicholas Guerini Selistre
- Federal University of Rio Grande do Sul (UFRGS), Biochemistry Post-Graduate Program, Porto Alegre, Brazil
| | - Aline Moreira
- Federal University of Rio Grande do Sul (UFRGS), Biochemistry Post-Graduate Program, Porto Alegre, Brazil
| | - Carlos-Alberto Gonçalves
- Federal University of Rio Grande do Sul (UFRGS), Biochemistry Post-Graduate Program, Porto Alegre, Brazil.
| | - Patrícia Sesterheim
- Institute of Cardiology of Rio Grande do Sul, Experimental Center, Porto Alegre, Brazil
| |
Collapse
|
38
|
Zhang Y, Chen W, Feng B, Cao H. The Clinical Efficacy and Safety of Stem Cell Therapy for Diabetes Mellitus: A Systematic Review and Meta-Analysis. Aging Dis 2020; 11:141-153. [PMID: 32010488 PMCID: PMC6961772 DOI: 10.14336/ad.2019.0421] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/21/2019] [Indexed: 12/11/2022] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disease with high morbidity and mortality. Recently, stem cell-based therapy for DM has shown considerable promise. Here, we undertook a systematic review and meta-analysis of published clinical studies to evaluate the efficacy and safety of stem cell therapy for both type 1 DM (T1DM) and type 2 DM (T2DM). The PubMed, Cochrane Central Register of Controlled Trials, EMBASE, and ClinicalTrials.gov databases were searched up to November 2018. We employed a fixed-effect model using 95% confidence intervals (CIs) when no statistically significant heterogeneity existed. Otherwise, a random-effects statistical model was used. Twenty-one studies met our inclusion criteria: ten T1DM studies including 226 patients and eleven T2DM studies including 386 patients. Stem cell therapy improved C-peptide levels (mean difference (MD), 0.41; 95% CI, 0.06 to 0.76) and glycosylated hemoglobin (HbA1c; MD, -3.46; 95% CI, -6.01 to -0.91) for T1DM patients. For T2DM patients, stem cell therapy improved C-peptide levels (MD, 0.33; 95% CI, 0.07 to 0.59), HbA1c (MD, -0.87; 95% CI, -1.37 to -0.37) and insulin requirements (MD, -35.76; 95% CI, -40.47 to -31.04). However, there was no significant change in fasting plasma glucose levels (MD, -0.52; 95% CI, -1.38 to 0.34). Subgroup analyses showed significant HbA1c and C-peptide improvements in patients with T1DM treated with bone marrow hematopoietic stem cells (BM-HSCs), while there was no significant change in the mesenchymal stem cell (MSC) group. In T2DM, HbA1c and insulin requirements decreased significantly after MSC transplantation, and insulin requirements and C-peptide levels were significantly improved after bone marrow mononuclear cell (BM-MNC) treatment. Stem cell therapy is a relatively safe and effective method for selected individuals with DM. The data showed that BM-HSCs are superior to MSCs in the treatment of T1DM. In T2DM, MSC and BM-MNC transplantation showed favorable therapeutic effects.
Collapse
Affiliation(s)
- Yazhen Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Wenyi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Bing Feng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Hongcui Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
39
|
Shao M, Xu Q, Wu Z, Chen Y, Shu Y, Cao X, Chen M, Zhang B, Zhou Y, Yao R, Shi Y, Bu H. Exosomes derived from human umbilical cord mesenchymal stem cells ameliorate IL-6-induced acute liver injury through miR-455-3p. Stem Cell Res Ther 2020; 11:37. [PMID: 31973730 PMCID: PMC6979401 DOI: 10.1186/s13287-020-1550-0] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/08/2019] [Accepted: 12/10/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Using a toxin-induced nonhuman primate model of acute liver failure (ALF), we previously reported that peripheral infusion of human umbilical cord mesenchymal stem cells (hUC-MSCs) strongly suppresses the activation of circulating monocytes and interleukin-6 (IL-6) production, thereby disrupting the development of a cytokine storm and improving the prognosis of monkeys. MSCs are considered to play a therapeutic role under different stresses by adaptively producing specific factors, prompting us to investigate the factors that hUC-MSCs produce in response to high serum levels of IL-6, which plays a critical role in initiating and accelerating ALF. METHODS We stimulated hUC-MSCs with IL-6, and the hUC-MSC-derived exosomes were deeply sequenced. The miRNAs in the exosomes that have potential to suppress IL-6-associated signaling pathway were screened, and the role of one of the most possible miRNAs was tested in the mouse model of inflammatory liver injury. RESULT We determined that miR-455-3p, which is secreted through exosomes and potentially targets PI3K signaling, was highly produced by hUC-MSCs with IL-6 stimulation. The miR-455-3p-enriched exosomes could inhibit the activation and cytokine production of macrophages challenged with lipopolysaccharide (LPS) both in vivo and in vitro. In a chemical liver injury mouse model, enforced expression of miR-455-3p could attenuate macrophage infiltration and local liver damage and reduce the serum levels of inflammatory factors, thereby improving liver histology and systemic disorder. CONCLUSIONS miR-455-3p-enriched exosomes derived from hUC-MSCs are a promising therapy for acute inflammatory liver injury.
Collapse
Affiliation(s)
- Mingyang Shao
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu, 610041, China
| | - Qing Xu
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu, 610041, China
| | - Zhenru Wu
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu, 610041, China
| | - Yuwei Chen
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu, 610041, China
| | - Yuke Shu
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu, 610041, China
| | - Xiaoyue Cao
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu, 610041, China
| | - Menglin Chen
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu, 610041, China
| | - Bo Zhang
- Sichuan Stem Cell Bank & Sichuan Neo-Life Stem Cell Biotech Inc., Chengdu, 610037, China
| | - Yongjie Zhou
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu, 610041, China
| | - Rong Yao
- The Emergency Department, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yujun Shi
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu, 610041, China.
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Hong Bu
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu, 610041, China
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
40
|
Elsharkawi I, Parambath D, Saber-Ayad M, Khan AA, El-Serafi AT. Exploring the effect of epigenetic modifiers on developing insulin-secreting cells. Hum Cell 2019; 33:1-9. [PMID: 31755075 DOI: 10.1007/s13577-019-00292-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/11/2019] [Indexed: 12/24/2022]
Abstract
Diabetes is a worldwide health problem with increasing incidence. The current management modalities did not succeed to decrease comorbidities. This study aimed at enhancing the regenerative solution for diabetes by improving the differentiation of mesenchymal stromal cells (MSC) into glucose-sensitive, insulin-secreting cells through an epigenetic modification approach. A 3-day treatment protocol with the epigenetic modifiers, either decitabine (5-aza-2'-deoxycytidine; Aza); a DNA methylation inhibitor or Vorinostat (suberoylanilide hydroxamic acid; SAHA); a histone deacetylase inhibitor was added to two different human stem cell lines. The cells followed a multi-step differentiation protocol that provided the critical triggers in a temporal approach. Aza-pretreated group showed higher intracellular expression of insulin and the transcription factor 'PDX-1'. The cells responded to the high glucose challenge by secreting insulin in the media, as shown by ELISA. Gene expression showed induction of the genes for insulin, the glucose transporter 2, glucokinase, as well as the transcription factors MafA and NKX6.1. Although SAHA showed upregulation of insulin secretion, in comparison to control, the cells could not respond to the high glucose challenge. Interestingly, Aza-treated cells showed a significant decrease in the global DNA methylation level at the end of the culture. In conclusion, this additional step with Aza could enhance the response of MSC to the classical differentiation protocol for insulin-secreting cells and may help in establishing a regenerative solution for patients with diabetes.
Collapse
Affiliation(s)
| | | | - Maha Saber-Ayad
- College of Medicine, University of Sharjah, Sharjah, UAE.,Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE.,College of Medicine, Cairo University, Cairo, Egypt
| | - Amir Ali Khan
- Department of Applied Biology, College of Science, University of Sharjah, Sharjah, UAE
| | - Ahmed T El-Serafi
- College of Medicine, University of Sharjah, Sharjah, UAE. .,Faculty of Medicine, Suez Canal University, Ismailia, Egypt. .,Department of Hand Surgery and Plastic Surgery and Burns, 401A, Building 462, Floor 11, Linköping University Hospital, P. O. Box: 581 85, Linköping, Sweden.
| |
Collapse
|
41
|
Saeedi P, Halabian R, Imani Fooladi AA. A revealing review of mesenchymal stem cells therapy, clinical perspectives and Modification strategies. Stem Cell Investig 2019; 6:34. [PMID: 31620481 DOI: 10.21037/sci.2019.08.11] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/29/2019] [Indexed: 12/20/2022]
Abstract
Multipotent mesenchymal stem cells (MSCs) have been considerably inspected as effective tool for cell-based therapy of inflammatory, immune-mediated, and degenerative diseases, attributed to their immunomodulatory, immunosuppressive, and regenerative potentials. In the present review, we focus on recent research findings of the clinical applications and therapeutic potential of this cell type, MSCs' mechanisms of therapy, strategies to improve their therapeutic potentials such as manipulations and preconditioning, and potential/unexpected risks which should be considered as a prerequisite step before clinical use. The potential risks would probably include undesirable immune responses, tumor formation and the transmission of incidental agents. Then, we also review some of the milestones in the field, briefly discuss challenges and highlight the new guideline suggested for future directions and perspectives.
Collapse
Affiliation(s)
- Pardis Saeedi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Raheleh Halabian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
42
|
Larijani B, Goodarzi P, Payab M, Alavi-Moghadam S, Rahim F, Bana N, Abedi M, Arabi M, Adibi H, Gilany K, Arjmand B. Metabolomics and Cell Therapy in Diabetes Mellitus. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2019; 8:41-48. [PMID: 32351908 PMCID: PMC7175613 DOI: 10.22088/ijmcm.bums.8.2.41] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/30/2019] [Indexed: 12/22/2022]
Abstract
Diabetes with a broad spectrum of complications has become a global epidemic metabolic disorder. Till now, several pharmaceutical and non-pharmaceutical therapeutic approaches were applied for its treatment. Cell-based therapies have become promising methods for diabetes treatment. Better understanding of diabetes pathogenesis and identification of its specific biomarkers along with evaluation of different treatments efficacy, can be possible by clarification of specific metabolic modifications during the diabetes progression. Subsequently, metabolomics technology can support this goal as an effective tool. The present review tried to show how metabolomics quantifications can be useful for diabetic monitoring before and after cell therapy. Cell therapy is an alternative approach to achieve diabetes treatments goals including insulin resistance amelioration, insulin independence reparation, and control of glycemia. OMICs approaches provide a comprehensive insight into the molecular mechanisms of cells features and functional mechanism of their genomics, transcriptomics, proteomics, and metabolomics profile which can be useful for their therapeutic application. As a modern technology for the detection and analysis of metabolites in biological samples, metabolomica can identify many of the metabolic and molecular pathways associated with diabetes and its following complications.
Collapse
Affiliation(s)
- Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical sciences, Tehran, Iran
| | - Parisa Goodarzi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Moloud Payab
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fakher Rahim
- Health Research Institute, Thalassemia and Hemoglobinopathies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nikoo Bana
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Abedi
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Arabi
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Adibi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Kambiz Gilany
- Department of Biomedical Sciences, University of Antwerp, Belgium.,Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
43
|
Short-Term Protocols to Obtain Insulin-Producing Cells from Rat Adipose Tissue: Signaling Pathways and In Vivo Effect. Int J Mol Sci 2019; 20:ijms20102458. [PMID: 31109026 PMCID: PMC6566438 DOI: 10.3390/ijms20102458] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/09/2019] [Accepted: 05/13/2019] [Indexed: 02/06/2023] Open
Abstract
Studies using mesenchymal stromal cells (MSCs) as a source of insulin-secreting cells (IPCs) are a promising path in the pursuit for diabetes therapy. Here, we investigate three short-term differentiation protocols in order to generate IPCs from autologous adipose-derived stromal cells (ADSCs) with an expressive insulin-secreting profile in vitro and in vivo, as well as the signaling pathways involved in the chosen differentiation protocols. We extracted and cultured ADSCs and differentiated them into IPCs, using three different protocols with different inductors. Afterwards, the secretory profile was analyzed and IPCs differentiated in exendin-4/activin A medium, which presented the best secretory profile, was implanted in the kidney subcapsular region of diabetic rats. All protocols induced the differentiation, but media supplemented with exendin-4/activin A or resveratrol induced the expression and secretion of insulin more efficiently, and only the exendin-4/activin-A-supplemented medium generated an insulin secretion profile more like β-cells, in response to glucose. The PI3K/Akt pathway seems to play a negative role in IPC differentiation; however, the differentiation of ADSCs with exendin-4/activin A positively modulated the p38/MAPK pathway. Resveratrol medium activated the Jak/STAT3 pathway and generated IPCs apparently less sensitive to insulin and insulin-like receptors. Finally, the implant of IPCs with the best secretory behavior caused a decrease in hyperglycemia after one-week implantation in diabetic rats. Our data provide further information regarding the generation of IPCs from ADSCs and strengthen evidence to support the use of MSCs in regenerative medicine, specially the use of exendin-4/activin A to produce rapid and effectively IPCs with significant in vivo effects.
Collapse
|
44
|
Zhu Y, Jia Y, Wang Y, Xu J, Chai Y. Impaired Bone Regenerative Effect of Exosomes Derived from Bone Marrow Mesenchymal Stem Cells in Type 1 Diabetes. Stem Cells Transl Med 2019; 8:593-605. [PMID: 30806487 PMCID: PMC6525563 DOI: 10.1002/sctm.18-0199] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/16/2019] [Indexed: 12/15/2022] Open
Abstract
Stem cell‐derived exosomes have exhibited promise for applications in tissue regeneration. However, one major problem for stem cell‐derived exosome therapies is identifying appropriate source cells. In the present study, we aimed to compare the bone regenerative effect of exosomes secreted by bone marrow mesenchymal stem cells (BMSCs) derived from type 1 diabetes rats (dBMSC‐exos) and exosomes secreted by BMSCs derived from normal rats (nBMSC‐exos). BMSCs were isolated from rats with streptozotocin‐induced diabetes and normal rats. dBMSC‐exos and nBMSC‐exos were isolated by an ultracentrifugation method and identified. The effects of dBMSC‐exos and nBMSC‐exos on the proliferation and migration of BMSCs and human umbilical vein endothelial cells (HUVECs) were investigated. The effects of exosomes on the osteogenic differentiation of BMSCs and the angiogenic activity of HUVECs were compared. Finally, a rat calvarial defect model was used to compare the effects of exosomes on bone regeneration and neovascularization in vivo. In vitro, dBMSC‐exos and nBMSC‐exos both enhanced the osteogenic differentiation of BMSCs and promoted the angiogenic activity of HUVECs, but nBMSC‐exos had a greater effect than dBMSC‐exos. Similarly, in vivo, both dBMSC‐exos and nBMSC‐exos promoted bone regeneration and neovascularization in rat calvarial defects, but the therapeutic effect of nBMSC‐exos was superior to that of dBMSC‐exos. The present study demonstrates for the first time that the bone regenerative effect of exosomes derived from BMSCs is impaired in type 1 diabetes, indicating that for patients with type 1 diabetes, the autologous transplantation of BMSC‐exos to promote bone regeneration may be inappropriate. stem cells translational medicine2019;8:593–605
Collapse
Affiliation(s)
- Yu Zhu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Yachao Jia
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Yanmao Wang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Jia Xu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Yimin Chai
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| |
Collapse
|
45
|
Agrawal M, Alexander A, Khan J, Giri TK, Siddique S, Dubey SK, Ajazuddin, Patel RJ, Gupta U, Saraf S, Saraf S. Recent Biomedical Applications on Stem Cell Therapy: A Brief Overview. Curr Stem Cell Res Ther 2019; 14:127-136. [DOI: 10.2174/1574888x13666181002161700] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 06/29/2018] [Accepted: 09/02/2018] [Indexed: 12/16/2022]
Abstract
Stem cells are the specialized cell population with unique self-renewal ability and act as the
precursor of all the body cells. Broadly, stem cells are of two types one is embryonic stem cells while
the other is adult or somatic stem cells. Embryonic stem cells are the cells of zygote of the blastocyst
which give rise to all kind of body cells including embryonic cells, and it can reconstruct a complete
organism. While the adult stem cells have limited differentiation ability in comparison with embryonic
stem cells and it proliferates into some specific kind of cells. This unique ability of the stem cell makes
it a compelling biomedical and therapeutic tool. Stem cells primarily serve as regenerative medicine for
particular tissue regeneration or the whole organ regeneration in any physical injury or disease condition
(like diabetes, cancer, periodontal disorder, etc.), tissue grafting and plastic surgery, etc. Along
with this, it is also used in various preclinical and clinical investigations, biomedical engineering and as
a potential diagnostic tool (such as the development of biomarkers) for non-invasive diagnosis of severe
disorders. In this review article, we have summarized the application of stem cell as regenerative
medicine and in the treatment of various chronic diseases.
Collapse
Affiliation(s)
- Mukta Agrawal
- Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh 490 024, India
| | - Amit Alexander
- Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh 490 024, India
| | - Junaid Khan
- University Teaching Department (Pharmacy), Sarguja University, Ambikapur, Chhattisgarh 497001, India
| | - Tapan K. Giri
- Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh 490 024, India
| | - Sabahuddin Siddique
- Patel College of Pharmacy, Madhyanchal Professional University, Bhopal, Madhya Pradesh, India
| | - Sunil K. Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Ajazuddin
- Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh 490 024, India
| | - Ravish J. Patel
- Ramanbhai Patel College of Pharmacy (RPCP), Charotar University of Science and Technology (CHARUSAT), Gujarat 388 421, India
| | - Umesh Gupta
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer - 305817, India
| | - Swarnlata Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492 010, India
| | - Shailendra Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492 010, India
| |
Collapse
|
46
|
Khan J, Alexander A, Agrawal M, Ajazuddin, Dubey SK, Siddique S, Saraf S, Saraf S. Stem Cell-Based Therapies: A New Ray of Hope for Diabetic Patients. Curr Stem Cell Res Ther 2019; 14:146-151. [DOI: 10.2174/1574888x13666181002154110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 05/09/2018] [Accepted: 07/07/2018] [Indexed: 11/22/2022]
Abstract
Diabetes and its complications are a significant health concern throughout the globe. There are physiological differences in the mechanism of type-I and type-II diabetes and the conventional drug therapy as well as insulin administration seem to be insufficient to address the problem at large successfully. Hypoglycemic swings, frequent dose adjustments and resistance to the drug are major problems associated with drug therapy. Cellular approaches through stem cell based therapeutic interventions offer a promising solution to the problem. The need for pancreatic transplants in case of Type- I diabetes can also be by-passed/reduced due to the formation of insulin producing β cells via stem cells. Embryonic Stem Cells (ESCs) and induced Pluripotent Stem Cells (iPSCs), successfully used for generating insulin producing β cells. Although many experiments have shown promising results with stem cells in vitro, their clinical testing still needs more exploration. The review attempts to bring into light the clinical studies favoring the transplantation of stem cells in diabetic patients with an objective of improving insulin secretion and improving degeneration of different tissues in response to diabetes. It also focuses on the problems associated with successful implementation of the technique and possible directions for future research.
Collapse
Affiliation(s)
- Junaid Khan
- University Teaching Department (Pharmacy), Sarguja University, Ambikapur (Chhattisgarh) 497001, India
| | - Amit Alexander
- Rungta College of Pharmaceutical Sciences and Research, Bhilai, Chhattisgarh 490024, India
| | - Mukta Agrawal
- Rungta College of Pharmaceutical Sciences and Research, Bhilai, Chhattisgarh 490024, India
| | - Ajazuddin
- Rungta College of Pharmaceutical Sciences and Research, Bhilai, Chhattisgarh 490024, India
| | - Sunil Kumar Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Sabahuddin Siddique
- Patel College of Pharmacy, Madhyanchal Professional University, Bhopal, India
| | - Swarnlata Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur Chhattisgarh 492010, India
| | - Shailendra Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur Chhattisgarh 492010, India
| |
Collapse
|
47
|
Takahashi H, Sakata N, Yoshimatsu G, Hasegawa S, Kodama S. Regenerative and Transplantation Medicine: Cellular Therapy Using Adipose Tissue-Derived Mesenchymal Stromal Cells for Type 1 Diabetes Mellitus. J Clin Med 2019; 8:249. [PMID: 30781427 PMCID: PMC6406504 DOI: 10.3390/jcm8020249] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/09/2019] [Accepted: 02/13/2019] [Indexed: 02/06/2023] Open
Abstract
Type 1 diabetes mellitus (T1DM) is caused by the autoimmune targeting of pancreatic β-cells, and, in the advanced stage, severe hypoinsulinemia due to islet destruction. In patients with T1DM, continuous exogenous insulin therapy cannot be avoided. However, an insufficient dose of insulin easily induces extreme hyperglycemia or diabetic ketoacidosis, and intensive insulin therapy may cause hypoglycemic symptoms including hypoglycemic shock. While these insulin therapies are efficacious in most patients, some additional therapies are warranted to support the control of blood glucose levels and reduce the risk of hypoglycemia in patients who respond poorly despite receiving appropriate treatment. There has been a recent gain in the popularity of cellular therapies using mesenchymal stromal cells (MSCs) in various clinical fields, owing to their multipotentiality, capacity for self-renewal, and regenerative and immunomodulatory potential. In particular, adipose tissue-derived MSCs (ADMSCs) have become a focus in the clinical setting due to the abundance and easy isolation of these cells. In this review, we outline the possible therapeutic benefits of ADMSC for the treatment of T1DM.
Collapse
Affiliation(s)
- Hiroyuki Takahashi
- Department of Regenerative Medicine & Transplantation, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
- Center for Regenerative Medicine, Fukuoka University Hospital, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
- Department of Gastroenterological Surgery, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
| | - Naoaki Sakata
- Department of Regenerative Medicine & Transplantation, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
- Center for Regenerative Medicine, Fukuoka University Hospital, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
| | - Gumpei Yoshimatsu
- Department of Regenerative Medicine & Transplantation, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
- Center for Regenerative Medicine, Fukuoka University Hospital, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
| | - Suguru Hasegawa
- Department of Gastroenterological Surgery, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
| | - Shohta Kodama
- Department of Regenerative Medicine & Transplantation, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
- Center for Regenerative Medicine, Fukuoka University Hospital, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
| |
Collapse
|
48
|
Paving the way for successful islet encapsulation. Drug Discov Today 2019; 24:737-748. [PMID: 30738185 DOI: 10.1016/j.drudis.2019.01.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/13/2018] [Accepted: 01/29/2019] [Indexed: 01/02/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is a disorder that decimates pancreatic β-cells which produce insulin. Direct pancreatic islet transplantation cannot serve as a widespread therapeutic modality owing to the need for lifelong immunosuppression and donor shortage. Therefore, several encapsulation techniques have been developed to enclose the islets in semipermeable vehicles that will allow oxygen and nutrient input as well as insulin, other metabolites and waste output, while accomplishing immunoisolation. Although encapsulation technology continues to face significant obstacles, recent advances in material science, stem cell biology and immunology potentially serve as pathways to success. This review summarizes the accomplishments of the past 5 years.
Collapse
|
49
|
Komatsu H, Cook CA, Gonzalez N, Medrano L, Salgado M, Sui F, Li J, Kandeel F, Mullen Y, Tai YC. Oxygen transporter for the hypoxic transplantation site. Biofabrication 2018; 11:015011. [PMID: 30524058 PMCID: PMC9851375 DOI: 10.1088/1758-5090/aaf2f0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cell transplantation is a promising treatment for complementing lost function by replacing new cells with a desired function, e.g. pancreatic islet transplantation for diabetics. To prevent cell obliteration, oxygen supply is critical after transplantation, especially until the graft is sufficiently re-vascularized. To supply oxygen during this period, we developed a chemical-/electrical-free implantable oxygen transporter that delivers oxygen to the hypoxic graft site from ambient air by diffusion potential. This device is simply structured using a biocompatible silicone-based body that holds islets, connected to a tube that opens outside the body. In computational simulations, the oxygen transporter increased the oxygen level to >120 mmHg within grafts; in contrast, a control device that did not transport oxygen showed <6.5 mmHg. In vitro experiments demonstrated similar results. To test the effectiveness of the oxygen transporter in vivo, we transplanted pancreatic islets, which are susceptible to hypoxia, subcutaneously into diabetic rats. Islets transplanted using the oxygen transporter showed improved graft viability and cellular function over the control device. These results indicate that our oxygen transporter, which is safe and easily fabricated, effectively supplies oxygen locally. Such a device would be suitable for multiple clinical applications, including cell transplantations that require changing a hypoxic microenvironment into an oxygen-rich site.
Collapse
Affiliation(s)
- Hirotake Komatsu
- Department of Translational Research & Cellular Therapeutics, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA.,Corresponding author: Hirotake Komatsu,
| | - Colin A. Cook
- Department of Electrical Engineering, California Institute of Technology, 1200 E. California Blvd., MC 136-93, Pasadena, CA 91125, USA
| | - Nelson Gonzalez
- Department of Translational Research & Cellular Therapeutics, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Leonard Medrano
- Department of Translational Research & Cellular Therapeutics, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Mayra Salgado
- Department of Translational Research & Cellular Therapeutics, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Feng Sui
- Department of Translational Research & Cellular Therapeutics, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Junfeng Li
- Department of Translational Research & Cellular Therapeutics, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Fouad Kandeel
- Department of Translational Research & Cellular Therapeutics, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Yoko Mullen
- Department of Translational Research & Cellular Therapeutics, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Yu-Chong Tai
- Department of Electrical Engineering, California Institute of Technology, 1200 E. California Blvd., MC 136-93, Pasadena, CA 91125, USA
| |
Collapse
|
50
|
Gan J, Wang Y, Zhou X. Stem cell transplantation for the treatment of patients with type 1 diabetes mellitus: A meta-analysis. Exp Ther Med 2018; 16:4479-4492. [PMID: 30542397 PMCID: PMC6257425 DOI: 10.3892/etm.2018.6769] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/31/2018] [Indexed: 12/28/2022] Open
Abstract
The efficacy of stem cell (SC) transplantation in patients with type 1 diabetes mellitus (T1DM) has remained to be fully elucidated. In the present study, a systematic review and meta-analysis was performed to determine the clinical outcomes. Electronic databases, including PubMed, MEDLINE, WanFang and the Cochrane Library were screened for relevant studies published until January 13, 2018. The references of retrieved papers, systematic reviews and trial registries were manually screened for additional papers. Two authors were involved in screening the titles in order to select eligible studies, extract data and assess the risk of bias. Studies were pooled using a random-effects model as well as the Begg's funnel plot and subgroup analysis was performed using Stata 14.0 software. A total of 47 studies were retrieved for detailed evaluation, of which 22 met the inclusion criteria. No substantial publication bias was identified. The meta-analysis revealed that SC therapy increased C-peptide levels when compared with placebo treatment in randomized-controlled trials [RCT; standardized mean difference (SMD), 0.93; 95% confidence interval (CI) 0.23-1.63] and self-controlled trials (SMD, 0.66; 95% CI, -0.22 to 1.54). An analysis demonstrated that SC therapy was more efficient at reducing the glycated hemoglobin level compared with the control group in RCTs (SMD, 0.56; 95% CI; 0.06-1.06; and SMD, 1.63; 95% CI, 0.92-2.34, respectively). The graphs demonstrated that SC transplantation resulted in a reduction of insulin requirement. Furthermore, subgroup analyses revealed that patient age, medical history and the SC injection dose may be sources of the heterogeneity observed. The greatest benefit of SC transplantation was seen in patients aged ≥18 years or a medical history of <3 months. In addition, the SC injection dose of ≥107 IU/kg/day was more effective than <107 IU/kg/day when the cellular composition included mesenchymal SCs and hematopoietic SCs. In conclusion, SC therapy represents an efficient option for patients with T1DM. This systematic review was registered at the International prospective register of systematic reviews (no. 42018093930).
Collapse
Affiliation(s)
- Jiadi Gan
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Department of Clinical Medicine, The First Clinical Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yingjin Wang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Department of Clinical Medicine, The Second Clinical Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiaodong Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|