1
|
Zhou H, Si Y, Sun J, Deng J, Yang L, Tang Y, Qin W. Effectiveness of functional magnetic resonance imaging for early identification of chronic kidney disease: A systematic review and network meta-analysis. Eur J Radiol 2023; 160:110694. [PMID: 36642011 DOI: 10.1016/j.ejrad.2023.110694] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
PURPOSE The commonly used clinical indicators are not sensitive enough on detecting early chronic kidney disease (CKD), whether functional magnetic resonance imaging (fMRI) can be regarded as a new noninvasive method to identify early stages of CKD and even different stages remains unknown. We performed a network meta-analysis to explore the question. METHODS Five databases were searched to identify eligible articles from 2000 to 2022. The outcome indicators were imaging biomarkers of fMRI techniques, including apparent diffusion coefficient (ADC) by diffusion-weighted imaging (DWI), fractional anisotropy (FA) by diffusion tensor imaging (DTI), diffusion coefficient (D), pseudodiffusion coefficient (D*), and perfusion fraction (f) by intravoxel incoherent motion imaging (IVIM), and apparent relaxation rate (R2*) by blood oxygen level-dependent (BOLD). RESULTS A total of 21 articles with 1472 patients were included for analysis. Cortical FA, f, and R2* values in CKD stages 1-2 were found statistically different with healthy controls (mean difference (MD), -0.03, 95% confidence interval (CI) -0.05, -0.01; MD, -0.04, 95% CI -0.06, -0.02; MD, 2.22, 95% CI 0.87, 3.57, respectively), and cortical ADC values were significantly different among different CKD stages (stages 3 and 1-2: MD, -0.15, 95% CI -0.23, -0.06; stages 4-5 and 3: MD -0.27, 95% CI -0.39, -0.14). CONCLUSION The results indicated fMRI techniques had great efficacy in assessing early stages and different stages of CKD, among which DTI, IVIM, and BOLD exerted great superiority in differentiating early CKD patients from the general population, while DWI showed the advantage in distinguishing different CKD stages.
Collapse
Affiliation(s)
- Huan Zhou
- Division of Nephrology, Department of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China; West China School of Medicine, Sichuan University, Chengdu, Sichuan, China.
| | - Yi Si
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Jiantong Sun
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China.
| | - Jiaxin Deng
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China.
| | - Ling Yang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Yi Tang
- Division of Nephrology, Department of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China; West China School of Medicine, Sichuan University, Chengdu, Sichuan, China.
| | - Wei Qin
- Division of Nephrology, Department of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China; West China School of Medicine, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Diffusion-Weighted MRI in the Genitourinary System. J Clin Med 2022; 11:jcm11071921. [PMID: 35407528 PMCID: PMC9000195 DOI: 10.3390/jcm11071921] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
Diffusion weighted imaging (DWI) constitutes a major functional parameter performed in Magnetic Resonance Imaging (MRI). The DW sequence is performed by acquiring a set of native images described by their b-values, each b-value representing the strength of the diffusion MR gradients specific to that sequence. By fitting the data with models describing the motion of water in tissue, an apparent diffusion coefficient (ADC) map is built and allows the assessment of water mobility inside the tissue. The high cellularity of tumors restricts the water diffusion and decreases the value of ADC within tumors, which makes them appear hypointense on ADC maps. The role of this sequence now largely exceeds its first clinical apparitions in neuroimaging, whereby the method helped diagnose the early phases of cerebral ischemic stroke. The applications extend to whole-body imaging for both neoplastic and non-neoplastic diseases. This review emphasizes the integration of DWI in the genitourinary system imaging by outlining the sequence's usage in female pelvis, prostate, bladder, penis, testis and kidney MRI. In gynecologic imaging, DWI is an essential sequence for the characterization of cervix tumors and endometrial carcinomas, as well as to differentiate between leiomyosarcoma and benign leiomyoma of the uterus. In ovarian epithelial neoplasms, DWI provides key information for the characterization of solid components in heterogeneous complex ovarian masses. In prostate imaging, DWI became an essential part of multi-parametric Magnetic Resonance Imaging (mpMRI) to detect prostate cancer. The Prostate Imaging-Reporting and Data System (PI-RADS) scoring the probability of significant prostate tumors has significantly contributed to this success. Its contribution has established mpMRI as a mandatory examination for the planning of prostate biopsies and radical prostatectomy. Following a similar approach, DWI was included in multiparametric protocols for the bladder and the testis. In renal imaging, DWI is not able to robustly differentiate between malignant and benign renal tumors but may be helpful to characterize tumor subtypes, including clear-cell and non-clear-cell renal carcinomas or low-fat angiomyolipomas. One of the most promising developments of renal DWI is the estimation of renal fibrosis in chronic kidney disease (CKD) patients. In conclusion, DWI constitutes a major advancement in genitourinary imaging with a central role in decision algorithms in the female pelvis and prostate cancer, now allowing promising applications in renal imaging or in the bladder and testicular mpMRI.
Collapse
|
3
|
Renal Diffusion-Weighted Imaging (DWI) for Apparent Diffusion Coefficient (ADC), Intravoxel Incoherent Motion (IVIM), and Diffusion Tensor Imaging (DTI): Basic Concepts. Methods Mol Biol 2021; 2216:187-204. [PMID: 33476001 PMCID: PMC9703200 DOI: 10.1007/978-1-0716-0978-1_11] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The specialized function of the kidney is reflected in its unique structure, characterized by juxtaposition of disorganized and ordered elements, including renal glomerula, capillaries, and tubules. The key role of the kidney in blood filtration, and changes in filtration rate and blood flow associated with pathological conditions, make it possible to investigate kidney function using the motion of water molecules in renal tissue. Diffusion-weighted imaging (DWI) is a versatile modality that sensitizes observable signal to water motion, and can inform on the complexity of the tissue microstructure. Several DWI acquisition strategies are available, as are different analysis strategies, and models that attempt to capture not only simple diffusion effects, but also perfusion, compartmentalization, and anisotropy. This chapter introduces the basic concepts of DWI alongside common acquisition schemes and models, and gives an overview of specific DWI applications for animal models of renal disease.This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This introduction chapter is complemented by two separate chapters describing the experimental procedure and data analysis.
Collapse
|
4
|
Ljimani A, Caroli A, Laustsen C, Francis S, Mendichovszky IA, Bane O, Nery F, Sharma K, Pohlmann A, Dekkers IA, Vallee JP, Derlin K, Notohamiprodjo M, Lim RP, Palmucci S, Serai SD, Periquito J, Wang ZJ, Froeling M, Thoeny HC, Prasad P, Schneider M, Niendorf T, Pullens P, Sourbron S, Sigmund EE. Consensus-based technical recommendations for clinical translation of renal diffusion-weighted MRI. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2019; 33:177-195. [PMID: 31676990 PMCID: PMC7021760 DOI: 10.1007/s10334-019-00790-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/17/2019] [Accepted: 10/19/2019] [Indexed: 12/13/2022]
Abstract
Objectives Standardization is an important milestone in the validation of DWI-based parameters as imaging biomarkers for renal disease. Here, we propose technical recommendations on three variants of renal DWI, monoexponential DWI, IVIM and DTI, as well as associated MRI biomarkers (ADC, D, D*, f, FA and MD) to aid ongoing international efforts on methodological harmonization. Materials and methods Reported DWI biomarkers from 194 prior renal DWI studies were extracted and Pearson correlations between diffusion biomarkers and protocol parameters were computed. Based on the literature review, surveys were designed for the consensus building. Survey data were collected via Delphi consensus process on renal DWI preparation, acquisition, analysis, and reporting. Consensus was defined as ≥ 75% agreement. Results Correlations were observed between reported diffusion biomarkers and protocol parameters. Out of 87 survey questions, 57 achieved consensus resolution, while many of the remaining questions were resolved by preference (65–74% agreement). Summary of the literature and survey data as well as recommendations for the preparation, acquisition, processing and reporting of renal DWI were provided. Discussion The consensus-based technical recommendations for renal DWI aim to facilitate inter-site harmonization and increase clinical impact of the technique on a larger scale by setting a framework for acquisition protocols for future renal DWI studies. We anticipate an iterative process with continuous updating of the recommendations according to progress in the field. Electronic supplementary material The online version of this article (10.1007/s10334-019-00790-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexandra Ljimani
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany.
| | - Anna Caroli
- Department of Biomedical Engineering, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Christoffer Laustsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Susan Francis
- Sir Peter Mansfield Imaging Centre, University Park, University of Nottingham, Nottingham, NG7 2RD, UK
| | | | - Octavia Bane
- Translational and Molecular Imaging Institute and Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fabio Nery
- Developmental Imaging and Biophysics Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Kanishka Sharma
- Imaging Biomarkers Group, Department of Biomedical Imaging Sciences, University of Leeds, Leeds, UK
| | - Andreas Pohlmann
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
| | - Ilona A Dekkers
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jean-Paul Vallee
- Department of Diagnostic, Geneva University Hospital and University of Geneva, 1211, Geneva-14, Switzerland
| | - Katja Derlin
- Department of Radiology, Hannover Medical School, Hannover, Germany
| | - Mike Notohamiprodjo
- Die Radiologie, Munich, Germany.,Department of Radiology, University Hospital Tuebingen, Tübingen, Germany
| | - Ruth P Lim
- Department of Radiology, Austin Health, The University of Melbourne, Melbourne, Australia
| | - Stefano Palmucci
- Department of Medical Surgical Sciences and Advanced Technologies, Radiology I Unit, University Hospital "Policlinico-Vittorio Emanuele", University of Catania, Catania, Italy
| | - Suraj D Serai
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Joao Periquito
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
| | - Zhen Jane Wang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Martijn Froeling
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Harriet C Thoeny
- Department of Radiology, Hôpital Cantonal Fribourgois (HFR), University of Fribourg, 1708, Fribourg, Switzerland
| | - Pottumarthi Prasad
- Department of Radiology, Center for Advanced Imaging, NorthShore University Health System, Evanston, IL, USA
| | - Moritz Schneider
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany.,Comprehensive Pneumology Center, German Center for Lung Research, Munich, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
| | - Pim Pullens
- Ghent Institute for Functional and Metabolic Imaging, Ghent University, Ghent, Belgium.,Department of Radiology, University Hospital Ghent, Ghent, Belgium
| | - Steven Sourbron
- Imaging Biomarkers Group, Department of Biomedical Imaging Sciences, University of Leeds, Leeds, UK
| | - Eric E Sigmund
- Department of Radiology, Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAI2R), NYU Langone Health, New York, NY, USA
| |
Collapse
|
5
|
Caroli A, Schneider M, Friedli I, Ljimani A, De Seigneux S, Boor P, Gullapudi L, Kazmi I, Mendichovszky IA, Notohamiprodjo M, Selby NM, Thoeny HC, Grenier N, Vallée JP. Diffusion-weighted magnetic resonance imaging to assess diffuse renal pathology: a systematic review and statement paper. Nephrol Dial Transplant 2018; 33:ii29-ii40. [PMID: 30137580 PMCID: PMC6106641 DOI: 10.1093/ndt/gfy163] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 05/02/2018] [Indexed: 12/26/2022] Open
Abstract
Diffusion-weighted magnetic resonance imaging (DWI) is a non-invasive method sensitive to local water motion in the tissue. As a tool to probe the microstructure, including the presence and potentially the degree of renal fibrosis, DWI has the potential to become an effective imaging biomarker. The aim of this review is to discuss the current status of renal DWI in diffuse renal diseases. DWI biomarkers can be classified in the following three main categories: (i) the apparent diffusion coefficient-an overall measure of water diffusion and microcirculation in the tissue; (ii) true diffusion, pseudodiffusion and flowing fraction-providing separate information on diffusion and perfusion or tubular flow; and (iii) fractional anisotropy-measuring the microstructural orientation. An overview of human studies applying renal DWI in diffuse pathologies is given, demonstrating not only the feasibility and intra-study reproducibility of DWI but also highlighting the need for standardization of methods, additional validation and qualification. The current and future role of renal DWI in clinical practice is reviewed, emphasizing its potential as a surrogate and monitoring biomarker for interstitial fibrosis in chronic kidney disease, as well as a surrogate biomarker for the inflammation in acute kidney diseases that may impact patient selection for renal biopsy in acute graft rejection. As part of the international COST (European Cooperation in Science and Technology) action PARENCHIMA (Magnetic Resonance Imaging Biomarkers for Chronic Kidney Disease), aimed at eliminating the barriers to the clinical use of functional renal magnetic resonance imaging, this article provides practical recommendations for future design of clinical studies and the use of renal DWI in clinical practice.
Collapse
Affiliation(s)
- Anna Caroli
- Medical Imaging Unit, Bioengineering Department, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
| | - Moritz Schneider
- Department of Radiology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
- Comprehensive Pneumology Center, German Center for Lung Research, Munich, Germany
| | - Iris Friedli
- Division of Radiology, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Alexandra Ljimani
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Dusseldorf, Germany
| | - Sophie De Seigneux
- Service and Laboratory of Nephrology, Department of Internal Medicine Specialties and Department of Physiology and Metabolism, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Peter Boor
- Institute of Pathology and Division of Nephrology, RWTH University of Aachen, Aachen, Germany
| | - Latha Gullapudi
- Centre for Kidney Research and Innovation, University of Nottingham, Nottingham, UK
| | - Isma Kazmi
- Centre for Kidney Research and Innovation, University of Nottingham, Nottingham, UK
| | - Iosif A Mendichovszky
- Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke’s Hospital, Cambridge, UK
| | | | - Nicholas M Selby
- Centre for Kidney Research and Innovation, University of Nottingham, Nottingham, UK
| | - Harriet C Thoeny
- Department of Diagnostic, Pediatric, and Interventional Radiology, Inselspital University Hospital, Bern, Switzerland
| | - Nicolas Grenier
- Service d'Imagerie Diagnostique et Interventionnelle de l'Adulte, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Jean-Paul Vallée
- Division of Radiology, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| |
Collapse
|