1
|
Wang ZH, Huang DQ, Wang P, Yang L, You Y, Zhao JQ, Zhang YP, Yuan WC. Synthesis of 6/5/3-Fused Tricyclic Scaffolds via Multistep Cascade Cyclization of α-Aryl Vinylsulfoniums with para-Quinamines and para-Quinols. Org Lett 2024; 26:5905-5910. [PMID: 38980194 DOI: 10.1021/acs.orglett.4c01740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Herein, we present a straightforward approach to access hydroindoline-5-one-based 6/5/3-fused polycyclic ring structures through multistep cascade reactions involving α-aryl vinylsulfoniums and para-quinamines. The reactions proceed smoothly under mild conditions to deliver the desired products in generally good isolated yields. This protocol is also applicable to the cascade cycloaddition reactions of α-aryl vinylsulfoniums and para-quinols, effectively generating complex tricyclic scaffolds. In addition, the scale-up synthesis and further derivatizations demonstrate the potential synthetic application of the protocol.
Collapse
Affiliation(s)
- Zhen-Hua Wang
- College of Food and Biological Engineering, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Dong-Qun Huang
- College of Food and Biological Engineering, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Ping Wang
- College of Food and Biological Engineering, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Lei Yang
- College of Food and Biological Engineering, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yong You
- College of Food and Biological Engineering, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Jian-Qiang Zhao
- College of Food and Biological Engineering, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yan-Ping Zhang
- College of Food and Biological Engineering, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Wei-Cheng Yuan
- College of Food and Biological Engineering, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|
2
|
Huang X, Yi C, Bai M, Tang Y, Xu S, Li Y. Ruthenium and Iodine Anion Cocatalyzed Cascade Dihalogenation and Cyclization of Internal Alkyne-Tethered Cyclohexadienones with 1,2-Dihaloethanes. J Org Chem 2024; 89:9686-9694. [PMID: 38907735 DOI: 10.1021/acs.joc.4c00951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
We have established an efficient ruthenium(II) and iodine anion cocatalyzed dihalogenation and cascade cyclization of internal alkyne-tethered cyclohexadienones, which stereoselectively afforded numerous dihalogenation products with a bioactive hydrobenzofuran skeleton in high yields under mild conditions. In this transformation, the reaction pathway was determined by the concentration of electrophilic iodine reagent, which also provided a strategy for control of the reaction selectivity. Furthermore, this method features the use of 1,2-dihaloroethane as the halogen source via iodine anion catalyst.
Collapse
Affiliation(s)
- Xiaoli Huang
- Department of Material Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Cui Yi
- Department of Material Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Meiqi Bai
- Department of Material Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yuhai Tang
- Department of Material Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Silong Xu
- Department of Material Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yang Li
- Department of Material Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
3
|
Zhuo JR, Zhao JQ, Yang L, Wu YL, Zhang YP, You Y, Wang ZH, Zhou MQ, Yuan WC. Thiol-Triggered Tandem Dearomative Michael Addition/Intramolecular Henry Reaction of 2-Nitrobenzofurans: Access to Sulfur-Containing Polyheterocyclic Compounds. Org Lett 2024; 26:2623-2628. [PMID: 38522081 DOI: 10.1021/acs.orglett.4c00646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
An efficient dearomative cyclization of 2-nitrobenzofurans via a thiol-triggered tandem Michael addition/intramolecular Henry reaction has been developed. A range of thiochromeno[3,2-b]benzofuran-11-ols and tetrahydrothieno[3,2-b]benzofuran-3-ols could be obtained in up to 99% yield and up to >20:1 dr. The valuable thiochromone fused benzofurans could be prepared with the reaction of 2-nitrobenzofurans and 2-mercaptobenzaldehyde via the tandem dearomative Michael addition/intramolecular Henry reaction/rearomatization/oxidative dehydrogenation process in a one-pot two-step operation. A mechanism for the reaction was tentatively proposed.
Collapse
Affiliation(s)
- Jun-Rui Zhuo
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
- Zunyi Medical and Pharmaceutical College, Zunyi 563006, China
| | - Jian-Qiang Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Lei Yang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yu-Lu Wu
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yan-Ping Zhang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yong You
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Zhen-Hua Wang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Ming-Qiang Zhou
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Cheng Yuan
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Garai B, Ali MR, Mandal R, Sundararaju B. Cp*Co(III)-Catalyzed C(8)-Nucleophilic Cascade Cyclization of Quinoline N-Oxide with 1,6-Enyne. Org Lett 2023; 25:2018-2023. [PMID: 36926924 DOI: 10.1021/acs.orglett.3c00305] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The C(8)-selective nucleophilic cascade cyclization of quinoline N-oxide with easily derived 1,6-enyne from phenol derivatives is demonstrated. A variety of quinoline N-oxide and alkynes are discovered to be suitable for producing a library of quinoline N-oxide tethered cis-hydrobenzofurans with high yields and excellent functional group tolerance. The utility of the protocol has been accomplished by post-synthetic modification of the cyclized product. The mechanistic studies indicate a base-assisted internal electrophilic-type substitution (BIES)-type pathway for C-H bond activation, and electrospray ionization mass spectrometry (ESI-MS) analysis of the stoichiometric reaction confirmed the formation of a key five-membered cobaltacycle.
Collapse
Affiliation(s)
- Bholanath Garai
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India
| | - Molla Rahamat Ali
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India
| | - Rajib Mandal
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India
| | - Basker Sundararaju
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India
| |
Collapse
|
5
|
Ge J, Wu H, Kong D, Huang G. Mechanism and Origins of Enantioselectivity of Cobalt-Catalyzed Intermolecular Hydroacylation/Cyclization of 1,6-Enynes with Aldehydes. Org Chem Front 2022. [DOI: 10.1039/d2qo00179a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Density functional theory calculations were performed to investigate the cobalt-catalyzed intermolecular hydroacylation/cyclization of 1,6-enynes. The computations show that the initial oxidative cyclization constitutes the rate-determining step of the overall reaction....
Collapse
|