1
|
Qian Z, Chen K, Yang L, Li C. Apoptosis-inducing factor 1 mediates Vibrio splendidus-induced coelomocyte apoptosis via importin β dependent nuclear translocation in Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109491. [PMID: 38490346 DOI: 10.1016/j.fsi.2024.109491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/23/2024] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
As is well known, apoptosis is an important form of immune response and immune regulation, particularly playing a crucial role in combating microbial infections. Apoptosis-inducing factor 1 (AIF-1) is essential for apoptosis to induce chromatin condensation and DNA fragmentation via a caspase-independent pathway. The nuclear translocation of AIF-1 is a key step in apoptosis but the molecular mechanism is still unclear. In this study, the homologous gene of AIF-1, named AjAIF-1, was cloned and identified in Apostichopus japonicus. The mRNA expression of AjAIF-1 was significantly increased by 46.63-fold after Vibrio splendidus challenge. Silencing of AjAIF-1 was found to significantly inhibit coelomocyte apoptosis because the apoptosis rate of coelomocyte decreased by 0.62-fold lower compared with the control group. AjAIF-1 was able to promote coelomocyte apoptosis through nuclear translocation under the V. splendidus challenge. Moreover, AjAIF-1 and Ajimportin β were mainly co-localized around the nucleus in vivo and silencing Ajimportin β significantly inhibited the nuclear translocation of AjAIF-1 and suppressed coelomocyte apoptosis by 0.64-fold compared with control. In summary, nuclear translocation of AjAIF-1 will likely mediate coelomocyte apoptosis through an importin β-dependent pathway in sea cucumber.
Collapse
Affiliation(s)
- Zepeng Qian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Kaiyu Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Lei Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China.
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
| |
Collapse
|
2
|
Li X, Chen T, Wu X, Jiang X, Luo P, E Z, Hu C, Ren C. Apoptosis-Inducing Factor 2 (AIF-2) Mediates a Caspase-Independent Apoptotic Pathway in the Tropical Sea Cucumber ( Holothuria leucospilota). Int J Mol Sci 2022; 23:ijms23063008. [PMID: 35328428 PMCID: PMC8954137 DOI: 10.3390/ijms23063008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 11/16/2022] Open
Abstract
Apoptosis, also known as programmed cell death, is a biological process that is critical for embryonic development, organic differentiation, and tissue homeostasis of organisms. As an essential mitochondrial flavoprotein, the apoptosis-inducing factor (AIF) can directly mediate the caspase-independent mitochondrial apoptotic pathway. In this study, we identified and characterized a novel AIF-2 (HlAIF-2) from the tropical sea cucumber Holothuria leucospilota. HlAIF-2 contains a conserved Pyr_redox_2 domain and a putative C-terminal nuclear localization sequence (NLS) but lacks an N-terminal mitochondrial localization sequence (MLS). In addition, both NADH- and FAD-binding domains for oxidoreductase function are conserved in HlAIF-2. HlAIF-2 mRNA was ubiquitously detected in all tissues and increased significantly during larval development. The transcript expression of HlAIF-2 was significantly upregulated after treatment with CdCl2, but not the pathogen-associated molecular patterns (PAMPs) in primary coelomocytes. In HEK293T cells, HlAIF-2 protein was located in the cytoplasm and nucleus, and tended to transfer into the nucleus by CdCl2 incubation. Moreover, there was an overexpression of HlAIF-2-induced apoptosis in HEK293T cells. As a whole, this study provides the first evidence for heavy metal-induced apoptosis mediated by AIF-2 in sea cucumbers, and it may contribute to increasing the basic knowledge of the caspase-independent apoptotic pathway in ancient echinoderm species.
Collapse
Affiliation(s)
- Xiaomin Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (X.L.); (T.C.); (X.J.); (P.L.); (Z.E.); (C.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Chen
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (X.L.); (T.C.); (X.J.); (P.L.); (Z.E.); (C.H.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510301, China
| | - Xiaofen Wu
- Institute for Integrative Biology of the Cell, University of Paris-Saclay, 91198 Paris, France;
| | - Xiao Jiang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (X.L.); (T.C.); (X.J.); (P.L.); (Z.E.); (C.H.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510301, China
| | - Peng Luo
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (X.L.); (T.C.); (X.J.); (P.L.); (Z.E.); (C.H.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510301, China
| | - Zixuan E
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (X.L.); (T.C.); (X.J.); (P.L.); (Z.E.); (C.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaoqun Hu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (X.L.); (T.C.); (X.J.); (P.L.); (Z.E.); (C.H.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510301, China
| | - Chunhua Ren
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (X.L.); (T.C.); (X.J.); (P.L.); (Z.E.); (C.H.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510301, China
- Correspondence:
| |
Collapse
|