1
|
Dias BDS, Antunes SR, Pinheiro DDR, Burbano RMR, Borges BDN. Mitochondrial Complex I Molecular Alterations in Sapajus apella as a Human Gastric Carcinogenesis Model After MNU Exposure. J Med Primatol 2025; 54:e70017. [PMID: 40166901 PMCID: PMC11959525 DOI: 10.1111/jmp.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 03/13/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025]
Abstract
INTRODUCTION Gastric cancer (GC) remains among the top five global health problems. Therefore, comprehending the tumor energetic behavior is critical to understanding its progression. This study aimed to investigate mitochondrial DNA (mtDNA) alterations in GC cancer cell lines in an animal model. MATERIAL AND METHODS Four mitochondrial genes (COI, ATP8, ND1, and ND3) were analyzed in GC (AGP01, ACP02, ACP03, and PG100) and control (Walker 256 carcinosarcoma) cell lines inoculated in Sapajus apella, exposed and not exposed to N-methyl-N-nitrosourea. RESULTS Two synonymous alterations were identified in ND1. In ND3, a non-synonymous alteration (A10398G ➔ Thr114Ala) may decrease the respiratory chain Complex I efficiency, enhancing cellular reactive oxygen species and contributing to mtDNA damage. As alterations in ND1 and ND3 were observed in highly aggressive cell lines, our results suggest these genes may play crucial roles in energetic efficiency and gastric carcinogenesis.
Collapse
Affiliation(s)
- Bárbara dos Santos Dias
- Albert Einstein Research and Educational InstituteHospital Israelita Albert EinsteinSão PauloSão Paulo estadoBrazil
| | | | | | - Rommel Mario Rodriguez Burbano
- Molecular Biology LaboratoryOphir Loyola HospitalBelémParáBrazil
- Cellular Biology Laboratory, Institute of Biological SciencesFederal University of ParáBelémParáBrazil
| | | |
Collapse
|
2
|
Gong J, Kim DM, Freeman MR, Kim H, Ellis L, Smith B, Theodorescu D, Posadas E, Figlin R, Bhowmick N, Freedland SJ. Genetic and biological drivers of prostate cancer disparities in Black men. Nat Rev Urol 2024; 21:274-289. [PMID: 37964070 DOI: 10.1038/s41585-023-00828-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2023] [Indexed: 11/16/2023]
Abstract
Black men with prostate cancer have historically had worse outcomes than white men with prostate cancer. The causes of this disparity in outcomes are multi-factorial, but a potential basis is that prostate cancers in Black men are biologically distinct from prostate cancers in white men. Evidence suggests that genetic and ancestral factors, molecular pathways involving androgen and non-androgen receptor signalling, inflammation, epigenetics, the tumour microenvironment and tumour metabolism are contributing factors to the racial disparities observed. Key genetic and molecular pathways linked to prostate cancer risk and aggressiveness have potential clinical relevance. Describing biological drivers of prostate cancer disparities could inform efforts to improve outcomes for Black men with prostate cancer.
Collapse
Affiliation(s)
- Jun Gong
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Daniel M Kim
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Michael R Freeman
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Hyung Kim
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Leigh Ellis
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Bethany Smith
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dan Theodorescu
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Edwin Posadas
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Robert Figlin
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Neil Bhowmick
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Stephen J Freedland
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Section of Urology, Durham VA Medical Center, Durham, NC, USA
| |
Collapse
|
3
|
Mitochondrial DNA Changes in Genes of Respiratory Complexes III, IV and V Could Be Related to Brain Tumours in Humans. Int J Mol Sci 2022; 23:ijms232012131. [PMID: 36292984 PMCID: PMC9603055 DOI: 10.3390/ijms232012131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/02/2022] [Accepted: 10/09/2022] [Indexed: 11/17/2022] Open
Abstract
Mitochondrial DNA changes can contribute to both an increased and decreased likelihood of cancer. This process is complex and not fully understood. Polymorphisms and mutations, especially those of the missense type, can affect mitochondrial functions, particularly if the conservative domain of the protein is concerned. This study aimed to identify the possible relationships between brain gliomas and the occurrence of specific mitochondrial DNA polymorphisms and mutations in respiratory complexes III, IV and V. The investigated material included blood and tumour material collected from 30 Caucasian patients diagnosed with WHO grade II, III or IV glioma. The mitochondrial genetic variants were investigated across the mitochondrial genome using next-generation sequencing (MiSeq/FGx system—Illumina). The study investigated, in silico, the effects of missense mutations on the biochemical properties, structure and functioning of the encoded protein, as well as their potential harmfulness. The A14793G (MTCYB), A15758G, (MT-CYB), A15218G (MT-CYB), G7444A (MT-CO1) polymorphisms, and the T15663C (MT-CYB) and G8959A (ATP6) mutations were assessed in silico as harmful alterations that could be involved in oncogenesis. The G8959A (E145K) ATP6 missense mutation has not been described in the literature so far. In light of these results, further research into the role of mtDNA changes in brain tumours should be conducted.
Collapse
|
4
|
Dovey ZS, Nair SS, Chakravarty D, Tewari AK. Racial disparity in prostate cancer in the African American population with actionable ideas and novel immunotherapies. Cancer Rep (Hoboken) 2021; 4:e1340. [PMID: 33599076 PMCID: PMC8551995 DOI: 10.1002/cnr2.1340] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/22/2020] [Accepted: 12/02/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND African Americans (AAs) in the United States are known to have a higher incidence and mortality for Prostate Cancer (PCa). The drivers of this epidemiological disparity are multifactorial, including socioeconomic factors leading to lifestyle and dietary issues, healthcare access problems, and potentially tumor biology. RECENT FINDINGS Although recent evidence suggests once access is equal, AA men have equal outcomes to Caucasian American (CA) men, differences in PCa incidence remain, and there is much to do to reverse disparities in mortality across the USA. A deeper understanding of these issues, both at the clinical and molecular level, can facilitate improved outcomes in the AA population. This review first discusses PCa oncogenesis in the context of its diverse hallmarks before benchmarking key molecular and genomic differences for PCa in AA men that have emerged in the recent literature. Studies have emphasized the importance of tumor microenvironment that contributes to both the unequal cancer burden and differences in clinical outcome between the races. Management of comorbidities like obesity, hypertension, and diabetes will provide an essential means of reducing prostate cancer incidence in AA men. Although requiring further AA specific research, several new treatment strategies such as immune checkpoint inhibitors used in combination PARP inhibitors and other emerging vaccines, including Sipuleucel-T, have demonstrated some proven efficacy. CONCLUSION Genomic profiling to integrate clinical and genomic data for diagnosis, prognosis, and treatment will allow physicians to plan a "Precision Medicine" approach to AA men. There is a pressing need for further research for risk stratification, which may allow early identification of AA men with higher risk disease based on their unique clinical, genomic, and immunological profiles, which can then be mapped to appropriate clinical trials. Treatment options are outlined, with a concise description of recent work in AA specific populations, detailing several targeted therapies, including immunotherapy. Also, a summary of current clinical trials involving AA men is presented, and it is important that policies are adopted to ensure that AA men are actively recruited. Although it is encouraging that many of these explore the lifestyle and educational initiatives and therapeutic interventions, there is much still work to be done to reduce incidence and mortality in AA men and equalize current racial disparities.
Collapse
Affiliation(s)
- Zachary S. Dovey
- The Department of UrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Sujit S. Nair
- The Department of UrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Dimple Chakravarty
- The Department of UrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Ashutosh K. Tewari
- The Department of UrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| |
Collapse
|
5
|
Abraham-Miranda J, Awasthi S, Yamoah K. Immunologic disparities in prostate cancer between American men of African and European descent. Crit Rev Oncol Hematol 2021; 164:103426. [PMID: 34273500 DOI: 10.1016/j.critrevonc.2021.103426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/18/2020] [Accepted: 07/12/2021] [Indexed: 11/27/2022] Open
Abstract
Health disparities between American men of African and European descent (AA and EA, respectively) can be attributed to multiple factors, including disparities in socioeconomic status, access to healthcare, lifestyle, ancestry, and molecular aberrations. Numerous clinical trials and research studies are being performed to identify new and better therapeutic approaches to detect and treat prostate cancer. Of potential concern is the fact that the majority of the patients enrolled on these trials are EA. This disproportionate enrollment of EA could have implications when disease management recommendations are proposed without regard to the existing disparities in prostate cancer between races. With increasing advancements in immunotherapies, the immunological disparities between men of diverse ethnicities will need to be fully explored to develop novel and effective therapeutic approaches for prostate cancer patients globally. To help address this need, this review fully describes inequalities in prostate cancer at the immunological level between AA and EA.
Collapse
Affiliation(s)
- Julieta Abraham-Miranda
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Shivanshu Awasthi
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Kosj Yamoah
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA; Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
6
|
Chen Z, Cao B, Edwards A, Deng H, Zhang K. A deep imputation and inference framework for estimating personalized and race-specific causal effects of genomic alterations on PSA. J Bioinform Comput Biol 2021; 19:2150016. [PMID: 34225568 DOI: 10.1142/s0219720021500165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Prostate Specific Antigen (PSA) level in the serum is one of the most widely used markers in monitoring prostate cancer (PCa) progression, treatment response, and disease relapse. Although significant efforts have been taken to analyze various socioeconomic and cultural factors that contribute to the racial disparities in PCa, limited research has been performed to quantitatively understand how and to what extent molecular alterations may impact differential PSA levels present at varied tumor status between African-American and European-American men. Moreover, missing values among patients add another layer of difficulty in precisely inferring their outcomes. In light of these issues, we propose a data-driven, deep learning-based imputation and inference framework (DIIF). DIIF seamlessly encapsulates two modules: an imputation module driven by a regularized deep autoencoder for imputing critical missing information and an inference module in which two deep variational autoencoders are coupled with a graphical inference model to quantify the personalized and race-specific causal effects. Large-scale empirical studies on the independent sub-cohorts of The Cancer Genome Atlas (TCGA) PCa patients demonstrate the effectiveness of DIIF. We further found that somatic mutations in TP53, ATM, PTEN, FOXA1, and PIK3CA are statistically significant genomic factors that may explain the racial disparities in different PCa features characterized by PSA.
Collapse
Affiliation(s)
- Zhong Chen
- Department of Computer Science, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | - Bo Cao
- College of Pharmacy, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | - Andrea Edwards
- Department of Computer Science, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | - Hongwen Deng
- Center for Bioinformatics and Genomics, Tulane University, New Orleans LA 70112, USA
| | - Kun Zhang
- Department of Computer Science, Xavier University of Louisiana, New Orleans, LA 70125, USA.,Bioinformatics Core of Xavier RCMI Center for Cancer Research, Xavier University of Louisiana, New Orleans, LA 70125, USA
| |
Collapse
|
7
|
Kozakiewicz P, Grzybowska-Szatkowska L, Ciesielka M, Rzymowska J. The Role of Mitochondria in Carcinogenesis. Int J Mol Sci 2021; 22:ijms22105100. [PMID: 34065857 PMCID: PMC8151940 DOI: 10.3390/ijms22105100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 12/20/2022] Open
Abstract
The mitochondria are essential for normal cell functioning. Changes in mitochondrial DNA (mtDNA) may affect the occurrence of some chronic diseases and cancer. This process is complex and not entirely understood. The assignment to a particular mitochondrial haplogroup may be a factor that either contributes to cancer development or reduces its likelihood. Mutations in mtDNA occurring via an increase in reactive oxygen species may favour the occurrence of further changes both in mitochondrial and nuclear DNA. Mitochondrial DNA mutations in postmitotic cells are not inherited, but may play a role both in initiation and progression of cancer. One of the first discovered polymorphisms associated with cancer was in the gene NADH-ubiquinone oxidoreductase chain 3 (mt-ND3) and it was typical of haplogroup N. In prostate cancer, these mutations and polymorphisms involve a gene encoding subunit I of respiratory complex IV cytochrome c oxidase subunit 1 gene (COI). At present, a growing number of studies also address the impact of mtDNA polymorphisms on prognosis in cancer patients. Some of the mitochondrial DNA polymorphisms occur in both chronic disease and cancer, for instance polymorphism G5913A characteristic of prostate cancer and hypertension.
Collapse
Affiliation(s)
- Paulina Kozakiewicz
- Department of Radiotherapy, Medical University in Lublin, Chodźki 7, 20-093 Lublin, Poland; (L.G.-S.); (M.C.)
- Department of Radiotherapy, St. John’s Cancer Centre, The Regional Oncology Centre of Lublin Jaczewskiego 7, 20-090 Lublin, Poland
- Correspondence:
| | - Ludmiła Grzybowska-Szatkowska
- Department of Radiotherapy, Medical University in Lublin, Chodźki 7, 20-093 Lublin, Poland; (L.G.-S.); (M.C.)
- Department of Radiotherapy, St. John’s Cancer Centre, The Regional Oncology Centre of Lublin Jaczewskiego 7, 20-090 Lublin, Poland
| | - Marzanna Ciesielka
- Department of Radiotherapy, Medical University in Lublin, Chodźki 7, 20-093 Lublin, Poland; (L.G.-S.); (M.C.)
- Chair and Department of Forensic Medicine, Medical University in Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Jolanta Rzymowska
- Chair and Department of Biology and Genetics, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland;
| |
Collapse
|
8
|
Chen Z, Edwards A, Hicks C, Zhang K. Inferring Personalized and Race-Specific Causal Effects of Genomic Aberrations on Gleason Scores: A Deep Latent Variable Model. Front Oncol 2020; 10:272. [PMID: 32231997 PMCID: PMC7082760 DOI: 10.3389/fonc.2020.00272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 02/17/2020] [Indexed: 12/19/2022] Open
Abstract
Extensive research has examined socioeconomic factors influencing prostate cancer (PCa) disparities. However, to what extent molecular and genetic mechanisms may also contribute to these inequalities still remains elusive. Although various in vitro, in vivo, and population studies have originated to address this issue, they are often very costly and time-consuming by nature. In this work, we attempt to explore this problem by a preliminary study, where a joint deep latent variable model (DLVM) is proposed to in silico quantify the personalized and race-specific effects that a genomic aberration may exert on the Gleason Score (GS) of each individual PCa patient. The core of the proposed model is a deep variational autoencoder (VAE) framework, which follows the causal structure of inference with proxies. Extensive experimental results on The Cancer Genome Atlas (TCGA) 270 European-American (EA) and 43 African-American (AA) PCa patients demonstrate that ERG fusions, somatic mutations in SPOP and ATM, and copy number alterations (CNAs) in ERG are the statistically significant genomic factors across all low-, intermediate-, and high-grade PCa that may explain the disparities between these two groups. Moreover, compared to a state-of-the-art deep inference method, our proposed method achieves much higher precision in causal effect inference in terms of the impact of a studied genomic aberration on GS. Further validation on an independent set and the assessment of the genomic-risk scores along with corresponding confidence intervals not only validate our results but also provide valuable insight to the observed racial disparity between these two groups regarding PCa metastasis. The pinpointed significant genomic factors may shed light on the molecular mechanism of cancer disparities in PCa and warrant further investigation.
Collapse
Affiliation(s)
- Zhong Chen
- Department of Computer Science, Xavier University of Louisiana, New Orleans, LA, United States
| | - Andrea Edwards
- Department of Computer Science, Xavier University of Louisiana, New Orleans, LA, United States
| | - Chindo Hicks
- Department of Genetics, LSU Health Sciences Center New Orleans, New Orleans, LA, United States
| | - Kun Zhang
- Department of Computer Science, Xavier University of Louisiana, New Orleans, LA, United States
- Bioinformatics Core of Xavier RCMI Center for Cancer Research, Xavier University of Louisiana, New Orleans, LA, United States
| |
Collapse
|
9
|
Kalsbeek AM, Chan EK, Corcoran NM, Hovens CM, Hayes VM. Mitochondrial genome variation and prostate cancer: a review of the mutational landscape and application to clinical management. Oncotarget 2017; 8:71342-71357. [PMID: 29050365 PMCID: PMC5642640 DOI: 10.18632/oncotarget.19926] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 07/26/2017] [Indexed: 12/17/2022] Open
Abstract
Prostate cancer is a genetic disease. While next generation sequencing has allowed for the emergence of molecular taxonomy, classification is restricted to the nuclear genome. Mutations within the maternally inherited mitochondrial genome are known to impact cancer pathogenesis, as a result of disturbances in energy metabolism and apoptosis. With a higher mutation rate, limited repair and increased copy number compared to the nuclear genome, the clinical relevance of mitochondrial DNA (mtDNA) variation requires deeper exploration. Here we provide a systematic review of the landscape of prostate cancer associated mtDNA variation. While the jury is still out on the association between inherited mtDNA variation and prostate cancer risk, we collate a total of 749 uniquely reported prostate cancer associated somatic mutations. Support exists for number of somatic events, extent of heteroplasmy, and rate of recurrence of mtDNA mutations, increasing with disease aggression. While, the predicted pathogenic impact for recurrent prostate cancer associated mutations appears negligible, evidence exists for carcinogenic mutations impacting the cytochrome c oxidase complex and regulating metastasis through elevated reactive oxygen species production. Due to a lack of lethal cohort analyses, we provide additional unpublished data for metastatic disease. Discussing the advantages of mtDNA as a prostate cancer biomarker, we provide a review of current progress of including elevated mtDNA levels, of a large somatic deletion, acquired tRNAs mutations, heteroplasmy and total number of somatic events (mutational load). We confirm via meta-analysis a significant association between mtDNA mutational load and pathological staging at diagnosis or surgery (p < 0.0001).
Collapse
Affiliation(s)
- Anton M.F. Kalsbeek
- Laboratory for Human Comparative and Prostate Cancer Genomics, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- Medical Faculty, University of New South Wales, Randwick, New South Wales, Australia
| | - Eva K.F. Chan
- Laboratory for Human Comparative and Prostate Cancer Genomics, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- Medical Faculty, University of New South Wales, Randwick, New South Wales, Australia
| | - Niall M. Corcoran
- Australian Prostate Cancer Research Centre Epworth, Richmond, Victoria, Australia
- Departments of Urology and Surgery, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Christopher M. Hovens
- Australian Prostate Cancer Research Centre Epworth, Richmond, Victoria, Australia
- Departments of Urology and Surgery, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Vanessa M. Hayes
- Laboratory for Human Comparative and Prostate Cancer Genomics, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- Medical Faculty, University of New South Wales, Randwick, New South Wales, Australia
- Central Clinical School, University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
10
|
Wang H, Xu J, Li D, Zhang S, Guo Z. Identification of sequence polymorphisms in the mitochondrial cytochrome c oxidase genes as risk factors for hepatocellular carcinoma. J Clin Lab Anal 2017; 32. [PMID: 28703354 DOI: 10.1002/jcla.22299] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/15/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Single nucleotide polymorphisms (SNPs) accumulated in the mitochondrial DNA (mtDNA) is susceptible to the tumor formation. We discovered previously that SNPs in the mitochondrial displacement loop (D-loop) was associated with the risk of hepatocellular carcinoma (HCC). METHODS The cytochrome c oxidase (COX) genes of mtDNA were sequenced between 107 HCC patients and 100 matched healthy controls. The χ2 test was used to analyze single SNPs' statistical difference between HCC patients and healthy controls. RESULTS In this study, cancer risk-associated SNPs in the COX genes of mtDNA coding region were assessed in HCC patients and health controls. The nucleotide position at site 9545A/G (P=.036) was identified its association for HCC with the 9545G allele susceptible to cancer risk. CONCLUSIONS The SNPs in the COX genes may help us to evaluate the cancer risk of HCC.
Collapse
Affiliation(s)
- Hongfang Wang
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Jinsheng Xu
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Demao Li
- Department of Thoracic Surgery, Xingtai People's Hospital, Xingtai, China
| | - Shenglei Zhang
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhanjun Guo
- Department of Rheumatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
11
|
Bhardwaj A, Srivastava SK, Khan MA, Prajapati VK, Singh S, Carter JE, Singh AP. Racial disparities in prostate cancer: a molecular perspective. Front Biosci (Landmark Ed) 2017; 22:772-782. [PMID: 27814645 DOI: 10.2741/4515] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Prostate cancer incidence and mortality rates are remarkably higher in African-American men as compared to their European-Americans counterparts. Despite these recognitions, precise causes underlying such prevalent racial disparities remain poorly understood. Although socioeconomic factors could account for such differences up to a certain extent, it is now being increasingly realized that such disparity has a molecular basis. Indeed, several differences, including genetic polymorphism, gene mutations, epigenetic modifications, miRNAs alterations, etc., have been reported in malignant prostate tissues from patients of diverse racial backgrounds. Here, we attempt to provide a molecular perspective on prostate cancer racial disparities by gathering available information on these associated factors and discussing their potential significance in disproportionate incidence and clinical outcomes.
Collapse
Affiliation(s)
- Arun Bhardwaj
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, 1660 Spring Hill Avenue, Mobile-36604-1405, Alabama, USA,
| | - Sanjeev K Srivastava
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Mohammad Aslam Khan
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Vijay K Prajapati
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Seema Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA,Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | - James E Carter
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | - Ajay P Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA,Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| |
Collapse
|
12
|
Arnold RS, Fedewa SA, Goodman M, Osunkoya AO, Kissick HT, Morrissey C, True LD, Petros JA. Bone metastasis in prostate cancer: Recurring mitochondrial DNA mutation reveals selective pressure exerted by the bone microenvironment. Bone 2015; 78:81-6. [PMID: 25952970 PMCID: PMC4466124 DOI: 10.1016/j.bone.2015.04.046] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 04/28/2015] [Accepted: 04/29/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND Cancer progression and metastasis occur such that cells with acquired mutations enhancing growth and survival (or inhibiting cell death) increase in number, a concept that has been recognized as analogous to Darwinian evolution of species since Peter C. Nowell's description in 1976. Selective forces include those intrinsic to the host (including metastatic site) as well as those resulting from anti-cancer therapies. By examining the mutational status of multiple tumor sites within an individual patient some insight may be gained into those genetic variants that enhance site-specific metastasis. By comparing these data across multiple individuals, recurrent patterns may identify alterations that are fundamental to successful site-specific metastasis. METHODS We sequenced the mitochondrial genome in 10 prostate cancer patients with bone metastases enrolled in a rapid autopsy program. Patients had late stage disease and received androgen ablation and frequently other systemic therapies. For each of 9 patients, 4 separate tissues were sequenced: the primary prostate cancer, a soft tissue metastasis, a bone metastasis and an uninvolved normal tissue that served as the non-cancerous control. An additional (10th) patient had no primary prostate available for sequencing but had both metastatic sites (and control DNA) sequenced. We then examined the number and location of somatically acquired mitochondrial DNA (mtDNA) mutations in the primary tumor and two metastatic sites in each individual patient. Finally, we compared patients with each other to determine any common patterns of somatic mutation. RESULTS Somatic mutations were significantly more numerous in the bone compared to either the primary tumor or soft tissue metastases. A missense mutation at nucleotide position (n.p.) 10398 (A10398G; Thr114Ala) in the respiratory complex I gene ND3 was the most common (7 of 10 patients) and was detected only in the bone. Other notable somatic mutations that occurred in more than one patient include a tRNA Arg mutation at n.p. 10436 and a tRNA Thr mutation at n.p. 15928. The tRNA Arg mutation was restricted to bone metastases and occurred in three of 10 patients (30%). Somatic mutation at 15928 was not restricted to the bone and also occurred in three patients. CONCLUSIONS Mitochondrial genomic variation was greater in metastatic sites than in the primary tumor and bone metastases had statistically significantly greater numbers of somatic mutations than either the primary or the soft tissue metastases. The genome was not mutated randomly. At least one mutational "hot-spot" was identified at the individual base level (nucleotide position 10398 in bone metastases) indicating a pervasive selective pressure for bone metastatic cells that had acquired the 10398 mtDNA mutation. Two additional recurrent mutations (tRNA Arg and tRNA Thr) support the concept of bone site-specific "survival of the fittest" as revealed by variation in the mitochondrial genome and selective pressure exerted by the metastatic site.
Collapse
Affiliation(s)
- Rebecca S Arnold
- Department of Urology, Emory University School of Medicine, Atlanta, GA 30322, USA; The Atlanta VA Medical Center, Decatur, GA 30033, USA
| | - Stacey A Fedewa
- Emory University School of Public Health, Department of Epidemiology, Atlanta, GA 30322, USA
| | - Michael Goodman
- Emory University School of Public Health, Department of Epidemiology, Atlanta, GA 30322, USA; Emory University Winship Cancer Institute, Atlanta, GA 30322, USA
| | - Adeboye O Osunkoya
- Department of Urology, Emory University School of Medicine, Atlanta, GA 30322, USA; The Atlanta VA Medical Center, Decatur, GA 30033, USA; Emory University Winship Cancer Institute, Atlanta, GA 30322, USA; Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Haydn T Kissick
- Department of Urology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, WA 98195, USA
| | - Lawrence D True
- Department of Pathology, University of Washington Medical Center, Seattle, WA 98195, USA
| | - John A Petros
- Department of Urology, Emory University School of Medicine, Atlanta, GA 30322, USA; The Atlanta VA Medical Center, Decatur, GA 30033, USA; Emory University Winship Cancer Institute, Atlanta, GA 30322, USA; Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
13
|
Coffey DS. Evolution: Back to the future to understand and control prostate cancer. Asian J Urol 2014; 1:4-11. [PMID: 29511632 PMCID: PMC5832888 DOI: 10.1016/j.ajur.2014.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 09/06/2014] [Indexed: 12/03/2022] Open
Affiliation(s)
- Donald S Coffey
- Brady Urological Institute, The Johns Hopkins Hospital, Baltimore, MD, USA
| |
Collapse
|
14
|
Mitochondrial D-loop and cytochrome oxidase C subunit I polymorphisms among the breast cancer patients of Mizoram, Northeast India. Curr Genet 2014; 60:201-12. [PMID: 24719079 DOI: 10.1007/s00294-014-0425-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Revised: 03/23/2014] [Accepted: 03/24/2014] [Indexed: 10/25/2022]
Abstract
Mitochondrial DNA (mtDNA) is known for its high frequencies of polymorphisms and mutations as it is prone to oxidative stress. The aim of the present study is to assess the novel mutations in mitochondrial genes from blood samples among the breast cancer patients from a less studied Northeast Indian population. D, B, L haplogroups were observed in the cancer samples and a total of 44 mtDNA D-loop sequence variations at 42 distinct nucleotide positions were found. All the sequence variations were transitional substitutions and 6 were heteroplasmic states, except for a cytosine copy number change (9C/8C) at np 303e309 in three samples examined. A total of 88 Cytochrome Oxidase C subunit I (COXI) sequence differences with respect to the Revised Cambridge Reference Sequence (rCRS) were identified including 20 missense variants with 100 % sample mutation frequency. All 20 missense mutations are highly conserved with a Cumulate Index of 100 %. Among 88 COXI mutations, 24 (13 were Non-Synonymous and 11 were Synonymous) were not previously reported (novel mutation) in the literature or the public mtDNA mutation databases. Analysis of three-dimensional structure of COXI open reading frame (ORF) predicted the effect of one single codon (96R > C, 217T > I, 224-225GG > EE and 227D > T) mutations located in the signal peptide binding position. Analysis of mitochondrial DNA mutations, as a viable alternative, has the advantage of being capable of detecting inherent risk factors for breast cancer development.
Collapse
|
15
|
An inherited heteroplasmic mutation in mitochondrial gene COI in a patient with prostate cancer alters reactive oxygen, reactive nitrogen and proliferation. BIOMED RESEARCH INTERNATIONAL 2012; 2013:239257. [PMID: 23509693 PMCID: PMC3591245 DOI: 10.1155/2013/239257] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 08/08/2012] [Accepted: 08/09/2012] [Indexed: 11/23/2022]
Abstract
Mitochondrial DNA (mtDNA) mutations have been found in many cancers but the physiological derangements caused by such mutations have remained elusive. Prostate cancer is associated with both inherited and somatic mutations in the cytochrome c oxidase (COI) gene. We present a prostate cancer patient-derived rare heteroplasmic mutation of this gene, part of mitochondrial respiratory complex IV. Functional studies indicate that this mutation leads to the simultaneous decrease in cytochrome oxidation, increase in reactive oxygen, and increased reactive nitrogen. These data suggest that mitochondrial DNA mutations resulting in increased reactive oxygen and reactive nitrogen generation may be involved in prostate cancer biology.
Collapse
|