1
|
Amiri S, Azadmanesh K, Dehghan Shasaltaneh M, Mayahi V, Naghdi N. The Implication of Androgens in the Presence of Protein Kinase C to Repair Alzheimer’s Disease-Induced Cognitive Dysfunction. IRANIAN BIOMEDICAL JOURNAL 2020; 24:64-80. [PMID: 31677609 PMCID: PMC6984714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/10/2019] [Indexed: 03/29/2024]
Abstract
Aging, as a major risk factor of memory deficiency, affects neural signaling pathways in hippocampus. In particular, age-dependent androgens deficiency causes cognitive impairments. Several enzymes like protein kinase C (PKC) are involved in memory deficiency. Indeed, PKC regulatory process mediates α-secretase activation to cleave APP in β-amyloid cascade and tau proteins phosphorylation mechanism. Androgens and cortisol regulate PKC signaling pathways, affecting the modulation of receptor for activated C kinase 1. Mitogen-activated protein kinase/ERK signaling pathway depends on CREB activity in hippocampal neurons and is involved in regulatory processes via PKC and androgens. Therefore, testosterone and PKC contribute in the neuronal apoptosis. The present review summarizes the current status of androgens, PKC, and their influence on cognitive learning. Inconsistencies in experimental investigations related to this fundamental correlation are also discussed, with emphasis on the mentioned contributors as the probable potent candidates for learning and memory improvement.
Collapse
Affiliation(s)
- Sara Amiri
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | | | | | - Vafa Mayahi
- Department of Microbiology, Islamic Azad University, Karaj, Iran
| | - Nasser Naghdi
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
2
|
Maliković J, Feyissa DD, Kalaba P, Marouf BS, Höger H, Hartmann MF, Wudy SA, Schuler G, Lubec G, Aradska J, Korz V. Age and cognitive status dependent differences in blood steroid and thyroid hormone concentrations in intact male rats. Behav Brain Funct 2019; 15:10. [PMID: 31256760 PMCID: PMC6600892 DOI: 10.1186/s12993-019-0161-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 06/21/2019] [Indexed: 12/01/2022] Open
Abstract
Background Age-dependent alterations of hormonal states have been considered to be involved in age related decline of cognitive abilities. Most of the studies in animal models are based on hormonal substitution in adrenal- and/or gonadectomized rodents or infusion of steroid hormones in intact rats. Moreover, the manipulations have been done timely, closely related to test procedures, thus reflecting short-term hormonal mechanisms in the regulation of learning and memory. Here we studied whether more general states of steroid and thyroid hormone profiles, independent from acute experiences, may possibly reflect long-term learning capacity. A large cohort of aged (17–18 months) intact male rats were tested in a spatial hole-board learning task and a subset of inferior and superior learners was included into the analysis. Young male adult rats (16 weeks of age) were also tested. Four to 8 weeks after testing blood plasma samples were taken and hormone concentrations of a variety of steroid hormones were measured by gas chromatography-tandem mass spectrometry or radioimmunoassay (17β-estradiol, thyroid hormones). Results Aged good learners were similar to young rats in the behavioral task. Aged poor learners but not good learners showed higher levels of triiodothyronine (T3) as compared to young rats. Aged good learners had higher levels of thyroid stimulating hormone (TSH) than aged poor learning and young rats. Both aged good and poor learners showed significantly reduced levels of testosterone (T), 4-androstenedione (4A), androstanediol-3α,17β (AD), dihydrotestosterone (DHT), 17-hydroxyprogesterone (17OHP), higher levels of progesterone (Prog) and similar levels of 17β-estradiol (E2) as compared to young rats. The learning, but not the memory indices of all rats were significantly and positively correlated with levels of dihydrotestosterone, androstanediol-3α,17β and thyroxine (T4), when the impacts of age and cognitive division were eliminated by partial correlation analyses. Conclusion The correlation of hormone concentrations of individuals with individual behavior revealed a possible specific role of these androgen and thyroid hormones in a state of general preparedness to learn.
Collapse
Affiliation(s)
- Jovana Maliković
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Daniel Daba Feyissa
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Predrag Kalaba
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Babak Saber Marouf
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Harald Höger
- Core Unit of Biomedical Research, Division of Laboratory Animal Science and Genetics, Medical University of Vienna, Vienna, Austria
| | - Michaela F Hartmann
- Steroid Research & Mass Spectrometry Unit, Peptide Hormone Research Unit, Laboratory for Translational Hormone Analytics in Pediatric Endocrinology, Division of Pediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University, Giessen, Germany
| | - Stefan A Wudy
- Steroid Research & Mass Spectrometry Unit, Peptide Hormone Research Unit, Laboratory for Translational Hormone Analytics in Pediatric Endocrinology, Division of Pediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University, Giessen, Germany
| | - Gerhard Schuler
- Veterinary Clinic for Obstetrics, Gynecology and Andrology of Large and Small Animals, Faculty of Veterinary Medicine, Justus Liebig University, Giessen, Germany
| | - Gert Lubec
- Neuroscience Laboratory, Paracelsus Medical University, 5020, Salzburg, Austria
| | - Jana Aradska
- Neuroscience Laboratory, Paracelsus Medical University, 5020, Salzburg, Austria.
| | - Volker Korz
- Neuroscience Laboratory, Paracelsus Medical University, 5020, Salzburg, Austria.
| |
Collapse
|
3
|
Duque A, Vinader-Caerols C, Monleón S. Indomethacin counteracts the effects of chronic social defeat stress on emotional but not recognition memory in mice. PLoS One 2017; 12:e0173182. [PMID: 28278165 PMCID: PMC5344348 DOI: 10.1371/journal.pone.0173182] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 02/16/2017] [Indexed: 12/15/2022] Open
Abstract
We have previously observed the impairing effects of chronic social defeat stress (CSDS) on emotional memory in mice. Given the relation between stress and inflammatory processes, we sought to study the effectiveness of the anti-inflammatory indomethacin in reversing the detrimental effects of CSDS on emotional memory in mice. The effects of CSDS and indomethacin on recognition memory were also evaluated. Male CD1 mice were randomly divided into four groups: non-stressed + saline (NS+SAL); non-stressed + indomethacin (NS+IND); stressed + saline (S+SAL); and stressed + indomethacin (S+IND). Stressed animals were exposed to a daily 10 min agonistic confrontation (CSDS) for 20 days. All subjects were treated daily with saline or indomethacin (10 mg/kg, i.p.). 24 h after the CSDS period, all the mice were evaluated in a social interaction test to distinguish between those that were resilient or susceptible to social stress. All subjects (n = 10–12 per group) were then evaluated in inhibitory avoidance (IA), novel object recognition (NOR), elevated plus maze and hot plate tests. As in control animals (NS+SAL group), IA learning was observed in the resilient groups, as well as in the susceptible mice treated with indomethacin (S+IND group). Recognition memory was observed in the non-stressed and the resilient mice, but not in the susceptible animals. Also, stressed mice exhibited higher anxiety levels. No significant differences were observed in locomotor activity or analgesia. In conclusion, CSDS induces anxiety in post-pubertal mice and impairs emotional and recognition memory in the susceptible subjects. The effects of CSDS on emotional memory, but not on recognition memory and anxiety, are reversed by indomethacin. Moreover, memory impairment is not secondary to the effects of CSDS on locomotor activity, emotionality or pain sensitivity.
Collapse
Affiliation(s)
- Aránzazu Duque
- Department of Psychobiology, University of Valencia, Valencia, Spain
| | | | - Santiago Monleón
- Department of Psychobiology, University of Valencia, Valencia, Spain
- * E-mail:
| |
Collapse
|