1
|
Wang LM, Zhang WL, Lyu N, Suo YR, Yang L, Yu B, Jiang XJ. Research Advance of Chinese Medicine in Treating Atherosclerosis: Focus on Lipoprotein-Associated Phospholipase A2. Chin J Integr Med 2024; 30:277-288. [PMID: 38057549 DOI: 10.1007/s11655-023-3611-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2023] [Indexed: 12/08/2023]
Abstract
As a serious cardiovascular disease, atherosclerosis (AS) causes chronic inflammation and oxidative stress in the body and poses a threat to human health. Lipoprotein-associated phospholipase A2 (Lp-PLA2) is a member of the phospholipase A2 (PLA2) family, and its elevated levels have been shown to contribute to AS. Lp-PLA2 is closely related to a variety of lipoproteins, and its role in promoting inflammatory responses and oxidative stress in AS is mainly achieved by hydrolyzing oxidized phosphatidylcholine (oxPC) to produce lysophosphatidylcholine (lysoPC). Moreover, macrophage apoptosis within plaque is promoted by localized Lp-PLA2 which also promotes plaque instability. This paper reviews those researches of Chinese medicine in treating AS via reducing Lp-PLA2 levels to guide future experimental studies and clinical applications related to AS.
Collapse
Affiliation(s)
- Lu-Ming Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Wen-Lan Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Nuan Lyu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yan-Rong Suo
- Department of Traditional Chinese Medicine, Ganzhou People's Hospital, Ganzhou, Jiangxi Province, 341000, China
| | - Lin Yang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Bin Yu
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Xi-Juan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| |
Collapse
|
2
|
Yoon BK. The impacts of menopausal hormone therapy on longer-term health consequences of ovarian hormone deficiency. Climacteric 2023; 26:193-197. [PMID: 37011667 DOI: 10.1080/13697137.2023.2173571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
This study on the longer-term health consequences of ovarian hormone deficiency (OHD) received the Henry Burger Prize in 2022. Osteoporosis, cardiovascular disease and dementia are major degenerative diseases that are also causally associated with OHD. Two randomized controlled trials (RCTs) revealed no significant difference in bone mineral density by adding alendronate to ongoing menopausal hormone therapy (MHT) or combining alendronate at MHT initiation. Another RCT pursuing the effects on fracture recurrence and total mortality in women with hip fracture disclosed that MHT with percutaneous estradiol gel (PEG) and micronized progesterone (MP4) was comparable to risedronate. Basic studies reported that 17β-estradiol exerted direct beneficial actions on vascular smooth muscle in cell proliferation, fibrinolysis and apoptosis. A fourth RCT showed that MP4 had a neutral impact on the PEG response of blood pressure and arterial stiffness. A fifth RCT suggested that the combination therapy of conjugated equine estrogen and MP4 was superior to tacrine in preserving activities in daily living in women with Alzheimer's disease. In addition, PEG plus MP4 attenuated cognitive decline in women with mild cognitive impairment in a sixth RCT. Finally, the all-cause mortality in recently menopausal women receiving MHT was updated using an adaptive meta-analysis of four RCTs.
Collapse
Affiliation(s)
- B-K Yoon
- Department of Obstetrics, Gynecology, and Women's Health, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
3
|
Zeng L, Ma B, Yang S, Zhang M, Wang J, Liu M, Chen J. Role of autophagy in lysophosphatidylcholine-induced apoptosis in mouse Leydig cells. ENVIRONMENTAL TOXICOLOGY 2022; 37:2756-2763. [PMID: 36214341 DOI: 10.1002/tox.23634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/10/2022] [Accepted: 07/21/2022] [Indexed: 06/16/2023]
Abstract
Lysophosphatidylcholine (LPC), a major class of glycerophospholipids ubiquitously present in most tissues, plays a dominant role in many diseases, while it is still unknown about the potential mechanism of LPC affecting the testicular Leydig cells. In the present study, mouse TM3 Leydig cells in vitro were treated with LPC for 48 h. LPC was found to significantly induce apoptosis and oxidative stress of mouse TM3 Leydig cells; while inhibition of oxidative stress by N-acetyl-L-cysteine, an inhibitor of oxidative stress, could rescue the induction of apoptosis, indicating that LPC induced apoptosis of mouse TM3 Leydig cells via oxidative stress. Interestingly, LPC was showed to inhibit autophagy; however, induction of autophagy by rapamycin significantly alleviated the induction of apoptosis by LPC. Taken together, oxidative stress was involved in LPC-induced apoptosis of mouse TM3 Leydig cells, and autophagy might play a protective role in LPC-induced apoptosis.
Collapse
Affiliation(s)
- Lin Zeng
- Department of Physiology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
- Nanchang Emergency Center, Nanchang, China
| | - Bingchun Ma
- Department of Physiology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Si Yang
- Department of Physiology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Meijuan Zhang
- Department of Physiology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Jinglei Wang
- Department of Physiology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Mengling Liu
- Department of Physiology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
- Nursing School of Jiujiang University, Jiujiang, China
| | - Jiaxiang Chen
- Department of Physiology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang, China
| |
Collapse
|
4
|
Zhu Y, Shao Y, Wei M, Yu K, Zhang Y, Huang J, Yin X. Degradation of 17β-estradiol by UV/persulfate in different water samples. JOURNAL OF WATER AND HEALTH 2021; 19:796-807. [PMID: 34665772 DOI: 10.2166/wh.2021.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Sulfate radical (•SO4-)-based advanced oxidation processes are widely used for wastewater treatment. This study explored the potential use of UV/persulfate (UV/PS) system for the degradation of 17β-estradiol (E2). The pH of the reaction system can affect the degradation rate of E2 by UV/PS and the optimum pH was 7.0; Br- and Cl- in water can promote the degradation rate, HCO3- has an inhibitory effect on the reaction, SO42- and cations (Na+, Mg2+, K+) have no effect on the degradation rate. The degradation of E2 by UV/PS was a mineralization process, with the mineralization rate reaching 90.97% at 8 h. E2 in the UV/PS system was mainly degraded by hydroxylation, deoxygenation, and hydrogenation. E2 reaction sites were mainly located on benzene rings, mainly carbonylation on quinary rings, and bond breakage between C10 and C5 resulted in the removal of benzene rings and carboxyl at C2 and C3 sites. In the presence of halogen ions, halogenated disinfection by-products were not formed in the degradation process of E2 by UV/PS. E2 in the UV/PS system could inhibit the formation of bromate. The results of this study suggest that UV/PS is a safe and reliable method to degrade E2.
Collapse
Affiliation(s)
- Yunjie Zhu
- School of Marine Sciences, Guangxi University, Nanning 530004, China E-mail:
| | - Yanan Shao
- School of Marine Sciences, Guangxi University, Nanning 530004, China E-mail: ; College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Min Wei
- School of Marine Sciences, Guangxi University, Nanning 530004, China E-mail:
| | - Kefu Yu
- School of Marine Sciences, Guangxi University, Nanning 530004, China E-mail: ; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China; Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, 530004, China
| | - Yuanyuan Zhang
- School of Marine Sciences, Guangxi University, Nanning 530004, China E-mail: ; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China; Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, 530004, China
| | - Jianping Huang
- School of Marine Sciences, Guangxi University, Nanning 530004, China E-mail:
| | - Xinyue Yin
- School of Marine Sciences, Guangxi University, Nanning 530004, China E-mail:
| |
Collapse
|
5
|
Wen W, Zhang Z, Jiang B, Hao Y. Orbitrap-MS-based untargeted metabolomics study on the therapeutic effect of colchicine on myocardial infarction. Biomed Chromatogr 2021; 35:e5148. [PMID: 33908076 DOI: 10.1002/bmc.5148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 04/05/2021] [Accepted: 04/19/2021] [Indexed: 01/01/2023]
Abstract
Myocardial infarction (MI) is one of the most common causes of death worldwide. A metabolomic approach based on an ultra-high performance liquid chromatography-Orbitrap analytical method was established to analyze the metabolites and to investigate the therapeutic mechanism of colchicine. Forty-six biomarkers were significantly changed between the sham group and the MI group. Thirty-five metabolites were increased and 11 were decreased in MI rats, and colchicine reversed all of them. Pathway analysis showed that the TCA cycle, alanine, aspartate and glutamate metabolism, glycerophospholipid metabolism, aminoacyl-tRNA biosynthesis, glyoxylate and dicarboxylate metabolism and arginine biosynthesis were altered in the MI group. Ingenuity pathway function and network analysis showed that colchicine improved MI through regulation of cardiac β-adrenergic signaling and cardiac hypertrophy signaling. The present study provided a useful approach for exploring the mechanism of MI and evaluating the efficacy of colchicine.
Collapse
Affiliation(s)
- Wei Wen
- Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhongxiao Zhang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Bing Jiang
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Hao
- Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|