1
|
Nabuurs CH, Kievit W, Leemans CRR, Smit CFGM, van den Brekel MWM, Pauw RJ, van der Laan BFAM, Jansen JC, Lacko M, Braunius WW, Dai C, Shi X, Danesi G, Bouček J, Borsetto D, Gowrishankar S, Kania R, Jourdaine C, Jansen TTG, Derks J, Dijkema T, Takes RP, Kunst HDPM. Postoperative Radiotherapy for pT1- and pT2-Classified Squamous Cell Carcinoma of the External Auditory Canal. Cancers (Basel) 2024; 16:4026. [PMID: 39682212 DOI: 10.3390/cancers16234026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND There is no consensus regarding the indication for postoperative radiotherapy (PORT) for T1- and T2-classified squamous cell carcinoma (SCC) of the external auditory canal (EAC) even with negative surgical margins. This study aimed to evaluate whether PORT provides additional benefits for these cases. METHODS We collected retrospective data from fourteen international hospitals, including resected pT1- and pT2-classified EAC SCC with negative surgical margins. RESULTS A total of 112 early-stage radically resected EAC SCC were included, with 48 patients receiving PORT. The 5-year DFS of T1- and T2-classified EAC SCC treated with PORT was not statistically significantly different (92.9% and 76.9%, respectively) compared to the group treated without PORT (100% and 90.9%, respectively; p-values of 0.999 and 0.526, respectively). EAC SCC treated with PORT more frequently exhibited perineural and angioinvasive growth. Eighteen patients experienced side effects related to radiotherapy, of which one patient developed osteoradionecrosis. CONCLUSIONS Our study suggests that PORT for early-stage radically resected EAC SCC should only be considered in selected cases with perineural, infiltrative growth or angioinvasive growth, and with a close margin. This approach helps mitigate the negative impact on quality of life and the risk of side effects associated with radiotherapy.
Collapse
Affiliation(s)
- Cindy H Nabuurs
- Department of Otorhinolaryngology and Head and Neck Surgery-Academic Alliance Skull Base Pathology Radboudumc & MUMC+, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Rare Cancers, Radboud Institute for Health Sciences, 6525 EZ Nijmegen, The Netherlands
| | - Wietske Kievit
- Department of Otorhinolaryngology and Head and Neck Surgery-Academic Alliance Skull Base Pathology Radboudumc & MUMC+, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Rare Cancers, Radboud Institute for Health Sciences, 6525 EZ Nijmegen, The Netherlands
- Department of Health Evidence, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Charles René Reinier Leemans
- Department of Otolaryngology-Head and Neck Surgery, Amsterdam University Medical Centers, VU University, 1081 HV Amsterdam, The Netherlands
| | - Conrad F G M Smit
- Department of Otolaryngology-Head and Neck Surgery, Amsterdam University Medical Centers, VU University, 1081 HV Amsterdam, The Netherlands
| | - Michiel W M van den Brekel
- Department of Head and Neck Surgery and Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, 1066 CX Amsterdam, The Netherlands
| | - Robert J Pauw
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Bernard F A M van der Laan
- Department of Otorhinolaryngology and Head and Neck Surgery, University Medical Center of Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
- Department of Otorhinolaryngology Head and Neck Surgery, Haaglanden Medical Center, 2512 HH The Hage, The Netherlands
| | - Jeroen C Jansen
- Department of Otorhinolaryngology and Head and Neck Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Martin Lacko
- Department of Otorhinolaryngology and Head and Neck Surgery-Academic Alliance Skull Base Pathology Radboudumc & MUMC+, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | - Weibel W Braunius
- Department of Head and Neck Surgical Oncology, University Medical Center, Utrecht Cancer Center, 3584 CG Utrecht, The Netherlands
| | - Chunfu Dai
- Department of Otology & Skull Base Surgery, Eye Ear Nose & Throat Hospital, Fudan University, Shanghai 200437, China
| | - Xunbei Shi
- Department of Otology & Skull Base Surgery, Eye Ear Nose & Throat Hospital, Fudan University, Shanghai 200437, China
| | - Giovanni Danesi
- Department of Otorhinolaryngology and Skull Base Microsurgery-Neurosciences, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Jan Bouček
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Faculty of Medicine, Charles University in Prague, University Hospital Motol, 150 06 Prague, Czech Republic
| | - Daniele Borsetto
- Department of Otorhinolaryngology, Head and Neck Surgery, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Shavran Gowrishankar
- Department of Otorhinolaryngology, Head and Neck Surgery, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Romain Kania
- Department of Head and Neck Surgery, Lariboisière University Hospital, 75010 Paris, France
| | - Clément Jourdaine
- Department of Head and Neck Surgery, Lariboisière University Hospital, 75010 Paris, France
| | - Thijs T G Jansen
- Department of Otorhinolaryngology and Head and Neck Surgery-Academic Alliance Skull Base Pathology Radboudumc & MUMC+, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Rare Cancers, Radboud Institute for Health Sciences, 6525 EZ Nijmegen, The Netherlands
| | - Jolanda Derks
- Department of Otorhinolaryngology and Head and Neck Surgery-Academic Alliance Skull Base Pathology Radboudumc & MUMC+, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Tim Dijkema
- Department of Radiation Oncology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Robert P Takes
- Department of Otorhinolaryngology and Head and Neck Surgery-Academic Alliance Skull Base Pathology Radboudumc & MUMC+, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Rare Cancers, Radboud Institute for Health Sciences, 6525 EZ Nijmegen, The Netherlands
| | - Henricus Dirk P M Kunst
- Department of Otorhinolaryngology and Head and Neck Surgery-Academic Alliance Skull Base Pathology Radboudumc & MUMC+, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Rare Cancers, Radboud Institute for Health Sciences, 6525 EZ Nijmegen, The Netherlands
- Department of Otorhinolaryngology and Head and Neck Surgery-Academic Alliance Skull Base Pathology Radboudumc & MUMC+, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| |
Collapse
|
2
|
Krsek A, Baticic L, Sotosek V, Braut T. The Role of Biomarkers in HPV-Positive Head and Neck Squamous Cell Carcinoma: Towards Precision Medicine. Diagnostics (Basel) 2024; 14:1448. [PMID: 39001338 PMCID: PMC11241541 DOI: 10.3390/diagnostics14131448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
Head and neck cancer (HNC) represents a significant global health challenge, with squamous cell carcinomas (SCCs) accounting for approximately 90% of all HNC cases. These malignancies, collectively referred to as head and neck squamous cell carcinoma (HNSCC), originate from the mucosal epithelium lining the larynx, pharynx, and oral cavity. The primary risk factors associated with HNSCC in economically disadvantaged nations have been chronic alcohol consumption and tobacco use. However, in more affluent countries, the landscape of HNSCC has shifted with the identification of human papillomavirus (HPV) infection, particularly HPV-16, as a major risk factor, especially among nonsmokers. Understanding the evolving risk factors and the distinct biological behaviors of HPV-positive and HPV-negative HNSCC is critical for developing targeted treatment strategies and improving patient outcomes in this complex and diverse group of cancers. Accurate diagnosis of HPV-positive HNSCC is essential for developing a comprehensive model that integrates the molecular characteristics, immune microenvironment, and clinical outcomes. The aim of this comprehensive review was to summarize the current knowledge and advances in the identification of DNA, RNA, and protein biomarkers in bodily fluids and tissues that have introduced new possibilities for minimally or non-invasive cancer diagnosis, monitoring, and assessment of therapeutic responses.
Collapse
Affiliation(s)
- Antea Krsek
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
| | - Lara Baticic
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Vlatka Sotosek
- Department of Clinical Medical Sciences I, Faculty of Health Studies, University of Rijeka, 51000 Rijeka, Croatia;
- Department of Anesthesiology, Reanimatology, Emergency and Intensive Care Medicine, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Tamara Braut
- Department of Otorhinolaryngology and Head and Neck Surgery, Clinical Hospital Centre Rijeka, 51000 Rijeka, Croatia;
| |
Collapse
|
3
|
Li Q, Zhang J, Jiang H. Incorporating multi-source remote sensing in the detection of earthquake-damaged buildings based on logistic regression modelling. Heliyon 2024; 10:e32851. [PMID: 38975082 PMCID: PMC11226901 DOI: 10.1016/j.heliyon.2024.e32851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024] Open
Abstract
After an earthquake, efficiently and accurately acquiring information about damaged buildings can help reduce casualties. Earth observation data have been widely used to map affected areas after earthquakes. However, fine post-earthquake assessment results are needed to manage recovery and reconstruction and to estimate economic losses. In this paper, for quantification and precision purposes, a method of earthquake-induced building damage information extraction incorporating multi-source remote sensing data is proposed. The method consists of three steps: (1) Analysis of multisource features that describe texture, colour, and geometry, (2) rough set theory is carried out to further determine the feature parameters, (3) Logistic regression model (LRM) was built to describe the relationship between the occurrence and absence of destroyed buildings within an individual object. Old Beichuan County (centered at approximately 31.833︒N, 104.459° E), China, the area most devastated by the Wenchuan earthquake on May 12, 2008, is used to test the proposed hypothesis. Multi-source remote sensing imagery include optical data, synthetic aperture radar (SAR) data, and digital surface model (DSM) data generated by interpolating light detection and ranging (LiDAR) point cloud data. Through comparison with the ground survey, the experimental results show that the detection accuracy of the proposed method is 94.2 %; the area under the receiver operating characteristic (ROC) curve is 0.827. The efficiency of the proposed method is demonstrated using 6 modes of data combination acquired from the same area in old Beichuan County. The approach is one of the first attempts to extract damaged buildings through the fusion of three types of data with different features. The approach addresses multivariate regression methodologies and compares the potential of features for application in the damage detection field.
Collapse
Affiliation(s)
- Qiang Li
- National Institute of Natural Hazards, Ministry of Emergency, Beijing, No. 1 Anning Zhuang Road, Xisanqi, Haidian District, 100085, China
| | - Jingfa Zhang
- National Institute of Natural Hazards, Ministry of Emergency, Beijing, No. 1 Anning Zhuang Road, Xisanqi, Haidian District, 100085, China
| | - Hongbo Jiang
- National Institute of Natural Hazards, Ministry of Emergency, Beijing, No. 1 Anning Zhuang Road, Xisanqi, Haidian District, 100085, China
| |
Collapse
|
4
|
Mei Z, Zhengdong L, Shupeng L, Xin Z, Lei W, Wang C. Identification of an 8 HPV-related RNA signature as a novel prognostic biomarker for squamous cell carcinoma of the head and neck. Medicine (Baltimore) 2024; 103:e36448. [PMID: 38335428 PMCID: PMC10860974 DOI: 10.1097/md.0000000000036448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/07/2023] [Accepted: 11/13/2023] [Indexed: 02/12/2024] Open
Abstract
Squamous cell carcinoma of the head and neck (SCCHN) is a commonly detected cancer worldwide. Human papillomavirus (HPV) is emerging as an important risk factor affecting SCCHN prognosis. Therefore, identification of HPV status is essential for effective therapies in SCCHN. The aim of this study was to investigate the prognostic value of HPV-associated RNA biomarkers for SCCHN. The clinical data, survival data, and RNA-seq data of SCCHN were downloaded from The Cancer Genome Atlas database. Before the differential expression analysis, the heterogeneity between the 2 groups (HPV+ vs HPV-) of samples was analyzed using principal component analysis. The differentially expressed genes (DEGs) between HPV+ and HPV- SCCHN samples were analyzed using the R edgeR package. The Gene Ontology functional annotations, including biological process, molecular function and cellular component (CC), and Kyoto Encyclopedia of Genes And Genomes pathways enriched by the DEGs were analyzed using DAVID. The obtained matrix was analyzed by weighed gene coexpression network analysis. A total of 350 significant DEGs were identified through differential analysis, and these DEGs were significantly enriched in functions associated with keratinization, and the pathway of neuroactive ligand-receptor interaction. Moreover, 72 hub genes were identified through weighed gene coexpression network analysis. After the hub genes and DEGs were combined, we obtained 422 union genes, including 65 survival-associated genes. After regression analysis, a HPV-related prognostic model was established, which consisted of 8 genes, including Clorf105, CGA, CHRNA2, CRIP3, CTAG2, ENPP6, NEFH, and RNF212. The obtained regression model could be expressed by an equation as follows: risk score = 0.065 × Clorf105 + 0.012 × CGA + 0.01 × CHRNA2 + 0.047 × CRIP3 + 0.043 × CTAG2-0.034 × ENPP6 - 0.003 × NEFH - 0.068 × RNF212. CGA interacted with 3 drugs, and CHRNA2 interacted with 11 drugs. We have identified an 8 HPV-RNA signature associated with the prognosis of SCCHN patients. Such prognostic model might serve as possible candidate biomarker and therapeutic target for SCCHN.
Collapse
Affiliation(s)
- Zhang Mei
- Department of Dental, Shandong Medical College, Jinan, China
| | - Luo Zhengdong
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Liu Shupeng
- Department of Outpatient, Yidu Central Hospital of Weifang, Weifang, China
| | - Zhang Xin
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Wang Lei
- Department of Orthodontics, Qilu Hospital of Shandong University, Jinan, China
| | - Chuanxin Wang
- Department of Clinical Laboratory, the Second Hospital of Shandong University, Jinan, China
| |
Collapse
|
5
|
Chandra P, Deshmukh SP, Kendre A, Gupta M. Novel Scoring Formula to Predict Survival in Patients of Primary Tongue Cancer Belonging to Tobacco Chewing Population. Indian J Surg Oncol 2023; 14:928-934. [PMID: 38187857 PMCID: PMC10767176 DOI: 10.1007/s13193-023-01799-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/04/2023] [Indexed: 01/09/2024] Open
Abstract
Worldwide and in India head and neck malignancies are a major contributor to cancer mortality and morbidity. Tongue cancer predominates oral cavity cancers worldwide but in India it comes next to buccal mucosa. OPD patients after completing treatment tend to ask about the prognosis of their disease where they want an objective answer to "How long will I live?" His scoring system is intended to answer this question and guide patients for adjuvant therapy. This study enrolled all patients between 20 and 85 years old with a history of tobacco chewing at least for the last 1 year before diagnosis. Patients should have primary tongue cancer amenable to surgical resection. For survival calculation, date of diagnosis was taken as reference time. Using Kaplan-Meier survival analysis, clinicopathological factors significantly associated with survival were ascertained. Then using logit regression, a scoring system predicting patient survival in years based on clinicopathological risk factors was formulated and internal validation was done. A total 241 were enrolled and there were 69 cancer-related deaths. T stage, N stage, LVSI, and DOI were found to be significantly associated with cancer-related survival in tongue cancer patients. Another factor affecting survival was defaulting adjuvant radiation therapy. Using these variables, a survival predicting score was developed. On internal validation and regression, the score was found 80% accurate with error limits ± 6 months. It is a concise comprehensive score applicable on Indian population with history of tobacco chewing. It will not only help clinicians to tell patients about their survival expectancy but also help to counsel them for adjuvant therapy. However, external validation and if required recalibration incorporating other factors need to be done for this score.
Collapse
Affiliation(s)
- Prasant Chandra
- Surgical Oncology, DY Patil Medical College and Research Centre, Sant Tukaram Nagar, Pimpri, Pune, Maharashtra 411018 India
| | - Sanjay P. Deshmukh
- Surgical Oncology, Ruby Hall Clinic, 40, Sassoon Rd, Sangamvadi, Pune, Maharashtra 411001 India
| | - Ajita Kendre
- Aditya Birla Memorial Hospital, Aditya Birla Hospital Marg, Thergaon, Pimpri-Chinchwad, Maharashtra 411033 India
| | - Moulik Gupta
- Surgical Oncology, Ruby Hall Clinic, 40, Sassoon Rd, Sangamvadi, Pune, Maharashtra 411001 India
| |
Collapse
|
6
|
Li S, Sun Y. Phytochemicals targeting epidermal growth factor receptor (EGFR) for the prevention and treatment of HNSCC: A review. Medicine (Baltimore) 2023; 102:e34439. [PMID: 37800790 PMCID: PMC10553117 DOI: 10.1097/md.0000000000034439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/30/2023] [Indexed: 10/07/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) develops from the mucosal epithelium of the oral cavity, pharynx, and larynx, and is the most common malignancy of the head and neck, the incidence of which continues to rise. The epidermal growth factor receptor is thought to play a key role in the pathogenesis of HNSCC. Inhibition of epidermal growth factor receptor has been identified as an effective target for the treatment of HNSCC. Many phytochemicals have emerged as potential new drugs for the treatment of HNSCC. A systematic search was conducted for research articles published in PubMed, and Medline on relevant aspects. This review provides an overview of the available literature and reports highlighting the in vitro effects of phytochemicals on epidermal growth factor in various HNSCC cell models and in vivo in animal models and emphasizes the importance of epidermal growth factor as a current therapeutic target for HNSCC. Based on our review, we conclude that phytochemicals targeting the epidermal growth factor receptor are potentially effective candidates for the development of new drugs for the treatment of HNSCC. It provides an idea for further development and application of herbal medicines for cancer treatment.
Collapse
Affiliation(s)
- Shaling Li
- The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Longmatan District, Luzhou City, Sichuan Province, China
| | | |
Collapse
|
7
|
Xu Q, Dong H, Wang Z, Zhang P, Albers AE, Kaufmann AM, Zheng ZM, Qian X. Integration and viral oncogene expression of human papillomavirus type 16 in oropharyngeal squamous cell carcinoma and gastric cancer. J Med Virol 2023; 95:e28761. [PMID: 37212316 DOI: 10.1002/jmv.28761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/10/2023] [Accepted: 04/15/2023] [Indexed: 05/23/2023]
Abstract
Persistent high-risk human papillomavirus (HR-HPV) infections cause cervical cancer and a fraction of head and neck cancer. To investigate whether HR-HPV infection might be also involved in the development of gastric cancer (GC), we developed a platform utilizing a rolling circle amplification (RCA)-based nested L1 polymerase chain reaction with Sanger sequencing to genotype the HPV DNA in cancer tissues of 361 GC and 89 oropharyngeal squamous cell carcinomas (OPSCC). HPV transcriptional activity was determined by E6/E7 mRNA expression and a 3' rapid amplification of cDNA ends was performed to identify HPV integration and expression of virus-host fusion transcripts. Ten of 361 GC, 2 of 89 OPSCC, and 1 of 22 normal adjacent tissues were HPV L1 DNA-positive. Five of the 10 HPV-positive GC were genotyped as HPV16 by sequencing and 1 of 2 GC with RCA/nested HPV16 E6/E7 DNA detection exhibited HPV16 E6/E7 mRNA. Two OPSCC displayed HPV16 L1 DNA and E6/E7 mRNA, of which 1 OPSCC tissue showed virus-host RNA fusion transcripts from an intron region of KIAA0825 gene. Together, our data reveal viral oncogene expression and/or integration in GC and OPSCC and a possible etiology role of HPV infections in gastric carcinogenesis.
Collapse
Affiliation(s)
- Qiang Xu
- Zhejiang Cancer Research Institute, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Haoru Dong
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Postgraduate Education Base, Wenzhou Medical University, Wenzhou, China
| | - Zhiyu Wang
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Postgraduate Education Base, Wenzhou Medical University, Wenzhou, China
| | - Pei Zhang
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Andreas E Albers
- Department of Clinical Medicine, Oto-Rhino-Laryngology, Medical School Berlin, Berlin, Germany
| | - Andreas M Kaufmann
- Clinic for Gynecology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Xu Qian
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Postgraduate Education Base, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
8
|
The Nervous System as a Regulator of Cancer Hallmarks: Insights into Therapeutic Implications. Cancers (Basel) 2022; 14:cancers14184372. [PMID: 36139532 PMCID: PMC9496837 DOI: 10.3390/cancers14184372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The nervous system communicates with the whole organism, regulating several physiological pathways. The modification of nerve activity could deregulate the state of cellular and tissue homeostasis which could drive cancer development. This paper provides the current state of knowledge, in an evidence-oriented manner, that the nervous system is able to participate in the carcinogenesis process by inducing biochemical, physiological, and cellular modifications involved in the hallmarks of cancer. Abstract The involvement of the nervous system in the development of cancer is controversial. Several authors have shown opinions and conflicting evidence that support the early effect of the nervous system on the carcinogenic process. For about a century, research has not been enough, questions remain open, ideas are not discarded, and although more research is still needed to answer all the questions, there is now enough evidence to support the theories and give hope of finding one more possible form of treatment. It is clear that malignant neoplasms have endogenous characteristics that allow them to establish and progress. Some of these characteristics known as hallmarks of cancer, are damage mechanisms in the pathology but necessary during other physiological processes which show some nerve dependence. The nervous system communicates with the whole organism, regulating physiological processes necessary to respond to external stimuli and for the maintenance of homeostasis. The modification of nerve activity could generate an overload and deregulate the state of cellular and tissue homeostasis; this could drive cancer development. In this review, we will address the issue in an evidence-oriented manner that supports that the nervous system is able to participate in the initial and progressive process of carcinogenesis by inducing biochemical, physiological, and cellular modifications involved in the hallmarks of cancer.
Collapse
|
9
|
Satgunaseelan L, Strbenac D, Willet C, Chew T, Sadsad R, Wykes J, Low HTH, Cooper WA, Lee CS, Palme CE, Yang JYH, Clark JR, Gupta R. Whole Genome Duplication in Oral Squamous Cell Carcinoma in Patients Younger Than 50 years: Implications for Prognosis and Adverse Clinicopathological Factors. Genes Chromosomes Cancer 2022; 61:561-571. [PMID: 35670448 PMCID: PMC9542139 DOI: 10.1002/gcc.23076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/13/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022] Open
Abstract
Introduction Oral squamous cell carcinoma (OSCC) in the young (<50 years), without known carcinogenic risk factors, is on the rise globally. Whole genome duplication (WGD) has been shown to occur at higher rates in cancers without an identifiable carcinogenic agent. We aimed to evaluate the prevalence of WGD in a cohort of OSCC patients under the age of 50 years. Methods Whole genome sequencing (WGS) was performed on 28 OSCC patients from the Sydney Head and Neck Cancer Institute (SHNCI) biobank. An additional nine cases were obtained from The Cancer Genome Atlas (TCGA). Results WGD was seen in 27 of 37 (73%) cases. Non‐synonymous, somatic TP53 mutations occurred in 25 of 27 (93%) cases of WGD and were predicted to precede WGD in 21 (77%). WGD was significantly associated with larger tumor size (p = 0.01) and was frequent in patients with recurrences (87%, p = 0.36). Overall survival was significantly worse in those with WGD (p = 0.05). Conclusions Our data, based on one of the largest WGS datasets of young patients with OSCC, demonstrates a high frequency of WGD and its association with adverse pathologic characteristics and clinical outcomes. TP53 mutations also preceded WGD, as has been described in other tumors without a clear mutagenic driver.
Collapse
Affiliation(s)
- Laveniya Satgunaseelan
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Sydney, NSW, Australia.,Sydney Medical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Dario Strbenac
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW, Australia
| | - Cali Willet
- The Sydney Informatics Hub, Core Research Facilities, The University of Sydney, Sydney, NSW, Australia
| | - Tracy Chew
- The Sydney Informatics Hub, Core Research Facilities, The University of Sydney, Sydney, NSW, Australia
| | - Rosemarie Sadsad
- The Sydney Informatics Hub, Core Research Facilities, The University of Sydney, Sydney, NSW, Australia
| | - James Wykes
- Sydney Medical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, NSW, Australia.,Sydney Head and Neck Cancer Institute, Department of Head and Neck Surgery, Chris O'Brien Lifehouse, Sydney, NSW, Australia
| | - Hubert T H Low
- Sydney Medical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, NSW, Australia.,Sydney Head and Neck Cancer Institute, Department of Head and Neck Surgery, Chris O'Brien Lifehouse, Sydney, NSW, Australia
| | - Wendy A Cooper
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Sydney, NSW, Australia.,Sydney Medical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, NSW, Australia
| | - C Soon Lee
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Sydney, NSW, Australia.,Sydney Medical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, NSW, Australia.,Discipline of Pathology, School of Medicine, Western Sydney University, Penrith, NSW, Australia.,Genomics & Molecular Pathology Laboratory, Department of Anatomical Pathology, Liverpool, NSW, Australia.,South Western Sydney Clinical School, University of New South Wales, Kensington, NSW, Australia
| | - Carsten E Palme
- Sydney Medical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, NSW, Australia.,Sydney Head and Neck Cancer Institute, Department of Head and Neck Surgery, Chris O'Brien Lifehouse, Sydney, NSW, Australia
| | - Jean Y H Yang
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Jonathan R Clark
- Sydney Medical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, NSW, Australia.,Sydney Head and Neck Cancer Institute, Department of Head and Neck Surgery, Chris O'Brien Lifehouse, Sydney, NSW, Australia.,Royal Prince Alfred Institute of Academic Surgery, Sydney Local Health District, Sydney, NSW, Australia
| | - Ruta Gupta
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Sydney, NSW, Australia.,Sydney Medical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, NSW, Australia.,Sydney Head and Neck Cancer Institute, Department of Head and Neck Surgery, Chris O'Brien Lifehouse, Sydney, NSW, Australia
| |
Collapse
|
10
|
Dong H, Shu X, Xu Q, Zhu C, Kaufmann AM, Zheng ZM, Albers AE, Qian X. Current Status of Human Papillomavirus-Related Head and Neck Cancer: From Viral Genome to Patient Care. Virol Sin 2021. [PMID: 34152564 DOI: 10.1007/s12250-021-00413-8/figures/2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023] Open
Abstract
Human papillomavirus (HPV) infection identified as a definitive human carcinogen is increasingly being recognized for its role in carcinogenesis of human cancers. Up to 38%-80% of head and neck squamous cell carcinoma (HNSCC) in oropharyngeal location (OPSCC) and nearly all cervical cancers contain the HPV genome which is implicated in causing cancer through its oncoproteins E6 and E7. Given by the biologically distinct HPV-related OPSCC and a more favorable prognosis compared to HPV-negative tumors, clinical trials on de-escalation treatment strategies for these patients have been studied. It is therefore raised the questions for the patient stratification if treatment de-escalation is feasible. Moreover, understanding the crosstalk of HPV-mediated malignancy and immunity with clinical insights from the proportional response rate to immune checkpoint blockade treatments in patients with HNSCC is of importance to substantially improve the treatment efficacy. This review discusses the biology of HPV-related HNSCC as well as successful clinically findings with promising candidates in the pipeline for future directions. With the advent of various sequencing technologies, further biomolecules associated with HPV-related HNSCC progression are currently being identified to be used as potential biomarkers or targets for clinical decisions throughout the continuum of cancer care.
Collapse
Affiliation(s)
- Haoru Dong
- Department of Clinical Laboratory, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Xinhua Shu
- Department of Clinical Laboratory, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Qiang Xu
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Chen Zhu
- Department of Cancer Prevention, Cancer Hospital University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Andreas M Kaufmann
- Clinic for Gynecology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin, 12203, Germany
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Andreas E Albers
- Department of Otolaryngology, Head and Neck Surgery, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin, 13353, Germany
| | - Xu Qian
- Department of Clinical Laboratory, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China.
| |
Collapse
|
11
|
Dong H, Shu X, Xu Q, Zhu C, Kaufmann AM, Zheng ZM, Albers AE, Qian X. Current Status of Human Papillomavirus-Related Head and Neck Cancer: From Viral Genome to Patient Care. Virol Sin 2021; 36:1284-1302. [PMID: 34152564 PMCID: PMC8692589 DOI: 10.1007/s12250-021-00413-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/18/2021] [Indexed: 12/24/2022] Open
Abstract
Human papillomavirus (HPV) infection identified as a definitive human carcinogen is increasingly being recognized for its role in carcinogenesis of human cancers. Up to 38%–80% of head and neck squamous cell carcinoma (HNSCC) in oropharyngeal location (OPSCC) and nearly all cervical cancers contain the HPV genome which is implicated in causing cancer through its oncoproteins E6 and E7. Given by the biologically distinct HPV-related OPSCC and a more favorable prognosis compared to HPV-negative tumors, clinical trials on de-escalation treatment strategies for these patients have been studied. It is therefore raised the questions for the patient stratification if treatment de-escalation is feasible. Moreover, understanding the crosstalk of HPV-mediated malignancy and immunity with clinical insights from the proportional response rate to immune checkpoint blockade treatments in patients with HNSCC is of importance to substantially improve the treatment efficacy. This review discusses the biology of HPV-related HNSCC as well as successful clinically findings with promising candidates in the pipeline for future directions. With the advent of various sequencing technologies, further biomolecules associated with HPV-related HNSCC progression are currently being identified to be used as potential biomarkers or targets for clinical decisions throughout the continuum of cancer care.
Collapse
Affiliation(s)
- Haoru Dong
- Department of Clinical Laboratory, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Xinhua Shu
- Department of Clinical Laboratory, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Qiang Xu
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Chen Zhu
- Department of Cancer Prevention, Cancer Hospital University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Andreas M Kaufmann
- Clinic for Gynecology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin, 12203, Germany
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Andreas E Albers
- Department of Otolaryngology, Head and Neck Surgery, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin, 13353, Germany
| | - Xu Qian
- Department of Clinical Laboratory, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China.
| |
Collapse
|
12
|
Identification and Complete Validation of Prognostic Gene Signatures for Human Papillomavirus-Associated Cancers: Integrated Approach Covering Different Anatomical Locations. J Virol 2021; 95:JVI.02354-20. [PMID: 33361419 DOI: 10.1128/jvi.02354-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022] Open
Abstract
Human papillomavirus (HPV) infects squamous epithelium and is a major cause of cervical cancer (CC) and a subset of head and neck cancers (HNC). Virus-induced tumorigenesis, molecular alterations, and related prognostic markers are expected to be similar between the two cancers, but they remain poorly understood. We present integrated molecular analysis of HPV-associated tumors from TCGA and GEO databases and identify prognostic biomarkers. Analysis of gene expression profiles identified common upregulated genes and pathways of DNA replication and repair in the HPV-associated tumors. We established 34 prognostic gene signatures with a universal cutoff value in TCGA-CC using Elastic Net Cox regression analysis. We were able to externally validate our results in the TCGA-HNC and several GEO data sets, and demonstrated prognostic power in HPV-associated HNC, but not in HPV-negative cancers. The HPV-related prognostic and predictive indicator did not discriminate other cancers, except bladder urothelial carcinoma. These results identify and completely validate a highly selective prognostic system and its cross-usefulness in HPV-associated cancers, regardless of the tumor's anatomical subsite.IMPORTANCE Persistent infection with high-risk HPV interferes with cell function regulation and causes cell mutations, which accumulate over the long term and eventually develop into cancer. Results of pathway enrichment analysis presumably showed this accumulation of intracellular damage during the chronic HPV-infected state. We used highly advanced statistical methods to identify the most appropriate genes and coefficients and developed the HPV-related prognostic and predictive indicator (HPPI) risk scoring system. We applied the same cutoff value to training and validation sets and demonstrated good prognostic performance in both data sets, and confirmed a consistent trend in external validation. Moreover, HPPI presented significant validation results for bladder cancer suspected to be related to HPV. This suggested that our risk scoring system based on the prognostic gene signature could play an important role in the development of treatment strategies for patients with HPV-related cancer.
Collapse
|
13
|
Su Y, Zeng Z, Rong D, Yang Y, Wu B, Cao Y. PSMC2, ORC5 and KRTDAP are specific biomarkers for HPV-negative head and neck squamous cell carcinoma. Oncol Lett 2021; 21:289. [PMID: 33732365 PMCID: PMC7905686 DOI: 10.3892/ol.2021.12550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 01/07/2021] [Indexed: 12/11/2022] Open
Abstract
The prognosis of patients with human papillomavirus (HPV)-negative head and neck squamous cell carcinoma (HNSCC) is poorer than those with HPV-positive HNSCC. The present study aimed to identify novel and specific biomarkers of HPV-negative HNSCC using bioinformatics analysis and associated experiments. The gene expression profiles of HPV-negative HNSCC tissues and corresponding clinical data were downloaded from The Cancer Genome Atlas database and used in a weighted gene co-expression network analysis. Genes in clinically significant co-expression modules were used to construct a protein-protein interaction (PPI) network. The genes demonstrating a high degree score in the PPI network and a high correlation with tumor grade were considered hub genes. The diagnostic value of the hub genes associated with HPV-negative and HPV-positive HNSCC was analyzed using differential expression gene (DEG) analysis, immunohistochemical (IHC) staining and a receiver operating characteristic (ROC) curve analysis. Seven genes [Serrate RNA effector molecule (SRRT), checkpoint kinase 2 (CHEK2), small nuclear ribonucleoprotein polypeptide E (SNRPE), proteasome 26S subunit ATPase 2 (PSMC2), origin recognition complex subunit 5 (ORC5), S100 calcium binding protein A7 and keratinocyte differentiation associated protein (KRTDAP)] were demonstrated to be hub genes in clinically significant co-expression modules. DEG, IHC and ROC curve analyses revealed that SRRT, CHEK2 and SNRPE were significantly upregulated in HPV-negative and HPV-positive HNSCC tissues compared with in adjacent tissues, and these genes demonstrated a high diagnostic value for distinguishing HNSCC tissues. However, PSMC2, ORC5 and KRTDAP were the only differentially expressed genes identified in HPV-negative HNSCC tissues, and these genes demonstrated a high diagnostic value for HPV-negative HNSCC. PSMC2, ORC5 and KRTDAP may therefore serve as novel and specific biomarkers for HPV-negative HNSCC, potentially improving the diagnosis and treatment of patients with HPV-negative HNSCC.
Collapse
Affiliation(s)
- Yushen Su
- Clinical Medical School, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Zhirui Zeng
- School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Dongyun Rong
- Clinical Medical School, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China.,Public Health School, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Yushi Yang
- School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China.,Department of Pathology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Bei Wu
- Department of Obstetrics and Gynecology, 925 Hospital of The Joint Logistics Support Force of The Chinese People's Liberation Army, Guiyang, Guizhou 550004, P.R. China
| | - Yu Cao
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
14
|
Xu Q, Fang M, Zhu J, Dong H, Cao J, Yan L, Leonard F, Oppel F, Sudhoff H, Kaufmann AM, Albers AE, Qian X. Insights into Nanomedicine for Immunotherapeutics in Squamous Cell Carcinoma of the head and neck. Int J Biol Sci 2020; 16:2506-2517. [PMID: 32792853 PMCID: PMC7415431 DOI: 10.7150/ijbs.47068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023] Open
Abstract
Immunotherapies such as immune checkpoint blockade benefit only a portion of patients with head and neck squamous cell carcinoma. The multidisciplinary field of nanomedicine is emerging as a promising strategy to achieve maximal anti-tumor effect in cancer immunotherapy and to turn non-responders into responders. Various methods have been developed to deliver therapeutic agents that can overcome bio-barriers, improve therapeutic delivery into the tumor and lymphoid tissues and reduce adverse effects in normal tissues. Additional modification strategies also have been employed to improve targeting and boost cytotoxic T cell-based immune responses. Here, we review the state-of-the-art use of nanotechnologies in the laboratory, in advanced preclinical phases as well as those running through clinical trials assessing their advantages and challenges.
Collapse
Affiliation(s)
- Qiang Xu
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital); Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences. Hangzhou, P.R. China
| | - Meiyu Fang
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital); Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences. Hangzhou, P.R. China
| | - Jing Zhu
- Department of Clinical Laboratory, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital); Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences. Hangzhou, P.R. China
| | - Haoru Dong
- First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, P.R. China
| | - Jun Cao
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital); Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences. Hangzhou, P.R. China
| | - Lin Yan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, P.R. China
| | - Fransisca Leonard
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, USA
| | - Felix Oppel
- Department of Otolaryngology, Head and Neck Surgery, Klinikum Bielefeld, Bielefeld, Germany
| | - Holger Sudhoff
- Department of Otolaryngology, Head and Neck Surgery, Klinikum Bielefeld, Bielefeld, Germany
| | - Andreas M Kaufmann
- Clinic for Gynecology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Andreas E Albers
- Department of Otolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Xu Qian
- Department of Clinical Laboratory, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital); Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences. Hangzhou, P.R. China
| |
Collapse
|