1
|
Diao MN, Lv YJ, Xin H, Zhang YF, Zhang R. A comprehensive review of m6 A methylation in coronary heart disease. J Mol Med (Berl) 2025:10.1007/s00109-025-02540-1. [PMID: 40208302 DOI: 10.1007/s00109-025-02540-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/11/2025]
Abstract
The morbidity and mortality rates of coronary heart disease (CHD) are high worldwide. The primary pathological changes in CHD involve stenosis and ischemia caused by coronary atherosclerosis (AS). Extensive research on the pathogenesis of AS has revealed chronic immunoinflammatory processes and cell proliferation in all layers of coronary vessels, including endothelial cells (ECs), vascular smooth muscle cells, and macrophages. m6 A methylation is a common posttranscriptional modification of RNA that is coordinated by a variety of regulators (writers, readers, erasers) to maintain the functional stability of modified mRNAs and ncRNAs. In recent years, there has been increasing focus on the involvement of m6 A methylation in the incidence and progression of CHD, which starts with atherosclerotic plaque formation, leads to myocardial ischemia, and ultimately results in the occurrence of myocardial infarction (MI). m6 A regulators modulate relevant signaling pathways to participate in the inflammatory response, programmed death of cardiomyocytes, and fibrosis. Therefore, diagnostic models based on m6 A profiling are helpful for the early detection of CHD, and m6 A methylation shows promise as a sensitive target for new drugs to treat CHD in the future.
Collapse
Affiliation(s)
- Mei-Ning Diao
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, Shandong, P. R. China
- Institute for Translational Medicine, College of Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China
| | - Yi-Jv Lv
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, Shandong, P. R. China
- Institute for Translational Medicine, College of Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China
| | - Hui Xin
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, Shandong, P. R. China
| | - Yin-Feng Zhang
- Institute for Translational Medicine, College of Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China.
| | - Rui Zhang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, Shandong, P. R. China.
| |
Collapse
|
2
|
Wu Z, Liu X, Xie F, Ma C, Lam EWF, Kang N, Jin D, Yan J, Jin B. Comprehensive pan-cancer analysis identifies the RNA-binding protein LRPPRC as a novel prognostic and immune biomarker. Life Sci 2024; 343:122527. [PMID: 38417544 DOI: 10.1016/j.lfs.2024.122527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/25/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
AIMS RNA-binding proteins (RBPs) play pivotal roles in carcinogenesis and immunotherapy. Leucine-rich pentapeptide repeat-containing protein (LRPPRC) is crucial for RNA polyadenylation, transport, and stability. Although recent studies have suggested LRPPRC's potential role in tumor progression, its significance in tumor prognosis, diagnosis, and immunology remains unclear. MAIN METHODS We comprehensively analyzed LRPPRC expression in tumors using various databases, including Human Transcriptome Cell Atlas (HTCA), University of California Santa Cruz (UCSC), Human Protein Atlas (HPA), Sangerbox, TISIDB, GeneMANIA, GSCALite, and CellMiner. We examined the correlation between LRPPRC expression level and prognosis, immune infiltration, immunotherapy, methylation, biological function, and drug sensitivity. Single-cell analysis was performed using Tumor Immune Single Cell Hub (TISCH) and CancerSEA software. Patients with acute myeloid leukemia (AML) were categorized based on LRPPRC levels for functional and immune infiltration analyses. The role of LRPPRC in cancer was validated using in vitro experiments. KEY FINDINGS Our findings revealed that LRPPRC was highly expressed in almost all cancer types, indicating its significant prognostic and diagnostic potential. Notably, LRPPRC was associated with diverse immune features, such as immune cell infiltration, immune checkpoint genes, tumor mutational burden, and microsatellite instability, suggesting its value in guiding immunotherapy strategies. Within AML, the high-expression group had lower levels of immune cells, including CD8+ T cells. In vitro experiments confirmed the inhibitory effects of LRPPRC knockdown on AML cell proliferation. SIGNIFICANCE This study highlights LRPPRC as a reliable pan-cancer prognostic and immune biomarker, particularly in AML. It lays the groundwork for future research on LRPPRC-targeted cancer therapies.
Collapse
Affiliation(s)
- Zheng Wu
- Institute of Cancer Stem Cell, Liaoning Key Laboratory of Nucleic Acid Biology, Dalian Medical University, Dalian 116044, Liaoning, China; Department of Hematology, Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, Dalian Key Laboratory of Hematology, Diamond Bay Institute of Hematology, The Second Hospital of Dalian Medical University, Dalian 116027, Liaoning, China
| | - Xinyue Liu
- Institute of Cancer Stem Cell, Liaoning Key Laboratory of Nucleic Acid Biology, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Fang Xie
- Department of Hematology, Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, Dalian Key Laboratory of Hematology, Diamond Bay Institute of Hematology, The Second Hospital of Dalian Medical University, Dalian 116027, Liaoning, China
| | - Chao Ma
- Institute of Cancer Stem Cell, Liaoning Key Laboratory of Nucleic Acid Biology, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - Ning Kang
- Institute of Cancer Stem Cell, Liaoning Key Laboratory of Nucleic Acid Biology, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Di Jin
- Institute of Cancer Stem Cell, Liaoning Key Laboratory of Nucleic Acid Biology, Dalian Medical University, Dalian 116044, Liaoning, China.
| | - Jinsong Yan
- Department of Hematology, Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, Dalian Key Laboratory of Hematology, Diamond Bay Institute of Hematology, The Second Hospital of Dalian Medical University, Dalian 116027, Liaoning, China.
| | - Bilian Jin
- Institute of Cancer Stem Cell, Liaoning Key Laboratory of Nucleic Acid Biology, Dalian Medical University, Dalian 116044, Liaoning, China.
| |
Collapse
|