2
|
Sarikaya I, Schierz JH, Sarikaya A. Liver: glucose metabolism and 18F-fluorodeoxyglucose PET findings in normal parenchyma and diseases. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2021; 11:233-249. [PMID: 34513277 PMCID: PMC8414405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Liver has a complex and unique energy metabolism and plays a major role in glucose homeostasis. Liver is the main control center for glycogenesis, glycogenolysis, glycolysis and gluconeogenesis which are essential to provide energy for other tissues. Liver meets its own energy need from various sources which is mainly glucose in the fed state and fatty acids in the fasting state. In this review article, we will mainly describe the glucose metabolism of the liver, effect of various factors on 18F-fluorodeoxyglucose (FDG) activity/uptake in the normal liver and 18F- FDG positron emission tomography (PET) uptake patterns in various malignant and benign liver pathologies. Brief information on metabolomics profiling analyses in liver disorders will also be provided.
Collapse
Affiliation(s)
- Ismet Sarikaya
- Department of Nuclear Medicine, Kuwait University Faculty of MedicineSafat, Kuwait
| | | | - Ali Sarikaya
- Department of Nuclear Medicine, Trakya University Faculty of MedicineTurkey
| |
Collapse
|
3
|
Ordonez AA, Wintaco LM, Mota F, Restrepo AF, Ruiz-Bedoya CA, Reyes CF, Uribe LG, Abhishek S, D'Alessio FR, Holt DP, Dannals RF, Rowe SP, Castillo VR, Pomper MG, Granados U, Jain SK. Imaging Enterobacterales infections in patients using pathogen-specific positron emission tomography. Sci Transl Med 2021; 13:13/589/eabe9805. [PMID: 33853931 DOI: 10.1126/scitranslmed.abe9805] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 03/10/2021] [Indexed: 12/29/2022]
Abstract
Enterobacterales represent the largest group of bacterial pathogens in humans and are responsible for severe, deep-seated infections, often resulting in sepsis or death. They are also a prominent cause of multidrug-resistant (MDR) infections, and some species are recognized as biothreat pathogens. Tools for noninvasive, whole-body analysis that can localize a pathogen with specificity are needed, but no such technology currently exists. We previously demonstrated that positron emission tomography (PET) with 2-deoxy-2-[18F]fluoro-d-sorbitol (18F-FDS) can selectively detect Enterobacterales infections in murine models. Here, we demonstrate that uptake of 18F-FDS by bacteria occurs via a metabolically conserved sorbitol-specific pathway with rapid in vitro 18F-FDS uptake noted in clinical strains, including MDR isolates. Whole-body 18F-FDS PET/computerized tomography (CT) in 26 prospectively enrolled patients with either microbiologically confirmed Enterobacterales infection or other pathologies demonstrated that 18F-FDS PET/CT was safe, could rapidly detect and localize Enterobacterales infections due to drug-susceptible or MDR strains, and differentiated them from sterile inflammation or cancerous lesions. Repeat imaging in the same patients monitored antibiotic efficacy with decreases in PET signal correlating with clinical improvement. To facilitate the use of 18F-FDS, we developed a self-contained, solid-phase cartridge to rapidly (<10 min) formulate ready-to-use 18F-FDS from commercially available 2-deoxy-2-[18F]fluoro-d-glucose (18F-FDG) at room temperature. In a hamster model, 18F-FDS PET/CT also differentiated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pneumonia from secondary Klebsiella pneumoniae pneumonia-a leading cause of complications in hospitalized patients with COVID-19. These data support 18F-FDS as an innovative and readily available, pathogen-specific PET technology with clinical applications.
Collapse
Affiliation(s)
- Alvaro A Ordonez
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Luz M Wintaco
- Department of Nuclear Medicine, Hospital Internacional de Colombia, Fundación Cardiovascular de Colombia, Piedecuesta 681017, Colombia.,Biomedical and Biological Sciences Graduate Program, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá 111711, Colombia
| | - Filipa Mota
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Andres F Restrepo
- Department of Internal Medicine, Hospital Internacional de Colombia, Fundación Cardiovascular de Colombia, Piedecuesta 681017, Colombia
| | - Camilo A Ruiz-Bedoya
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Carlos F Reyes
- Department of Critical Care, Hospital Internacional de Colombia, Fundación Cardiovascular de Colombia, Piedecuesta 681017, Colombia
| | - Luis G Uribe
- Department of Infectious Diseases, Hospital Internacional de Colombia, Fundación Cardiovascular de Colombia, Piedecuesta 681017, Colombia
| | - Sudhanshu Abhishek
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Franco R D'Alessio
- Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Daniel P Holt
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Robert F Dannals
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Steven P Rowe
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Victor R Castillo
- Bioengineering Research Group, Fundación Cardiovascular de Colombia, Piedecuesta 681017, Colombia
| | - Martin G Pomper
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ulises Granados
- Department of Nuclear Medicine, Hospital Internacional de Colombia, Fundación Cardiovascular de Colombia, Piedecuesta 681017, Colombia. .,Biomedical and Translational Research Group, Fundación Cardiovascular de Colombia, Piedecuesta 681017, Colombia
| | - Sanjay K Jain
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA. .,Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
4
|
Abugamra S, Yassin A, Abdel-Rehim ASM, Sheha DS. Apparent diffusion coefficient for differentiating between benign and malignant hepatic focal lesions. EGYPTIAN LIVER JOURNAL 2020. [DOI: 10.1186/s43066-020-00068-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The aim of this study was to prospectively evaluate the role of diffusion weight MRI (DWI) in the characterization of hepatic focal lesions by using apparent diffusion coefficient (ADC). Thirty patients (18 women, 12 men; mean age 48.5 years) with hepatic focal lesions were included in this study. Patients underwent DW MR imaging with the SPLICE sequence. ADC of each focal lesion carcinoma was calculated from DW MR Images obtained with low and high b values. ADCs were compared among pathological types of focal lesions.
Results
Among the 30 patients included in the study, 46 focal lesions were detected. Twenty-four lesions were metastatic lesions from primary cancer, 7 lesions were hepatocellular carcinoma (HCC), 9 lesions were hemangiomas, and 6 lesions were simple cysts. There was highly significant difference between the mean ADC of the malignant lesions (metastasis and HCC) and the mean ADC of benign lesions (hemangiomas and cysts). The ADC of malignant lesion was much less than that of benign lesion. The mean ADC of malignant lesions (n = 31) was 0.73 ± 0.19 × 10−3 mm2/s, and the mean ADC of benign lesions (n = 15) was 1.94 ± 0.68 × 10−3 mm2/s (p value < 0.001). There was no significant difference between the cysts and hemangiomas. There was no statistically significant difference between the metastases and hepatocellular carcinoma.
Conclusion
ADCs values were able to differentiate benign from malignant lesions. ADC should be considered in the work up of patients with hepatic focal lesions.
Collapse
|