1
|
Wang Y, Liu J, Yao Q, Wang Y, Liu Z, Zhang L. LncRNA SNHG6 Promotes Wilms' Tumor Progression Through Regulating miR-429/FRS2 Axis. Cancer Biother Radiopharm 2024; 39:264-275. [PMID: 33481659 DOI: 10.1089/cbr.2020.3705] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Background: Long noncoding RNA (lncRNA) small nucleolar RNA host gene 6 (SNHG6) has been reported to be an oncogene in a variety of cancers. However, the role of SNHG6 and its associated mechanisms in Wilms' tumor progression remain largely unknown. Methods: The expression of SNHG6, microRNA-429 (miR-429), and FGF receptor substrates 2 (FRS2) messenger RNA (mRNA) was detected by quantitative real-time polymerase chain reaction. Cell proliferation was analyzed through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and plate colony assay. The apoptosis was assessed by flow cytometry. Cell glycolytic metabolism was analyzed through detecting the lactate dehydrogenase activity, glucose uptake, lactate production, and ATP level. The target relationship between miR-429 and SNHG6 or FRS2 was predicted by miRcode or Starbase and then validated by dual-luciferase reporter assay and RNA pull-down assay. Murine xenograft model was established to validate the function of SNHG6 in vivo. Results: The level of SNHG6 was elevated in Wilms' tumor tissues and cells, and SNHG6 played an oncogenic role to promote the proliferation and glycolysis and restrain the apoptosis of Wilms' tumor cells. MiR-429 was identified as a target of SNHG6, and miR-429 interference partly reversed the inhibitory effects induced by SNHG6 silencing on the malignant behaviors of Wilms' tumor cells. FRS2 mRNA bound to miR-429 in Wilms' tumor cells. SNHG6 upregulated the expression of FRS2 through acting as a sponge of miR-429. MiR-429-induced influences in Wilms' tumor cells were largely counteracted by the overexpression of FRS2. SNHG6 silencing suppressed the Wilms' tumor growth through miR-429/FRS2 axis in vivo. Conclusion: SNHG6 accelerated Wilms' tumor progression through regulating miR-429/FRS2 signaling in vitro and in vivo.
Collapse
Affiliation(s)
- Yingjie Wang
- Department of Pediatrics, The Second Hospital of Dalian Medical University, Dalian, China
| | - Junli Liu
- Department of Pediatrics, The Second Hospital of Dalian Medical University, Dalian, China
| | - Qiying Yao
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yuchuan Wang
- Department of Pediatrics, The Second Hospital of Dalian Medical University, Dalian, China
| | - Zhengjuan Liu
- Department of Pediatrics, The Second Hospital of Dalian Medical University, Dalian, China
| | - Li Zhang
- Department of Pediatrics, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
2
|
Kolokotroni E, Abler D, Ghosh A, Tzamali E, Grogan J, Georgiadi E, Büchler P, Radhakrishnan R, Byrne H, Sakkalis V, Nikiforaki K, Karatzanis I, McFarlane NJB, Kaba D, Dong F, Bohle RM, Meese E, Graf N, Stamatakos G. A Multidisciplinary Hyper-Modeling Scheme in Personalized In Silico Oncology: Coupling Cell Kinetics with Metabolism, Signaling Networks, and Biomechanics as Plug-In Component Models of a Cancer Digital Twin. J Pers Med 2024; 14:475. [PMID: 38793058 PMCID: PMC11122096 DOI: 10.3390/jpm14050475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/26/2024] Open
Abstract
The massive amount of human biological, imaging, and clinical data produced by multiple and diverse sources necessitates integrative modeling approaches able to summarize all this information into answers to specific clinical questions. In this paper, we present a hypermodeling scheme able to combine models of diverse cancer aspects regardless of their underlying method or scale. Describing tissue-scale cancer cell proliferation, biomechanical tumor growth, nutrient transport, genomic-scale aberrant cancer cell metabolism, and cell-signaling pathways that regulate the cellular response to therapy, the hypermodel integrates mutation, miRNA expression, imaging, and clinical data. The constituting hypomodels, as well as their orchestration and links, are described. Two specific cancer types, Wilms tumor (nephroblastoma) and non-small cell lung cancer, are addressed as proof-of-concept study cases. Personalized simulations of the actual anatomy of a patient have been conducted. The hypermodel has also been applied to predict tumor control after radiotherapy and the relationship between tumor proliferative activity and response to neoadjuvant chemotherapy. Our innovative hypermodel holds promise as a digital twin-based clinical decision support system and as the core of future in silico trial platforms, although additional retrospective adaptation and validation are necessary.
Collapse
Affiliation(s)
- Eleni Kolokotroni
- In Silico Oncology and In Silico Medicine Group, Institute of Communication and Computer Systems, School of Electrical and Computer Engineering, National Technical University of Athens, 157 80 Zografos, Greece;
| | - Daniel Abler
- Department of Oncology, Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland;
- Department of Oncology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - Alokendra Ghosh
- Department of Chemical and Biomolecular Engineering, Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.G.); (R.R.)
| | - Eleftheria Tzamali
- Institute of Computer Science, Foundation for Research and Technology—Hellas, 70013 Heraklion, Greece; (E.T.); (V.S.); (K.N.); (I.K.)
| | - James Grogan
- Irish Centre for High End Computing, University of Galway, H91 TK33 Galway, Ireland;
| | - Eleni Georgiadi
- In Silico Oncology and In Silico Medicine Group, Institute of Communication and Computer Systems, School of Electrical and Computer Engineering, National Technical University of Athens, 157 80 Zografos, Greece;
- Biomedical Engineering Department, University of West Attica, 12243 Egaleo, Greece
| | | | - Ravi Radhakrishnan
- Department of Chemical and Biomolecular Engineering, Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.G.); (R.R.)
| | - Helen Byrne
- Mathematical Institute, University of Oxford, Oxford OX1 2JD, UK;
| | - Vangelis Sakkalis
- Institute of Computer Science, Foundation for Research and Technology—Hellas, 70013 Heraklion, Greece; (E.T.); (V.S.); (K.N.); (I.K.)
| | - Katerina Nikiforaki
- Institute of Computer Science, Foundation for Research and Technology—Hellas, 70013 Heraklion, Greece; (E.T.); (V.S.); (K.N.); (I.K.)
| | - Ioannis Karatzanis
- Institute of Computer Science, Foundation for Research and Technology—Hellas, 70013 Heraklion, Greece; (E.T.); (V.S.); (K.N.); (I.K.)
| | | | - Djibril Kaba
- Department of Computer Science and Technology, University of Bedfordshire, Luton LU1 3JU, UK;
| | - Feng Dong
- Department of Computer & Information Sciences, University of Strathclyde, Glasgow G1 1XH, UK;
| | - Rainer M. Bohle
- Department of Pathology, Saarland University, 66421 Homburg, Germany;
| | - Eckart Meese
- Department of Human Genetics, Saarland University, 66421 Homburg, Germany;
| | - Norbert Graf
- Department of Paediatric Oncology and Haematology, Saarland University, 66421 Homburg, Germany;
| | - Georgios Stamatakos
- In Silico Oncology and In Silico Medicine Group, Institute of Communication and Computer Systems, School of Electrical and Computer Engineering, National Technical University of Athens, 157 80 Zografos, Greece;
| |
Collapse
|
3
|
Wojcik HM, Lovvorn HN, Hollingshead M, Pierce J, Stotler H, Murphy AJ, Borgel S, Phelps HM, Correa H, Perantoni AO. Exploiting embryonic niche conditions to grow Wilms tumor blastema in culture. Front Oncol 2023; 13:1091274. [PMID: 37007076 PMCID: PMC10061139 DOI: 10.3389/fonc.2023.1091274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
IntroductionWilms Tumor (WT), or nephroblastoma, is the most common pediatric kidney cancer. Most WTs display a “favorable” triphasic histology, in which the tumor is comprised of blastemal, stromal, and epithelial cell types. Blastemal predominance after neoadjuvant chemotherapy or diffuse anaplasia (“unfavorable” histology; 5-8%) portend a worse prognosis. Blastema likely provide the putative cancer stem cells (CSCs), which retain molecular and histologic features characteristic of nephron progenitor cells (NPCs), within WTs. NPCs arise in the metanephric mesenchyme (MM) and populate the cap mesenchyme (CM) in the developing kidney. WT blastemal cells, like NPCs, similarly express markers, SIX2 and CITED1. Tumor xenotransplantation is currently the only dependable method to propagate tumor tissue for research or therapeutic screening, since efforts to culture tumors in vitro as monolayers have invariably failed. Therefore, a critical need exists to propagate WT stem cells rapidly and efficiently for high-throughput, real-time drug screening.MethodsPreviously, our lab developed niche conditions that support the propagation of murine NPCs in culture. Applying similar conditions to WTs, we assessed our ability to maintain key NPC "stemness" markers, SIX2, NCAM, and YAP1, and CSC marker ALDHI in cells from five distinct untreated patient tumors.ResultsAccordingly, our culture conditions maintained the expression of these markers in cultured WT cells through multiple passages of rapidly dividing cells.DiscussionThese findings suggest that our culture conditions sustain the WT blastemal population, as previously shown for normal NPCs. As a result, we have developed new WT cell lines and a multi-passage in vitro model for studying the blastemal lineage/CSCs in WTs. Furthermore, this system supports growth of heterogeneous WT cells, upon which potential drug therapies could be tested for efficacy and resistance.
Collapse
Affiliation(s)
- Heather M. Wojcik
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD, United States
| | - Harold N. Lovvorn
- Department of Pediatric Surgery, Monroe Carell Jr. Children’s Hospital at Vanderbilt University, Nashville, TN, United States
| | - Melinda Hollingshead
- Biological Testing Branch/Developmental Therapeutics Program, National Cancer Institute, Frederick, MD, United States
| | - Janene Pierce
- Department of Pediatric Surgery, Monroe Carell Jr. Children’s Hospital at Vanderbilt University, Nashville, TN, United States
| | - Howard Stotler
- Leidos Biomedical Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Andrew J. Murphy
- Department of Pediatric Surgery, Monroe Carell Jr. Children’s Hospital at Vanderbilt University, Nashville, TN, United States
| | - Suzanne Borgel
- Leidos Biomedical Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Hannah M. Phelps
- Department of Pediatric Surgery, Monroe Carell Jr. Children’s Hospital at Vanderbilt University, Nashville, TN, United States
| | - Hernan Correa
- Division of Pediatric Pathology, Monroe Carell Jr. Children’s Hospital at Vanderbilt University, Nashville, TN, United States
| | - Alan O. Perantoni
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD, United States
- *Correspondence: Alan O. Perantoni,
| |
Collapse
|
4
|
Fiore PF, Vacca P, Tumino N, Besi F, Pelosi A, Munari E, Marconi M, Caruana I, Pistoia V, Moretta L, Azzarone B. Wilms' Tumor Primary Cells Display Potent Immunoregulatory Properties on NK Cells and Macrophages. Cancers (Basel) 2021; 13:E224. [PMID: 33435455 PMCID: PMC7826641 DOI: 10.3390/cancers13020224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 12/30/2020] [Accepted: 01/07/2021] [Indexed: 02/06/2023] Open
Abstract
The immune response plays a crucial defensive role in cancer growth and metastasis and is a promising target in different tumors. The role of the immune system in Wilm's Tumor (WT), a common pediatric renal malignancy, is still to be explored. The characterization of the immune environment in WT could allow the identification of new therapeutic strategies for targeting possible inhibitory mechanisms and/or lowering toxicity of the current treatments. In this study, we stabilized four WT primary cultures expressing either a blastematous (CD56+/CD133-) or an epithelial (CD56-/CD133+) phenotype and investigated their interactions with innate immune cells, namely NK cells and monocytes. We show that cytokine-activated NK cells efficiently kill WT cells. However, after co-culture with WT primary cells, NK cells displayed an impaired cytotoxic activity, decreased production of IFNγ and expression of CD107a, DNAM-1 and NKp30. Analysis of the effects of the interaction between WT cells and monocytes revealed their polarization towards alternatively activated macrophages (M2) that, in turn, further impaired NK cell functions. In conclusion, we show that both WT blastematous and epithelial components may contribute directly and indirectly to a tumor immunosuppressive microenvironment that is likely to play a role in tumor progression.
Collapse
Affiliation(s)
- Piera Filomena Fiore
- Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (P.F.F.); (P.V.); (N.T.); (F.B.); (A.P.); (V.P.)
| | - Paola Vacca
- Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (P.F.F.); (P.V.); (N.T.); (F.B.); (A.P.); (V.P.)
| | - Nicola Tumino
- Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (P.F.F.); (P.V.); (N.T.); (F.B.); (A.P.); (V.P.)
| | - Francesca Besi
- Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (P.F.F.); (P.V.); (N.T.); (F.B.); (A.P.); (V.P.)
| | - Andrea Pelosi
- Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (P.F.F.); (P.V.); (N.T.); (F.B.); (A.P.); (V.P.)
| | - Enrico Munari
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy;
| | - Marcella Marconi
- Department of Pathology, IRCCS Sacro Cuore Don Calabria, Negrar, 37024 Verona, Italy;
| | - Ignazio Caruana
- Department of Paediatric Haematology, Oncology and Stem Cell Transplantation University Children’s Hospital of Würzburg, 97080 Würzburg, Germany;
| | - Vito Pistoia
- Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (P.F.F.); (P.V.); (N.T.); (F.B.); (A.P.); (V.P.)
| | - Lorenzo Moretta
- Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (P.F.F.); (P.V.); (N.T.); (F.B.); (A.P.); (V.P.)
| | - Bruno Azzarone
- Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (P.F.F.); (P.V.); (N.T.); (F.B.); (A.P.); (V.P.)
| |
Collapse
|
5
|
Comprehensive Biology and Genetics Compendium of Wilms Tumor Cell Lines with Different WT1 Mutations. Cancers (Basel) 2020; 13:cancers13010060. [PMID: 33379206 PMCID: PMC7801943 DOI: 10.3390/cancers13010060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/15/2020] [Accepted: 12/22/2020] [Indexed: 12/01/2022] Open
Abstract
Simple Summary Wilms tumor is a childhood kidney tumor arising from embryonal cells. Wilms tumors are heterogeneous with several distinct subgroups that differ in their response to treatment. The genetic basis for these diverse forms of Wilms tumor is not fully understood. One subgroup of Wilms tumors is associated with mutations in the WT1 gene, encoding a transcription factor with a role in early kidney differentiation. Patients with WT1 mutant Wilms tumor may harbor germline mutations in this gene. Cell lines from Wilms tumors are notoriously difficult to establish and only few exist. We developed a method to cultivate cells from the WT1 mutant subtype of Wilms tumors and have established 11 cell lines with different mutations in WT1 to date. These cells will be instrumental to study the biology and genetics ultimately to develop precision treatments Abstract Purpose: WT1 mutant Wilms tumors represent a distinct subgroup, frequently associated with CTNNB1 mutations. The genetic basis for the development of this subtype is currently not fully understood. Methods: Live WT1 mutant Wilms tumors were collected during surgery of patients and cell cultures established in mesenchymal stem cell medium. They were studied for mutations in WT1 and CTNNB1, their differentiation capacity and protein activation status. Four cell lines were immortalized with a triple mutant ts SV40 largeT antigen and Telomerase. Results: 11 cell lines were established from Wilms tumors of nine patients, including a left and right tumor from the same patient and a primary and second tumor from another patient. Six patients had germ line and three were tumor specific mutations. All cell lines harbored only mutant or deleted WT1 genes. CTNNB1 was wild type in three, all others carried mutations affecting amino acid S45. They had variable and limited capacities for mesenchymal differentiation, a high migratory capacity and a low invasive potential. All cells showed an activation of multiple receptor tyrosine kinases and downstream signaling pathways. Conclusions: These cell lines represent an important new tool to study WT1 mutant Wilms tumors, potentially leading to new treatment approaches.
Collapse
|
6
|
Sung SM, Lee SJ, Lee KW, Kim JC. Ultraviolet B-induced Senescence Model Using Corneal Fibroblasts and the Anti-aging Effect of Angiogenin. JOURNAL OF THE KOREAN OPHTHALMOLOGICAL SOCIETY 2020. [DOI: 10.3341/jkos.2020.61.9.1015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Tang F, Lu Z, Wang J, Li Z, Wu W, Duan H, He Z. Competitive endogenous RNA (ceRNA) regulation network of lncRNAs, miRNAs, and mRNAs in Wilms tumour. BMC Med Genomics 2019; 12:194. [PMID: 31842887 PMCID: PMC6915924 DOI: 10.1186/s12920-019-0644-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 12/08/2019] [Indexed: 12/19/2022] Open
Abstract
Background Competitive endogenous RNAs (ceRNAs) have revealed a new mechanism of interaction between RNAs. However, an understanding of the ceRNA regulatory network in Wilms tumour (WT) remains limited. Methods The expression profiles of mRNAs, miRNAs and lncRNAs in Wilms tumour samples and normal samples were obtained from the Therapeutically Applicable Research to Generate Effective Treatment (TARGET) database. The EdgeR package was employed to identify differentially expressed lncRNAs, miRNAs and mRNAs. Functional enrichment analyses via the ClusterProfile R package were performed, and the lncRNA–miRNA–mRNA interaction ceRNA network was established in Cytoscape. Subsequently, the correlation between the ceRNA network and overall survival was analysed. Results A total of 2037 lncRNAs, 154 miRNAs and 3609 mRNAs were identified as differentially expressed RNAs in Wilms tumour. Of those, 205 lncRNAs, 26 miRNAs and 143 mRNAs were included in the ceRNA regulatory network. The results of Gene Ontology (GO) analysis revealed that the differentially expressed genes (DEGs) were mainly enriched in terms related to response to mechanical stimuli, transcription factor complexes, and transcription factor activity (related to RNA polymerase II proximal promoter sequence-specific DNA binding). The results of the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the DEGs were mainly enriched in pathways related to the cell cycle. The survival analysis results showed that 16 out of the 205 lncRNAs, 1 out of 26 miRNAs and 5 out of 143 mRNAs were associated with overall survival in Wilms tumour patients (P < 0.05). Conclusions CeRNA networks play an important role in Wilms tumour. This finding might provide effective, novel insights for further understanding the mechanisms underlying Wilms tumour.
Collapse
Affiliation(s)
- Fucai Tang
- Department of Urology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Zechao Lu
- First Clinical College of Guangzhou Medical University, Guangzhou, 510230, China
| | - Jiamin Wang
- Department of Urology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, China
| | - Zhibiao Li
- Three Clinical College of Guangzhou Medical University, Guangzhou, 510230, China
| | - Weijia Wu
- Department of Urology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Haifeng Duan
- Department of Urology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, China
| | - Zhaohui He
- Department of Urology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China.
| |
Collapse
|
8
|
Cui L, Zhou F, Chen C, Wang CC. Overexpression of CCDC69 activates p14 ARF/MDM2/p53 pathway and confers cisplatin sensitivity. J Ovarian Res 2019; 12:4. [PMID: 30651135 PMCID: PMC6334460 DOI: 10.1186/s13048-019-0479-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 01/03/2019] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVES The aim of the study is to explore the relationship between CCDC69 expression and resistance of ovarian cancer cells to cisplatin and reveal the underlying mechanism. METHODS One hundred thirty five ovarian cancer patients with intact chemo-response information from The Cancer Genome Atlas (TCGA) database were included and analyzed. Stable CCDC69 overexpressing 293 and ovarian cancer A2780 cell lines were established and subjected to examine cell apoptosis and cell cycle distribution using CCK-8 assay and flow cytometry. Cell cycle and apoptosis pathway were evaluated by immunoblots. Stability of p14ARF/MDM2/p53 pathway related proteins were determined by half-life analysis and ubiquitination experiments. RESULTS We found that CCDC69 expression was significantly higher in chemo-sensitive groups compared with chemo-resistant groups from TCGA database. High CCDC69 expression was associated longer survival. CCDC69 overexpressing 293 and A2780 cells with wildtype p53 and contributes to cisplatin sensitivity following treatment with cisplatin. We further found over-expression of CCDC69 activated p14ARF/MDM2/p53 pathway. Importantly, we also demonstrated that CCDC69 expression extended p53 and p14ARF protein half-life and shortened MDM2 protein half-life. Ubiquitination assay revealing a decrease in p14 ubiquitination in CCDC69 over-expression cells comparing to cells expressing empty vector. CONCLUSIONS It is tempting to conclude that targeting CCDC69 may play a role in cisplatin resistance.
Collapse
Affiliation(s)
- Long Cui
- Department of Obstetrics and Gynaecology, Guangzhou Women and Children Hospital, Guangzhou, 511400, Guangdong, China. .,Department of Obstetrics and Gynecology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, China.
| | - Fang Zhou
- School of Nursing, The First Affiliated Hospital, Xuzhou Medical University, Xuzhou, China
| | - Cui Chen
- Intensive Care Unit, The First Affiliated Hospital, Xuzhou Medical University, Xuzhou, China
| | - Chi Chiu Wang
- Department of Obstetrics and Gynecology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, China.,Reproduction and Development Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Shatin, China
| |
Collapse
|
9
|
Miserocchi G, Mercatali L, Liverani C, De Vita A, Spadazzi C, Pieri F, Bongiovanni A, Recine F, Amadori D, Ibrahim T. Management and potentialities of primary cancer cultures in preclinical and translational studies. J Transl Med 2017; 15:229. [PMID: 29116016 PMCID: PMC5688825 DOI: 10.1186/s12967-017-1328-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/27/2017] [Indexed: 02/07/2023] Open
Abstract
The use of patient-derived primary cell cultures in cancer preclinical assays has increased in recent years. The management of resected tumor tissue remains complex and a number of parameters must be respected to obtain complete sample digestion and optimal vitality yield. We provide an overview of the benefits of correct primary cell culture management using different preclinical methodologies, and describe the pros and cons of this model with respect to other kinds of samples. One important advantage is that the heterogeneity of the cell populations composing a primary culture partially reproduces the tumor microenvironment and crosstalk between malignant and healthy cells, neither of which is possible with cell lines. Moreover, the use of patient-derived specimens in innovative preclinical technologies, such as 3D systems or bioreactors, represents an important opportunity to improve the translational value of the results obtained. In vivo models could further our understanding of the crosstalk between tumor and other tissues as they enable us to observe the systemic and biological interactions of a complete organism. Although engineered mice are the most common model used in this setting, the zebrafish (Danio rerio) species has recently been recognized as an innovative experimental system. In fact, the transparent body and incomplete immune system of zebrafish embryos are especially useful for evaluating patient-derived tumor tissue interactions in healthy hosts. In conclusion, ex vivo systems represent an important tool for cancer research, but samples require correct manipulation to maximize their translational value.
Collapse
Affiliation(s)
- Giacomo Miserocchi
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via Piero Maroncelli 40, 47014, Meldola, FC, Italy
| | - Laura Mercatali
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via Piero Maroncelli 40, 47014, Meldola, FC, Italy.
| | - Chiara Liverani
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via Piero Maroncelli 40, 47014, Meldola, FC, Italy
| | - Alessandro De Vita
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via Piero Maroncelli 40, 47014, Meldola, FC, Italy
| | - Chiara Spadazzi
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via Piero Maroncelli 40, 47014, Meldola, FC, Italy
| | - Federica Pieri
- Pathology Unit, Morgagni-Pierantoni Hospital, Via Carlo Forlanini 34, 47121, Forlì, Italy
| | - Alberto Bongiovanni
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via Piero Maroncelli 40, 47014, Meldola, FC, Italy
| | - Federica Recine
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via Piero Maroncelli 40, 47014, Meldola, FC, Italy
| | - Dino Amadori
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via Piero Maroncelli 40, 47014, Meldola, FC, Italy
| | - Toni Ibrahim
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via Piero Maroncelli 40, 47014, Meldola, FC, Italy
| |
Collapse
|