1
|
Pomlok K, Pata S, Kulaphisit M, Pangnuchar R, Wipasa J, Smith DR, Kasinrerk W, Lithanatudom P. An IgM monoclonal antibody against domain 1 of CD147 induces non-canonical RIPK-independent necroptosis in a cell type specific manner in hepatocellular carcinoma cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119295. [PMID: 35598753 DOI: 10.1016/j.bbamcr.2022.119295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
CD147/Basigin/EMMPRIN is overexpressed in several cancerous tissues and it has been shown to induce matrix metalloproteinases (MMPs) whose expression is associated with cancer metastasis. Thus, targeting CD147 with monoclonal antibodies (mAbs) potentially has therapeutic applications in cancer immunotherapy. Here, we report the use of anti-CD147 mAbs targeting domain 1 of CD147, namely M6-1D4 (IgM), M6-1F3 (IgM), M6-2F9 (IgM) and M6-1E9 (IgG2a), against several human cancer cell lines. Strikingly, IgM but not IgG mAbs against CD147, especially clone M6-1D4, induced acute cellular swelling, and this phenomenon appeared to be specifically found with hepatocellular carcinoma (HCC) cells. Furthermore, molecular investigation upon treating HepG2 cells with M6-1D4 showed unfolded protein response (UPR) activation, autophagosome accumulation, and cell cycle arrest, but without classic apoptosis related features. More interestingly, prolonged M6-1D4 treatment (24 h) resulted in irreversible oncosis leading to necroptosis. Furthermore, treatment with a mixed lineage kinase domain-like psuedokinase (MLKL) inhibitor and partial knockout of MLKL resulted in reduced sensitivity to necroptosis in M6-1D4-treated HepG2 cells. Surprisingly however, the observed necroptotic signaling axis appeared to be non-canonical as it was independent of receptor-interacting serine/threonine-protein kinase (RIPK) phosphorylation. In addition, no cytotoxic effect on human dermal fibroblast (HDF) was observed after incubation with M6-1D4. Taken together, this study provides clues to target CD147 in HCC using mAbs, as well as sheds new light on a novel strategy to kill cancerous cells by the induction of necroptosis.
Collapse
Affiliation(s)
- Kumpanat Pomlok
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Ph.D.'s Degree Program in Biology (International Program), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Supansa Pata
- Clinical Immunology Branch, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Mattapong Kulaphisit
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Ph.D.'s Degree Program in Biology (International Program), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Rachan Pangnuchar
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jiraprapa Wipasa
- Center for Molecular and Cell Biology for Infectious Diseases, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Duncan R Smith
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Watchara Kasinrerk
- Clinical Immunology Branch, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pathrapol Lithanatudom
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Bioresources for Agriculture, Industry and Medicine, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
2
|
Rosa-Fernandes L, Oba-Shinjo SM, Macedo-da-Silva J, Marie SKN, Palmisano G. Aberrant Protein Glycosylation in Brain Cancers, with Emphasis on Glioblastoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1382:39-70. [DOI: 10.1007/978-3-031-05460-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
3
|
Fernandes Â, Dias AM, Silva MC, Gaifem J, Azevedo CM, Carballo I, Pinho SS. The Role of Glycans in Chronic Inflammatory Gastrointestinal and Liver Disorders and Cancer. COMPREHENSIVE GLYCOSCIENCE 2021:444-470. [DOI: 10.1016/b978-0-12-819475-1.00036-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Xia M, Shao J, Qiao M, Luo Z, Deng X, Ke Q, Dong X, Shen L. Identification of LCA-binding Glycans as a Novel Biomarker for Esophageal Cancer Metastasis using a Lectin Array-based Strategy. J Cancer 2020; 11:4736-4745. [PMID: 32626520 PMCID: PMC7330695 DOI: 10.7150/jca.43806] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/16/2020] [Indexed: 12/17/2022] Open
Abstract
Esophageal cancer (EC) is a unique and heterogeneous disease diagnosed mostly at advanced stages. Altered glycans presented on cell surfaces are involved in the occurrence and development of malignancy. However, the effects of glycans on EC progression are largely unexplored. Here, a lectin array was utilized to detect the glycan profiling of the normal esophageal mucosal epithelial cell line and two EC cell lines. The binding of Lens culinaris lectin (LCA) to EC cells was found to be stronger than that of the normal cells. Lectin immunohistochemical staining revealed that LCA-binding glycans were markedly elevated in EC tissues compared to adjacent non-cancerous tissues. LCA staining was significantly associated with lymph node metastasis, depth of invasion, TNM stage and poor overall survival of EC patients. Added LCA to block LCA recognized glycans could inhibit the migration and invasion of EC cells. Further analysis revealed that blocking the biosynthesis of LCA-binding glycans by tunicamycin attenuated cellular migratory and invasive abilities. Additionally, a membrane glycoprotein CD147 was recognized as a binder of LCA. There was a positive correlation between LCA-binding glycans and CD147 expression in clinical samples. Interestingly, CD147 inhibition also reduced cell migration and invasion. These findings indicated that LCA-binding glycans may function as a novel indicator to predict metastasis for patients with EC.
Collapse
Affiliation(s)
- Min Xia
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China.,Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Jun Shao
- Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Meimei Qiao
- Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Zhiguo Luo
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Xinzhou Deng
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Qing Ke
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Xiaoxia Dong
- Department of Pharmacology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Li Shen
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China.,Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan,Hubei 442000, P.R. China
| |
Collapse
|
5
|
Wu X, Liu X. Analysis of the expression of D-dimer, CD147 and miR203 and their correlation in gastric cancer. Pak J Med Sci 2019; 35:443-447. [PMID: 31086530 PMCID: PMC6500820 DOI: 10.12669/pjms.35.2.718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Objectives: To evaluate the relationship of D-dimer, CD147 and miR-203, and detect the influence of these biomarkers on the pathological characteristics in patients with gastric cancer. Methods: The patients with gastric cancer treated using radical gastrectomy between May 2013 and October 2017 were reviewed retrospectively. The expression of D-dimer, miR203 and CD147 was measured for all the patients, and the clinical data including age, gender, tumor size, tumor differentiation, invasion depth, lymphatic metastasis, TMN stage, and pathological type were retrieved and analyzed. The study was carried out in affiliated Yidu Central Hospital of Weifang Medical College, Qingzhou, China. Results: Two hundred sixty patients with gastric cancer were included. The patients with tumor metastasis, larger tumor diameter, lower differentiation, lymphatic metastasis, deeper invasion, and higher TMN stage presented with a significantly higher D-dimer and CD 147 expression, but the level of the two biomarkers didn’t show a significant difference in patients with different pathological type, gender and age. Compared with CD147 and D-dimer, miR203 presented with different characteristics of expression. In addition, the expression of miR203 was negatively correlated with CD147 and D-dimer, and there was a positive correlation between CD147 and D-dimer in patients with gastric cancer. Conclusion: In this study, a close correlation of D-dimer, miR203 and CD147 was found, and these three biomarkers should be screened in gastric cancer patients.
Collapse
Affiliation(s)
- Xiguo Wu
- Xiguo Wu, Department of Laboratory, Affiliated Yidu Central Hospital of Weifang Medical College, Qingzhou, 262500, China
| | - Xiuzhen Liu
- Xiuzhen Liu, Department of Functional Inspection, Affiliated Yidu Central Hospital of Weifang Medical College, Qingzhou, 262500, China
| |
Collapse
|
6
|
Dong X, Luo Z, Liu T, Chai J, Ke Q, Shen L. Identification of Integrin β1 as a Novel PAG1-Interacting Protein Involved in the Inherent Radioresistance of Human Laryngeal Carcinoma. J Cancer 2018; 9:4128-4138. [PMID: 30519312 PMCID: PMC6277618 DOI: 10.7150/jca.26885] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/19/2018] [Indexed: 12/22/2022] Open
Abstract
Inherent radioresistance plays a crucial role in the failure of radiotherapy. Using the inherent radioresistant (Hep-2max) and radiosensitive (Hep-2min) cell lines established from the parental cell line Hep-2, we previously reported that phosphoprotein associated with glycosphingolipid-enriched microdomains 1(PAG1) overexpression in laryngeal carcinoma cells was correlated with inherent radioresistant phenotypes. However, the underlying mechanisms of this effect remain unknown. In the present study, we performed a proteomic screen to investigate the interactome of PAG1 in Hep-2max cells resulting in the identification of several interaction partners. Bioinformatic analysis and immunofluorescence experiments indicated the integrin β1 to be a crucial interaction partner of PAG1. PAG1 was also highly expressed in laryngeal carcinoma radioresistant tissues and showed co-localization with integrin β1. In addition, we demonstrated that integrin β1's binding to PAG1 could be interrupted by MβCD, an inhibitor of lipid rafts formation. Moreover, knockdown of integrin β1 by RNA interference sensitized radioresistant cells to irradiation. Importantly, we identified 2 potential interaction sites (Pro216-Arg232 and Asn356-Gly377) in the cytoplasmic domain of PAG1 using high throughput peptide arrays. Taken together, these results suggest that the binding of PAG1 to integrin β1 in lipid rafts is essential for inherent radioresistance of human laryngeal carcinoma.
Collapse
Affiliation(s)
- Xiaoxia Dong
- Department of pharmacology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Zhiguo Luo
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Tiantian Liu
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Jingjing Chai
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Qing Ke
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Li Shen
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| |
Collapse
|
7
|
Shen L, Ke Q, Chai J, Zhang C, Qiu L, Peng F, Deng X, Luo Z. PAG1 promotes the inherent radioresistance of laryngeal cancer cells via activation of STAT3. Exp Cell Res 2018; 370:127-136. [DOI: 10.1016/j.yexcr.2018.06.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 06/06/2018] [Accepted: 06/14/2018] [Indexed: 12/29/2022]
|
8
|
Zhang C, Deng X, Qiu L, Peng F, Geng S, Shen L, Luo Z. Knockdown of C1GalT1 inhibits radioresistance of human esophageal cancer cells through modifying β1-integrin glycosylation. J Cancer 2018; 9:2666-2677. [PMID: 30087707 PMCID: PMC6072818 DOI: 10.7150/jca.25252] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/29/2018] [Indexed: 12/17/2022] Open
Abstract
Radiotherapy has played a limited role for the treatment of human esophageal cancer owing to the risk of tumor radioresistance. Core 1 β1, 3-galactosyltransferase (C1GalT1), which catalyzes the formation of core 1 O-glycan structures, is frequently overexpressed during tumorigenesis. However, the exact effects and mechanisms of C1GalT1 in the radioresistance of esophageal cancer remain unclear. In this study, Public databases and our data revealed that C1GalT1 expression was up-regulated in esophageal cancer tissues and was associated with poor survival. Upon irradiation, we found that esophageal cancer cells with high levels of C1GalT1 could tolerate cell death and had increased resistance to radiotherapy. Irradiation also promoted the expression of C1GalT1 and core 1 O-glycan structures. C1GalT1 knockdown increased the radiosensitivity of esophageal cancer cells, and attenuated irradiation-enhanced migration and invasion. Mechanistic investigations showed that C1GalT1 modified O-glycan structures on β1-integrin and regulated its downstream focal adhesion kinase (FAK) signaling. Furthermore, β1-integrin-blocking antibody and FAK inhibitor enhanced radiation-induced apoptosis in esophageal cancer cells. Together, our results indicate that C1GalT1 is a major determinant of radioresistance via modulation of β1-integrin glycosylation. C1GalT1 may be a potent molecular target for enhancing the efficacy of radiotherapy.
Collapse
Affiliation(s)
- Chuanyi Zhang
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Xinzhou Deng
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Li Qiu
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Feng Peng
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Shanshan Geng
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Li Shen
- Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Zhiguo Luo
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| |
Collapse
|
9
|
Li L, Dong X, Peng F, Shen L. Integrin β1 regulates the invasion and radioresistance of laryngeal cancer cells by targeting CD147. Cancer Cell Int 2018; 18:80. [PMID: 29930482 PMCID: PMC5992723 DOI: 10.1186/s12935-018-0578-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/02/2018] [Indexed: 11/29/2022] Open
Abstract
Background Increased expression of integrin β1 has been reported to correlate with progression and therapy resistance in many types of cancers. The aim of this study was to investigate the effects of integrin β1 on the invasion and radioresistance of laryngeal cancer cells. Methods The expression of integrin β1 in the tumor specimens of laryngeal cancer patients was assessed by immunohistochemical assays. The invasion ability of laryngeal cancer cells was detected by transwell and wound healing assays. The radiosensitivity of laryngeal cancer cells was evaluated by flow cytometry and colony formation assays. Results High expression of integrin β1 was significantly associated with lymph node metastasis, TNM stage and poor clinical outcomes (all p < 0.05). Knockdown of integrin β1 in laryngeal cancer cells inhibited invasion and increased radiosensitivity. Mechanistically, these effects were caused by suppression of the downstream focal adhesion kinase (FAK)/cortactin pathway. In addition, integrin β1 could interact with CD147 and the antibody blockade of CD147 led to the deactivation of FAK/cortactin signaling. Further studies revealed that the interaction between integrin β1 and CD147 relied on intact lipid rafts. Disruption of lipid rafts by methyl beta cyclodextrin in laryngeal cancer cells was able to reverse integrin β1-mediated malignant phenotypes. Conclusions Integrin β1 has potential as a therapeutic target in prevention and treatment of laryngeal cancer.
Collapse
Affiliation(s)
- Li Li
- 1The Functional Science Laboratory, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000 Hubei People's Republic of China
| | - Xiaoxia Dong
- 2Department of Pharmacology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000 Hubei People's Republic of China
| | - Feng Peng
- 3Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, 30 South Renmin Road, Shiyan, 442000 Hubei People's Republic of China
| | - Li Shen
- 3Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, 30 South Renmin Road, Shiyan, 442000 Hubei People's Republic of China
| |
Collapse
|
10
|
Jiang Z, Zhang H, Liu C, Yin J, Tong S, Lv J, Wei S, Wu S. β3GnT8 Promotes Colorectal Cancer Cells Invasion via CD147/MMP2/Galectin3 Axis. Front Physiol 2018; 9:588. [PMID: 29875690 PMCID: PMC5974207 DOI: 10.3389/fphys.2018.00588] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 05/02/2018] [Indexed: 01/10/2023] Open
Abstract
β1,3-N-acetylglucosaminyltransferase (β3GnT8) and β3GnT2 are key enzymes that catalyzes the formation of polylactosamine glycan structures by transferring GlcNAc to tetra-antennary β1-6-branched N-glycan and it also has an important effect on the progression of various types of human cancer. They have been reported to participate in tumor invasion and metastasis by regulating the expression of matrix metalloproteinases (MMPs), CD147, and polylactosamine. However, whether β3GnT8 and β3GnT2 play a role in colorectal cancer and, if so, the underlying mechanisms remain unclear. In our study, we detected the expression of β3GnT8, CD147, MMP2, and galectin3 by immunohistochemistry on 90 paraffin-embedded slices. And β3GnT8, CD147, MMP2, and galectin3 were over-expressed in colorectal cancer tissues. We found that overexpression of β3GnT8 and β3GnT2 promoted invasion of colorectal cancer cells, whereas knockdown of β3GnT8 and β3GnT2 inhibited the invasive activity. Mechanistically, β3GnT8 and β3GnT2 regulated the expression of HG-CD147 and the level of polylactosamines in colorectal cancer cells. Together, these results illustrate that the novel role and the molecular mechanism of β3GnT8 and β3GnT2 in promotion of colorectal cancer invasion. These results suggest that the potential use of β3GnT8 as a tumor target for the therapy of colorectal cancer.
Collapse
Affiliation(s)
- Zhi Jiang
- Department of Biochemistry and Molecular Biology, School of Medicine, Soochow University, Suzhou, China
| | - Huan Zhang
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China.,First People's Hospital of Changshu City, Changshu Hospital Affiliated to Soochow University, Changshu, China
| | - Chunliang Liu
- Department of Biochemistry and Molecular Biology, School of Medicine, Soochow University, Suzhou, China.,Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jun Yin
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shan Tong
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Junxing Lv
- Department of Biochemistry and Molecular Biology, School of Medicine, Soochow University, Suzhou, China
| | - Shaohua Wei
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Shiliang Wu
- Department of Biochemistry and Molecular Biology, School of Medicine, Soochow University, Suzhou, China
| |
Collapse
|
11
|
Altered O-glycosylation is associated with inherent radioresistance and malignancy of human laryngeal carcinoma. Exp Cell Res 2017; 362:302-310. [PMID: 29179977 DOI: 10.1016/j.yexcr.2017.11.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 01/20/2023]
Abstract
Radioresistance (inherent or acquired) remains a major obstacle affecting the clinical outcome of radiotherapy for laryngeal carcinoma. Results from our laboratory and other groups suggest that aberrant glycosylation contributes to cancer acquired radioresistance. However, the role of glycosylation in inherent radioresistance of laryngeal carcinoma has not been fully uncovered. In this study, we investigated the glycan profiling of the inherent radioresistant (Hep-2max) and radiosensitive (Hep-2min) cell lines using lectin microarray analysis. The results revealed that the radioresistant cell line Hep-2max presented higher core 1-type O-glycans than the sensitive one. Further analysis of the O-glycan regulation by benzyl-α-GalNAc application in Hep-2max cells showed partial inhibition of the O-glycan biosynthesis and increased radiosensitivity. In addition, core 1 β1, 3-galactosyltransferase (C1GALT1) overexpression in Hep-2min cells enhanced cell migration, invasion, and radioresistance. Conversely, knockdown of C1GALT1 in Hep-2max cells was able to suppress these malignant phenotypes. Moreover, mechanistic investigations showed that C1GALT1 modified the O-glycans on integrin β1 and regulated its activity. The glycosylation-mediated radioresistance was further inhibited by anti-integrin β1 blocking antibody. Importantly, we also observed that core 1-type O-glycans expression was correlated with advanced tumor stage, metastasis, and poor survival of laryngeal carcinoma patients. These findings suggest that altered O-glycosylation can lead to the inherent radioresistance and progression, and therefore may be important for enhancing the efficacy of radiotherapy in laryngeal carcinoma.
Collapse
|