1
|
Zhang G, Jiang Y, Wang Z, Guo Z, Hu J, Li X, Wang Y, Jing Z. FUS/circZEB1/miR-128-3p/LBH feedback loop contributes to the malignant phenotype of GSCs via TNF-α-mediated NF-κB signaling pathway. Cancer Cell Int 2024; 24:365. [PMID: 39511561 PMCID: PMC11545228 DOI: 10.1186/s12935-024-03526-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 10/10/2024] [Indexed: 11/15/2024] Open
Abstract
Glioblastoma (GBM) is the most lethal and common primary tumor of central nervous system with a poor prognosis. Glioma stem cells (GSCs) are particularly significant in GBM proliferation, invasion, self-renewal and recurrence. Circular RNAs (circRNAs) play important roles in various physiological and pathological processes, including regulating the biological behavior of GBM. Therefore, discovering novel circRNAs related to GSCs may contribute to a promising approach for treatment of GBM. Herein, we find out a novel circRNA termed circZEB1 with a high expression in glioma. Limb-bud and heart (LBH) is a transcription cofactor and promotes glioma stem cell tumorigenicity in our study. Mechanistically, circZEB1 can upregulate the expression of transcription cofactor LBH via sponging miR-128-3p in GSCs. LBH can facilitate the expression of tumor necrosis factor-α (TNF-α), thus activating the NF-κB signaling pathway to promote the glioma progression. Meanwhile, LBH can also upregulate the RNA binding protein Fused in Sarcoma (FUS) expression, which can bind to and maintain the stability of circZEB1. A positive feedback loop is formed among FUS, circZEB1, miR-128-3p and LBH in GSCs. Our study uncovers a critical role of circZEB1 and provides a novel biomarker for treating GBM.
Collapse
Affiliation(s)
- Guoqing Zhang
- Department of Neurosurgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, China
| | - Yang Jiang
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 200072, Shanghai, People's Republic of China
| | - Zhichao Wang
- Department of Neurosurgery, The People's Hospital of China Medical University, Shenyang, 110067, China
| | - Zhengting Guo
- Department of Neurosurgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, China
| | - Jinpeng Hu
- Department of Neurosurgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, China
| | - Xinqiao Li
- Department of Neurosurgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, China
| | - Yongfeng Wang
- Department of Radiology, The First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, China.
| | - Zhitao Jing
- Department of Neurosurgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, China.
| |
Collapse
|
2
|
Yang J, Shi H, Wang H, Liu Y. Inflammatory myofibroblastic tumor of the adrenal gland: A case report. Urol Case Rep 2024; 55:102763. [PMID: 38948679 PMCID: PMC11214283 DOI: 10.1016/j.eucr.2024.102763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/20/2024] [Accepted: 05/31/2024] [Indexed: 07/02/2024] Open
Abstract
Inflammatory Myofibroblastic Tumor (IMT) occurring in the adrenal gland is extremely rare, and pathologic examination is the gold standard for confirming the diagnosis. We report a case of IMT of adrenal origin in a patient whose diagnosis was confirmed by pathological examination after surgical resection of the tumor. Although previous studies have reported an overall favorable prognosis for IMT, regular and long-term follow-up is necessary.
Collapse
Affiliation(s)
- Jiyao Yang
- Department of Urology, Dehong Hospital Affiliated of Kunming Medical University(Dehong Prefecture People's Hospital), Mangshi, Yunnan, China
| | - Hongjin Shi
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Haifeng Wang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yidao Liu
- Department of Urology, Dehong Hospital Affiliated of Kunming Medical University(Dehong Prefecture People's Hospital), Mangshi, Yunnan, China
| |
Collapse
|
3
|
Lu F, Gao J, Luo Y, Jin WL, Wang H, Li CX, Li X. CircCPSF6 promotes hepatocellular carcinoma cancer progression by regulating MAP4K4 through sponging miR-145-5p. Mol Cell Probes 2023; 71:101920. [PMID: 37442529 DOI: 10.1016/j.mcp.2023.101920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
BACKGROUND Aberrant expression of circRNAs is involved in the progression of hepatocellular carcinoma (HCC). This study aimed at screening the pro-tumorigenic circular RNAs (circRNAs) in HCC and the mechanisms of circCPSF6 expression influencing HCC characteristics. METHOD circCPSF6 was identified in HCC tissues using high-throughput sequencing data, and its expression was verified in both HCC tissues and cell lines using quantitative real-time PCR (qRT-PCR). CCK-8 and Transwell assays were used to evaluate the effects of circCPSF6 on HCC proliferation and migration. A xenograft mouse model was used to investigate the effects of circCPSF6 on HCC progression in vivo, and the significance of circCPSF6 in HCC was verified both in vivo and in vitro. circCPSF6-associated miRNAs and mRNAs were identified using bioinformatic analyses. Luciferase reporter, RNA pull-down, Fluorescence in situ hybridization, and RNA immunoprecipitation assays were performed to elucidate the circCPSF6 regulatory axis in HCC. RESULT CircCPSF6 expression was increased in HCC cell lines and tissues, and the expression of its parental mRNA was positively correlated with tumor severity and negatively correlated with survival. Mechanistic analyses of HCC cell lines showed that tumorigenesis was inhibited by circCPSF6 knockdown and promoted by its overexpression. Functional analyses revealed that circCPSF6 mediated HCC development by sponging miR-145-5p as a competing endogenous RNA. Furthermore, this sponging upregulated the miR-145-5p target gene MAP4K4, a classical pro-tumorigenic gene. CONCLUSION Our findings reveal a regulatory network that includes the circCPSF6-miR-145-5p-MAP4K4 axis. Elements of this axis are potential HCC biomarkers, as well as targets for HCC treatment.
Collapse
Affiliation(s)
- Fei Lu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
| | - Jing Gao
- Respiratory Medicine Unit, Department of Medicine, Karolinska Institute, Stockholm, Sweden; Department of Pulmonary Medicine, University of Helsinki and Helsinki University Hospital, Finland
| | - Yang Luo
- Key Laboratory of Biotherapy and Regenerative Medicine, Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000, PR China
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, PR China
| | - Haiping Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
| | - Chuan-Xing Li
- Respiratory Medicine Unit, Department of Medicine, Karolinska Institute, Stockholm, Sweden.
| | - Xun Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China; Key Laboratory of Biotherapy and Regenerative Medicine, Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000, PR China; Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
4
|
Young IC, Brabletz T, Lindley LE, Abreu M, Nagathihalli N, Zaika A, Briegel KJ. Multi-cancer analysis reveals universal association of oncogenic LBH expression with DNA hypomethylation and WNT-Integrin signaling pathways. Cancer Gene Ther 2023; 30:1234-1248. [PMID: 37268816 PMCID: PMC10501907 DOI: 10.1038/s41417-023-00633-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/08/2023] [Accepted: 05/19/2023] [Indexed: 06/04/2023]
Abstract
Limb-Bud and Heart (LBH) is a developmental transcription co-factor deregulated in cancer, with reported oncogenic and tumor suppressive effects. However, LBH expression in most cancer types remains unknown, impeding understanding of its mechanistic function Here, we performed systematic bioinformatic and TMA analysis for LBH in >20 different cancer types. LBH was overexpressed in most cancers compared to normal tissues (>1.5-fold; p < 0.05), including colon-rectal, pancreatic, esophageal, liver, stomach, bladder, kidney, prostate, testicular, brain, head & neck cancers, and sarcoma, correlating with poor prognosis. The cancer types showing LBH downregulation were lung, melanoma, ovarian, cervical, and uterine cancer, while both LBH over- and under-expression were observed in hematopoietic malignancies. In cancers with LBH overexpression, the LBH locus was frequently hypomethylated, identifying DNA hypomethylation as a potential mechanism for LBH dysregulation. Pathway analysis identified a universal, prognostically significant correlation between LBH overexpression and the WNT-Integrin signaling pathways. Validation of the clinical association of LBH with WNT activation in gastrointestinal cancer cell lines, and in colorectal patient samples by IHC uncovered that LBH is specifically expressed in tumor cells with nuclear beta-catenin at the invasive front. Collectively, these data reveal a high degree of LBH dysregulation in cancer and establish LBH as pan-cancer biomarker for detecting WNT hyperactivation in clinical specimens.
Collapse
Affiliation(s)
- In-Chi Young
- Department of Surgery, Division of Surgical Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
- Braman Family Breast Cancer Institute, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Thomas Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Linsey E Lindley
- Braman Family Breast Cancer Institute, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
- Graduate Program in Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Maria Abreu
- Department of Medicine, Division of Gastroenterology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Nagaraj Nagathihalli
- Department of Surgery, Division of Surgical Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alexander Zaika
- Department of Surgery, Division of Surgical Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Karoline J Briegel
- Department of Surgery, Division of Surgical Oncology, University of Miami Miller School of Medicine, Miami, FL, USA.
- Braman Family Breast Cancer Institute, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
5
|
Chen Y, Zhang P, Liao J, Cheng J, Zhang Q, Li T, Zhang H, Jiang Y, Zhang F, Zeng Y, Mo L, Yan H, Liu D, Zhang Q, Zou C, Wei GH, Mo Z. Single-cell transcriptomics reveals cell type diversity of human prostate. J Genet Genomics 2022; 49:1002-1015. [PMID: 35395421 DOI: 10.1016/j.jgg.2022.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 03/06/2022] [Accepted: 03/16/2022] [Indexed: 12/29/2022]
Abstract
Extensive studies have been performed to describe the phenotypic changes occurring during malignant transformation of the prostate. However, the cell types and associated changes that contribute to the development of prostate diseases and cancer remain elusive, largely due to the heterogeneous composition of prostatic tissues. Here, we conduct a comprehensive evaluation of four human prostate tissues by single-cell RNA sequencing (scRNA-seq) to analyze their cellular compositions. We identify 18 clusters of cell types, each with distinct gene expression profiles and unique features; of these, one cluster of epithelial cells (Ep) is found to be associated with immune function. In addition, we characterize a special cluster of fibroblasts and aberrant signaling changes associated with prostate cancer (PCa). Moreover, we provide insights into the epithelial changes that occur during the cellular senescence and aging. These results expand our understanding of the unique functional associations between the diverse prostatic cell types and the contributions of specific cell clusters to the malignant transformation of prostate tissues and PCa development.
Collapse
Affiliation(s)
- Yang Chen
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China; Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Peng Zhang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education & Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 201114, China
| | - Jinling Liao
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Jiwen Cheng
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China; Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Qin Zhang
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Tianyu Li
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China; Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Haiying Zhang
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yonghua Jiang
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Fangxing Zhang
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China; Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yanyu Zeng
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Linjian Mo
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China; Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Haibiao Yan
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Deyun Liu
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Qinyun Zhang
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Chunlin Zou
- Key Laboratory of Longevity and Ageing-Related Disease of Chinese Ministry of Education, Center for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China.
| | - Gong-Hong Wei
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education & Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 201114, China; Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.
| | - Zengnan Mo
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China; Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China.
| |
Collapse
|
6
|
Ozturk H, Cingoz H, Tufan T, Yang J, Adair SJ, Tummala KS, Kuscu C, Kinali M, Comertpay G, Nagdas S, Goudreau BJ, Luleyap HU, Bingul Y, Ware TB, Hwang WL, Hsu KL, Kashatus DF, Ting DT, Chandel NS, Bardeesy N, Bauer TW, Adli M. ISL2 is a putative tumor suppressor whose epigenetic silencing reprograms the metabolism of pancreatic cancer. Dev Cell 2022; 57:1331-1346.e9. [PMID: 35508175 DOI: 10.1016/j.devcel.2022.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 03/11/2022] [Accepted: 04/08/2022] [Indexed: 12/17/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) cells reprogram their transcriptional and metabolic programs to survive the nutrient-poor tumor microenvironment. Through in vivo CRISPR screening, we discovered islet-2 (ISL2) as a candidate tumor suppressor that modulates aggressive PDA growth. Notably, ISL2, a nuclear and chromatin-associated transcription factor, is epigenetically silenced in PDA tumors and high promoter DNA methylation or its reduced expression correlates with poor patient survival. The exogenous ISL2 expression or CRISPR-mediated upregulation of the endogenous loci reduces cell proliferation. Mechanistically, ISL2 regulates the expression of metabolic genes, and its depletion increases oxidative phosphorylation (OXPHOS). As such, ISL2-depleted human PDA cells are sensitive to the inhibitors of mitochondrial complex I in vitro and in vivo. Spatial transcriptomic analysis shows heterogeneous intratumoral ISL2 expression, which correlates with the expression of critical metabolic genes. These findings nominate ISL2 as a putative tumor suppressor whose inactivation leads to increased mitochondrial metabolism that may be exploitable therapeutically.
Collapse
Affiliation(s)
- Harun Ozturk
- Northwestern University Feinberg School of Medicine, Robert Lurie Comprehensive Cancer Center, Department of Obstetrics and Gynecology, Chicago, IL 60611, USA
| | - Harun Cingoz
- Northwestern University Feinberg School of Medicine, Robert Lurie Comprehensive Cancer Center, Department of Obstetrics and Gynecology, Chicago, IL 60611, USA
| | - Turan Tufan
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Jiekun Yang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Sara J Adair
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | | | - Cem Kuscu
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Meric Kinali
- Northwestern University Feinberg School of Medicine, Robert Lurie Comprehensive Cancer Center, Department of Obstetrics and Gynecology, Chicago, IL 60611, USA
| | | | - Sarbajeet Nagdas
- Department of Cell, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Bernadette J Goudreau
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | | | - Yagmur Bingul
- Northwestern University Feinberg School of Medicine, Robert Lurie Comprehensive Cancer Center, Department of Obstetrics and Gynecology, Chicago, IL 60611, USA
| | - Timothy B Ware
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Wiliam L Hwang
- Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ku-Lung Hsu
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - David F Kashatus
- Department of Cell, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - David T Ting
- Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Navdeep S Chandel
- Northwestern University Feinberg School of Medicine, Robert Lurie Comprehensive Cancer Center, Department of Pulmonary and Critical Care and Department of Biochemistry and Molecular Genetics, Chicago, IL 60611, USA
| | - Nabeel Bardeesy
- Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Todd W Bauer
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Mazhar Adli
- Northwestern University Feinberg School of Medicine, Robert Lurie Comprehensive Cancer Center, Department of Obstetrics and Gynecology, Chicago, IL 60611, USA.
| |
Collapse
|
7
|
Liu L, Luo Q, Xu Q, Xiong Y, Deng H. Limb-bud and heart development (LBH) contributes to glioma progression in vitro and in vivo. FEBS Open Bio 2021; 12:211-220. [PMID: 34739189 PMCID: PMC8727945 DOI: 10.1002/2211-5463.13325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/06/2021] [Accepted: 11/03/2021] [Indexed: 11/06/2022] Open
Abstract
Glioma is the predominant brain malignancy and is correlated with high mortality and severe morbidity. The transcription factor limb‐bud and heart (LBH) has been reported to be involved in the development of several cancers, although its role in glioma development remains elusive. Here, we examined the effect of LBH on glioma progression. The expression of LBH was increased in glioma samples from The Cancer Genome Atlas database, and upregulation of LBH was observed to be correlated with the poor survival of glioma patients. We also report that expression of LBH was elevated in clinical glioma tissues compared to adjacent normal tissues, and was also enhanced in glioma cell lines. LBH promotes proliferation and inhibits cell cycle arrest and apoptosis in glioma cells. In addition, LBH increased the migration and invasion of glioma cells in vitro. Moreover, tumorigenicity analysis revealed that LBH could promote the tumor growth of glioma cells in vivo. In conclusion, our findings suggest that LBH contributes to glioma progression in vitro and in vivo. Our findings provide new insights into the mechanism by which LBH promotes the development of glioma, improving our understanding of the correlation between LBH with cancer. LBH may have potential as a target for glioma therapy.
Collapse
Affiliation(s)
- Luotong Liu
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Qinglian Luo
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Qian Xu
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yu Xiong
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Huajiang Deng
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
8
|
Chang KW, Hung WW, Chou CH, Tu HF, Chang SR, Liu YC, Liu CJ, Lin SC. LncRNA MIR31HG Drives Oncogenicity by Inhibiting the Limb-Bud and Heart Development Gene ( LBH) during Oral Carcinoma. Int J Mol Sci 2021; 22:ijms22168383. [PMID: 34445087 PMCID: PMC8395036 DOI: 10.3390/ijms22168383] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 11/17/2022] Open
Abstract
The miR-31 host gene (MIR31HG) encodes a long non-coding RNA (LncRNA) that harbors miR-31 in its intron 2; miR-31 promotes malignant neoplastic progression. Overexpression of MIR31HG and of miR-31 occurs during oral squamous cell carcinoma (OSCC). However, the downstream effectors modulated by MIR31HG during OSCC pathogenesis remain unclear. The present study identifies up-regulation of MIR31HG expression during the potentially premalignant disorder stage of oral carcinogenesis. The potential of MIR31HG to enhance oncogenicity and to activate Wnt and FAK was identified when there was exogenous MIR31HG expression in OSCC cells. Furthermore, OSCC cell subclones with MIR31HG deleted were established using a Crispr/Cas9 strategy. RNA sequencing data obtained from cells expressing MIR31HG, cells with MIR31HG deleted and cells with miR-31 deleted identified 17 candidate genes that seem to be modulated by MIR31HG in OSCC cells. A TCGA database algorithm pinpointed MMP1, BMP2 and Limb-Bud and Heart development (LBH) as effector genes controlled by MIR31HG during OSCC. Exogenous LBH expression decreases tumor cell invasiveness, while knockdown of LBH reverses the oncogenic suppression present in MIR31HG deletion subclones. The study provides novel insights demonstrating the contribution of the MIR31HG-LBH cascade to oral carcinogenesis.
Collapse
Affiliation(s)
- Kuo-Wei Chang
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (K.-W.C.); (H.-F.T.); (C.-J.L.)
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (W.-W.H.); (C.-H.C.); (S.-R.C.); (Y.-C.L.)
- Department of Stomatology, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Wan-Wen Hung
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (W.-W.H.); (C.-H.C.); (S.-R.C.); (Y.-C.L.)
| | - Chung-Hsien Chou
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (W.-W.H.); (C.-H.C.); (S.-R.C.); (Y.-C.L.)
| | - Hsi-Feng Tu
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (K.-W.C.); (H.-F.T.); (C.-J.L.)
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (W.-W.H.); (C.-H.C.); (S.-R.C.); (Y.-C.L.)
- Department of Dentistry, National Yang Ming Chiao Tung Hospital, Yilan 260, Taiwan
| | - Shi-Rou Chang
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (W.-W.H.); (C.-H.C.); (S.-R.C.); (Y.-C.L.)
| | - Ying-Chieh Liu
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (W.-W.H.); (C.-H.C.); (S.-R.C.); (Y.-C.L.)
| | - Chung-Ji Liu
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (K.-W.C.); (H.-F.T.); (C.-J.L.)
- Department of Dentistry, Taipei MacKay Memorial Hospital, Taipei 104, Taiwan
| | - Shu-Chun Lin
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (K.-W.C.); (H.-F.T.); (C.-J.L.)
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (W.-W.H.); (C.-H.C.); (S.-R.C.); (Y.-C.L.)
- Department of Stomatology, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Correspondence: ; Fax: +886-2-2826-4053
| |
Collapse
|
9
|
Wu A, Zhang L, Luo N, Zhang L, Li L, Liu Q. Limb-bud and heart (LBH) inhibits cellular migration, invasion and epithelial-mesenchymal transition in nasopharyngeal carcinoma via downregulating αB-crystallin expression. Cell Signal 2021; 85:110045. [PMID: 34000384 DOI: 10.1016/j.cellsig.2021.110045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/06/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023]
Abstract
Limb-bud and heart (LBH) gene has received increasing attention in recent cancer studies. Here we investigated the role of the LBH gene in regulating the metastasis capacity and epithelial-mesenchymal transition (EMT) of nasopharyngeal carcinoma (NPC) cells, and its potential mechanism. The expressions of LBH and αB-crystallin (CRYAB) were modulated by lentiviral infection, or plasmid/siRNA transfection, and the phosphorylation of p38 was suppressed by an inhibitor, to explore their functions in modulating NPC cell phenotypes, as well as the relationships of these factors with each other. Cellular proliferation, migration and invasion were examined by RTCA system, Transwell assays and Matrigel Transwell assays respectively. The EMT progression was indicated by RT-qPCR and Western blotting measuring the expressions of EMT biomarkers. NPC xenografts were constrcucted, and formed tumors were sectioned for morphology and immunohistofluorescence. The interaction between LBH and CRYAB was examined by colocalization and Fluorescence resonance energy transfer (FRET) analysis. We reached the conclusion that LBH inhibits the proliferation, migration, invasion and EMT of NPC cells, and its effects were partially achieved by suppressing p38 phosphorylation, which subsequently downregulates the mRNA expression and phosphorylation of CRYAB, while CRYAB directly interacts with LBH in NPC cells. This LBH-related pathway we revealed provides a novel therapeutic target for nasopharyngeal carcinoma research.
Collapse
Affiliation(s)
- Anbiao Wu
- Department of Cardiology, Laboratory of Heart Center, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Zhujiang Hospital, Southern Medical University, 253# Middle Industrial Avenue, Guangzhou 510280, PR China
| | - Ling Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 651# Dongfeng Road East, Guangzhou 510060, PR China
| | - Ning Luo
- Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Department of Nephrology, the First Affiliated Hospital, Sun Yat-sen University, 58# Zhongshan 2nd Avenue, Guangzhou 510080, PR China
| | - Lihong Zhang
- Department of Cardiology, Laboratory of Heart Center, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Zhujiang Hospital, Southern Medical University, 253# Middle Industrial Avenue, Guangzhou 510280, PR China
| | - Li Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 651# Dongfeng Road East, Guangzhou 510060, PR China.
| | - Qicai Liu
- Department of Cardiology, Laboratory of Heart Center, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Zhujiang Hospital, Southern Medical University, 253# Middle Industrial Avenue, Guangzhou 510280, PR China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
10
|
Wu SS, Chen J, Yan Y, Luo HQ, Chen WJ, He YF. Limb-bud and heart as a novel biomarker for gastric intestinal type adenocarcinoma. Oncol Lett 2020; 20:2209-2216. [PMID: 32782537 PMCID: PMC7400917 DOI: 10.3892/ol.2020.11778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 05/27/2020] [Indexed: 12/29/2022] Open
Abstract
The present study compared the expression levels of limb-bud and heart (LBH) between gastric intestinal-type adenocarcinoma (GITA) and healthy gastric tissues; with the aim of investigating the possible effect of LBH on the prognosis of patients with GITA and to analyze the associated signaling pathways in GITA. Three Oncomine gastric datasets were utilized for the preliminary prediction of the expression levels of LBH mRNA in GITA and healthy gastric tissues. Gene expression and corresponding clinical data of 163 patients with GITA were downloaded from The Cancer Genome Atlas. Wilcoxon signed rank-sum test was used to distinguish the clinical value of LBH expression in the various clinicopathological features. Subsequently, Kaplan-Meier univariate and Cox multivariate survival analyses were performed to determine the prognostic significance of LBH expression in patients with GITA. Function enrichment analysis was conducted for the co-expression gene of LBH, defined as correlation coefficient r>0.06 and P<0.05 using Pearson's χ2 test. Bioinformatics data demonstrated that compared with that in the normal gastric mucosa, LBH mRNA expression was dramatically higher in GITA tissues (P<0.05). There were significant relationships between the differential expression levels of LBH and clinicopathological parameters in GITA patients (all p<0.05), including pathological stage T (T3-4 vs. T1-2), lymph node metastasis (no vs. yes), distant metastasis (no vs. yes), histological grade (grade 3 vs. grades 1-2) and tumor stage (stages 3-4 vs. stages 1-2). Additionally, the overall survival and disease-free survival (DFS) of patients in the high expression group were poorer compared with those in the low expression group (P<0.05). Cox multivariate survival analysis indicated that increased LBH expression was an independent predictor of poor DFS prognosis in patients with GITA (P=0.045). In summary, LBH is highly expressed in GITA, which can be used as an independent predictor of poor prognosis in patients with GITA. LBH co-expressed genes are closely associated with GITA tumor migration and metastasis.
Collapse
Affiliation(s)
- Shu-Sheng Wu
- Department of Oncology, West District of The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230031, P.R. China
- Department of Oncology, Anhui Provincial Cancer Hospital, Hefei, Anhui 230031, P.R. China
| | - Jian Chen
- Department of Oncology, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui 230001, P.R. China
| | - Ying Yan
- Department of Oncology, West District of The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230031, P.R. China
- Department of Oncology, Anhui Provincial Cancer Hospital, Hefei, Anhui 230031, P.R. China
| | - Hui-Qin Luo
- Department of Oncology, West District of The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230031, P.R. China
- Department of Oncology, Anhui Provincial Cancer Hospital, Hefei, Anhui 230031, P.R. China
| | - Wen-Ju Chen
- Department of Oncology, West District of The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230031, P.R. China
- Department of Oncology, Anhui Provincial Cancer Hospital, Hefei, Anhui 230031, P.R. China
| | - Yi-Fu He
- Department of Oncology, West District of The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230031, P.R. China
- Department of Oncology, Anhui Provincial Cancer Hospital, Hefei, Anhui 230031, P.R. China
- Department of Oncology, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui 230001, P.R. China
| |
Collapse
|
11
|
Jiang Y, Zhou J, Zou D, Hou D, Zhang H, Zhao J, Li L, Hu J, Zhang Y, Jing Z. Overexpression of Limb-Bud and Heart (LBH) promotes angiogenesis in human glioma via VEGFA-mediated ERK signalling under hypoxia. EBioMedicine 2019; 48:36-48. [PMID: 31631037 PMCID: PMC6838451 DOI: 10.1016/j.ebiom.2019.09.037] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/07/2019] [Accepted: 09/18/2019] [Indexed: 01/30/2023] Open
Abstract
Background Glioma is the most common primary malignant tumor in the central nervous system with frequent hypoxia and angiogenesis. Limb-Bud and Heart (LBH) is a highly conserved transcription cofactor that participates in embryonic development and tumorigenesis. Methods The conditioned media from LBH regulated human glioma cell lines and patient-derived glioma stem cells (GSCs) were used to treat the human brain microvessel endothelial cells (hBMECs). The function of LBH on angiogenesis were examined through methods of MTS assay, Edu assay, TUNEL assay, western blotting analysis, qPCR analysis, luciferase reporter assay and xenograft experiment. Findings Our study found for the first time that LBH was overexpressed in gliomas and was associated with a poor prognosis. LBH overexpression participated in the angiogenesis of gliomas via the vascular endothelial growth factor A (VEGFA)-mediated extracellular signal-regulated kinase (ERK) signalling pathway in human brain microvessel endothelial cells (hBMECs). Rapid proliferation of gliomas can lead to tissue hypoxia and hypoxia inducible factor-1 (HIF-1) activation, while HIF-1 can directly transcriptionally regulate the expression of LBH and result in a self-reinforcing cycle. Interpretation LBH may be a possible treatment target to break the vicious cycle in glioma treatment.
Collapse
Affiliation(s)
- Yang Jiang
- Department of Neurosurgery, the First Hospital of China Medical University, No. 155, North Nanjing Street, Shenyang, Liaoning 110001, China; Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Shanghai 200080, China
| | - Jinpeng Zhou
- Department of Neurosurgery, the First Hospital of China Medical University, No. 155, North Nanjing Street, Shenyang, Liaoning 110001, China
| | - Dan Zou
- The First Laboratory of Cancer Institute, the First Hospital of China Medical University, No. 155, North Nanjing Street, Shenyang, Liaoning 110001, China
| | - Dianqi Hou
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Shanghai 200080, China
| | - Haiying Zhang
- International Education College, Liaoning University of Traditional Chinese Medicine, No. 79 Chongshan East Road, Shenyang, Liaoning 110042, China
| | - Junshuang Zhao
- Department of Neurosurgery, the First Hospital of China Medical University, No. 155, North Nanjing Street, Shenyang, Liaoning 110001, China
| | - Long Li
- Department of Neurosurgery, the First Hospital of China Medical University, No. 155, North Nanjing Street, Shenyang, Liaoning 110001, China
| | - Jiangfeng Hu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Shanghai 200080, China
| | - Ye Zhang
- The First Laboratory of Cancer Institute, the First Hospital of China Medical University, No. 155, North Nanjing Street, Shenyang, Liaoning 110001, China.
| | - Zhitao Jing
- Department of Neurosurgery, the First Hospital of China Medical University, No. 155, North Nanjing Street, Shenyang, Liaoning 110001, China.
| |
Collapse
|
12
|
Yu R, Li Z, Zhang C, Song H, Deng M, Sun L, Xu L, Che X, Hu X, Qu X, Liu Y, Zhang Y. Elevated limb-bud and heart development (LBH) expression indicates poor prognosis and promotes gastric cancer cell proliferation and invasion via upregulating Integrin/FAK/Akt pathway. PeerJ 2019; 7:e6885. [PMID: 31119084 PMCID: PMC6507893 DOI: 10.7717/peerj.6885] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 03/31/2019] [Indexed: 12/20/2022] Open
Abstract
The limb-bud and heart development (LBH) gene is a highly conserved, tissue-specific transcription cofactor in vertebrates that regulates multiple key genes in embryonic development. The role of LBH in various cancer types is still controversial, and its specific role and molecular mechanism in the oncogenesis of gastric cancer (GC) remains largely unexplored. In the present study, the prognostic significance and clinicopathological characteristics of LBH in GC was determined. The LBH mRNA expression was first investigated in four independent public datasets (TCGA-STAD, GSE15459, GSE29272, and GSE62254) and then validated with our samples at the protein level. LBH was overexpressed at both the mRNA and protein levels in cancer compared with normal tissues. High LBH expression was correlated with advanced T, N, and M stages. Kaplan–Meier analysis and log-rank test indicated that higher LBH expression was statistically correlated with shorter overall survival (OS) in the public datasets and our study samples. Univariate and multivariate Cox regression analysis showed that LBH was an independent prognostic biomarker for survival in TCGA-STAD, GSE15459, GSE62254 cohorts, and our GC patients. In vitro experiments showed that knockdown of LBH can significantly inhibit the proliferation and invasion of HGC-27 cells, while overexpression of LBH can significantly enhance the proliferation and invasion of BGC-823 cells. Gene Set Enrichment Analysis (GSEA), Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomics (KEGG) indicated that high LBH expression is associated with the PI3K-Akt pathway, focal adhesion, and extracellular matrix (ECM)-receptor interaction. Western blot analysis showed that knockdown of LBH significantly inhibited the expression of integrin α5, integrin β1, p-FAK, and p-Akt. Therefore, results from the present study indicate that LBH is a potential independent prognostic biomarker and promotes proliferation and invasion of GC cells by activating the integrin/FAK/Akt pathway.
Collapse
Affiliation(s)
- Ruoxi Yu
- Department of Medical Oncology, the First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy, Shenyang, China
| | - Zhi Li
- Department of Medical Oncology, the First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy, Shenyang, China
| | - Chuang Zhang
- Department of Medical Oncology, the First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy, Shenyang, China
| | - Huicong Song
- Department of Medical Oncology, the First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy, Shenyang, China
| | - Mingming Deng
- Key Laboratory of Anticancer Drugs and Biotherapy, Shenyang, China.,Department of Respiratory and Infectious Disease of Geriatrics, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Liping Sun
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ling Xu
- Department of Medical Oncology, the First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy, Shenyang, China
| | - Xiaofang Che
- Department of Medical Oncology, the First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy, Shenyang, China
| | - Xuejun Hu
- Department of Respiratory and Infectious Disease of Geriatrics, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiujuan Qu
- Department of Medical Oncology, the First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy, Shenyang, China
| | - Yunpeng Liu
- Department of Medical Oncology, the First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy, Shenyang, China
| | - Ye Zhang
- Department of Medical Oncology, the First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy, Shenyang, China
| |
Collapse
|