1
|
Shekhawat JK, Sharma J, Choudhury B, Chugh A, Purohit P, Sharma P, Banerjee M. Aberrant DNA methylation of EDNRB, MGMT and TIMP3 gene promoters in saliva of head and neck carcinoma patients as a diagnostic tool. Mol Biol Rep 2025; 52:152. [PMID: 39847241 DOI: 10.1007/s11033-025-10250-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/10/2025] [Indexed: 01/24/2025]
Abstract
BACKGROUND Differential DNA methylation in the promoter region of tumour suppressor genes leads to gene function silencing. MATERIALS AND METHODS In this study, we aimed to evaluate the salivary promoter methylation of EDNRB, MGMT and TIMP3 genes in H&NC patients (n = 100), premalignant lesions patients (n = 25) and healthy controls (n = 50). Blood and saliva samples were collected from all three groups and 20 concomitant tumour tissues were collected from the H&NC patients. Probe-based Methylation-specific PCR (MSP) was performed to assess the relative quantification of methylation. RESULTS Significant promoter hypermethylation was detected in all three genes between H&NC patients vs. healthy controls and premalignant lesion patients vs. healthy controls. Spearman correlation analysis showed, no significant association between methylation levels and clinicopathological characteristics of HNC patients while tobacco smoking was significantly related to EDNRB methylation in premalignant lesions. The receiver operating curve (ROC) generated for EDNRB, MGMT and TIMP3 genes from saliva samples was able to differentiate between cancer vs. healthy controls and premalignant vs. healthy controls. The combined diagnostic efficiency of the panel was higher than the genes singly. The combined sensitivity of EDNRB and TIMP3 increased to 92%. CONCLUSION This indicates that EDNRB and TIMP3 have potential value in clinical practice as effective diagnostic markers for H&NC using saliva samples.
Collapse
Affiliation(s)
- Jyoti Kanwar Shekhawat
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Jyoti Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Bikram Choudhury
- Department of Otorhinolaryngology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Ankita Chugh
- Department of Dentistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Purvi Purohit
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Mithu Banerjee
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India.
| |
Collapse
|
2
|
Agarwal N, Jha AK. DNA hypermethylation of tumor suppressor genes among oral squamous cell carcinoma patients: a prominent diagnostic biomarker. Mol Biol Rep 2024; 52:44. [PMID: 39644423 DOI: 10.1007/s11033-024-10144-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 11/29/2024] [Indexed: 12/09/2024]
Abstract
Oral Squamous Cell Carcinoma is a globally revealing form of oral malignancy. Epigenetics, which studies genetic modifications in gene expression without altering the sequence of DNA, is crucial for understanding OSCC. Key epigenetic modifications such as histone modifications, DNA methylation, and microRNA regulation play significant roles in Oral carcinoma. Aberrant methylation of DNA of tumor suppressor genes which leads to their inactivation, promoting cancer development, and specific methylation patterns are emerging as biomarkers for early OSCC detection.Current treatments like surgery, radiotherapy, and chemotherapy often fall short, prompting research into epigenetic therapies. Agents like DNMT and HDAC inhibitors demonstrate the potential for reversing aberrant epigenetic patterns, perhaps reactivating silenced TSGs, and suppressing oncogenes. Despite early promise, the development of effective combination medicines and the identification of reliable biomarkers continue to present challenges.In OSCC, resistance to therapy is also influenced by epigenetic processes. Aberrant DNA methylation and changes in histone modifications impact genes involved in medication metabolism and the survival of cells. Enhancing treatment efficacy and overcoming medication resistance may be possible by recognizing and focusing on these processes. This review explores the interplay between epigenetic changes and OSCC, their role in the disease's initiation and progression, and their impact on diagnosis and treatment. It also discusses the potential of epigenetic drugs (epi-drugs) to improve diagnostic precision and treatment outcomes.
Collapse
Affiliation(s)
- Nistha Agarwal
- Department of Biotechnology, School of Biosciences and Technology, Galgotias University, Greater Noida, India
| | - Abhimanyu Kumar Jha
- Department of Biotechnology, School of Biosciences and Technology, Galgotias University, Greater Noida, India.
| |
Collapse
|
3
|
Tasneem A, Singh M, Singh P, Dohare R. Multi-omics and in-silico approach reveals AURKA, AURKB, and RSAD2 as therapeutic biomarkers in OSCC progression. J Biomol Struct Dyn 2024:1-19. [PMID: 39639535 DOI: 10.1080/07391102.2024.2436556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/10/2024] [Indexed: 12/07/2024]
Abstract
Oral squamous cell carcinoma (OSCC), a prevalent form of head and neck cancer, poses a significant health challenge with limited improvements in patient outcomes over the years. Its development is influenced by a complex interplay of genetic alterations and environmental factors. While progress has been made in understanding the molecular mechanisms driving OSCC, pinpointing critical molecular markers and potential drug candidates has proven elusive. This study uniquely endeavors to conduct a meta-analysis to unveil therapeutic genes responsible for OSCC tumorigenesis. A multi-omics approach identified 951 differentially expressed genes (DEGs) associated with OSCC by analyzing microarray data from the NCBI GEO database. Weighted gene co-expression network analysis (WGCNA) detected a significant hub gene module comprising 805 genes, followed by the construction of protein-protein interaction network resulting in two small clusters of 7 gene-encoded proteins each. These clusters were filtered out based on top 10 significant pathways and gene ontology terms to identify six key target proteins with elevated expression levels, acting as potential therapeutic biomarkers for OSCC. Notably, RSAD2 emerged as a novel biomarker linked to OSCC progression. Furthermore, we identified potential inhibitors targeting AURKA, AURKB, and RSAD2 proteins and validated their interactions through molecular dynamics simulation studies. The simulations confirmed the stability of receptor-ligand complexes, suggesting ZINC03839281, ZINC04026167, and ZINC00718292 compounds hold promise as potential inhibitors for therapeutically targeting AURKA, AURKB, and RSAD2 as significant OSCC biomarkers. We recommend further comprehensive studies, including experimental and preclinical investigations, to validate the effectiveness of these lead compounds for OSCC treatment.
Collapse
Affiliation(s)
- Alvea Tasneem
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Manish Singh
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Prithvi Singh
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Ravins Dohare
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
4
|
Rivera-Peña B, Folawiyo O, Turaga N, Rodríguez-Benítez RJ, Felici ME, Aponte-Ortiz JA, Pirini F, Rodríguez-Torres S, Vázquez R, López R, Sidransky D, Guerrero-Preston R, Báez A. Promoter DNA methylation patterns in oral, laryngeal and oropharyngeal anatomical regions are associated with tumor differentiation, nodal involvement and survival. Oncol Lett 2024; 27:89. [PMID: 38268779 PMCID: PMC10804364 DOI: 10.3892/ol.2024.14223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 11/23/2023] [Indexed: 01/26/2024] Open
Abstract
Differentially methylated regions (DMRs) can be used as head and neck squamous cell carcinoma (HNSCC) diagnostic, prognostic and therapeutic targets in precision medicine workflows. DNA from 21 HNSCC and 10 healthy oral tissue samples was hybridized to a genome-wide tiling array to identify DMRs in a discovery cohort. Downstream analyses identified differences in promoter DNA methylation patterns in oral, laryngeal and oropharyngeal anatomical regions associated with tumor differentiation, nodal involvement and survival. Genome-wide DMR analysis showed 2,565 DMRs common to the three subsites. A total of 738 DMRs were unique to laryngeal cancer (n=7), 889 DMRs were unique to oral cavity cancer (n=10) and 363 DMRs were unique to pharyngeal cancer (n=6). Based on the genome-wide analysis and a Gene Ontology analysis, 10 candidate genes were selected to test for prognostic value and association with clinicopathological features. TIMP3 was associated with tumor differentiation in oral cavity cancer (P=0.039), DAPK1 was associated with nodal involvement in pharyngeal cancer (P=0.017) and PAX1 was associated with tumor differentiation in laryngeal cancer (P=0.040). A total of five candidate genes were selected, DAPK1, CDH1, PAX1, CALCA and TIMP3, for a prevalence study in a larger validation cohort: Oral cavity cancer samples (n=42), pharyngeal cancer tissues (n=25) and laryngeal cancer samples (n=52). PAX1 hypermethylation differed across HNSCC anatomic subsites (P=0.029), and was predominantly detected in laryngeal cancer. Kaplan-Meier survival analysis (P=0.043) and Cox regression analysis of overall survival (P=0.001) showed that DAPK1 methylation is associated with better prognosis in HNSCC. The findings of the present study showed that the HNSCC subsites oral cavity, pharynx and larynx display substantial differences in aberrant DNA methylation patterns, which may serve as prognostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Bianca Rivera-Peña
- Department of Biology, University of Puerto Rico, San Juan 00925, Puerto Rico
- Department of Pharmacology, University of Puerto Rico School of Medicine, San Juan 00936, Puerto Rico
- Department of Otolaryngology-Head and Neck Surgery, University of Puerto Rico School of Medicine, San Juan 00936, Puerto Rico
| | - Oluwasina Folawiyo
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Nitesh Turaga
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Rosa J. Rodríguez-Benítez
- Department of General Social Sciences, Faculty of Social Sciences, University of Puerto Rico, San Juan 00925, Puerto Rico
| | - Marcos E. Felici
- Oral Health Division, Puerto Rico Department of Health, San Juan 00927, Puerto Rico
| | - Jaime A. Aponte-Ortiz
- Department of General Surgery, University of Puerto Rico School of Medicine, San Juan 00936, Puerto Rico
| | - Francesca Pirini
- Biosciences Laboratory, IRCCS Instituto Romagnolo per lo Studio dei Tumori ‘Dino Amadori’, Meldola I-47014, Italy
| | | | - Roger Vázquez
- Department of Biology, University of Puerto Rico, San Juan 00925, Puerto Rico
| | - Ricardo López
- Department of Biology, University of Puerto Rico, San Juan 00925, Puerto Rico
| | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Rafael Guerrero-Preston
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Research and Development, LifeGene-Biomarks, San Juan 00909, Puerto Rico
| | - Adriana Báez
- Department of Pharmacology, University of Puerto Rico School of Medicine, San Juan 00936, Puerto Rico
- Department of Otolaryngology-Head and Neck Surgery, University of Puerto Rico School of Medicine, San Juan 00936, Puerto Rico
| |
Collapse
|
5
|
Gil-Martín E, Ramos E, López-Muñoz F, Egea J, Romero A. Potential of melatonin to reverse epigenetic aberrations in oral cancer: new findings. EXCLI JOURNAL 2023; 22:1280-1310. [PMID: 38234969 PMCID: PMC10792176 DOI: 10.17179/excli2023-6624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/22/2023] [Indexed: 01/19/2024]
Abstract
It is now an accepted principle that epigenetic alterations cause cellular dyshomeostasis and functional changes, both of which are essential for the initiation and completion of the tumor cycle. Oral carcinogenesis is no exception in this regard, as most of the tumors in the different subsites of the oral cavity arise from the cross-reaction between (epi)genetic inheritance and the huge challenge of environmental stressors. Currently, the biochemical machinery is put at the service of the tumor program, halting the cell cycle, triggering uncontrolled proliferation, driving angiogenesis and resistance to apoptosis, until the archetypes of the tumor phenotype are reached. Melatonin has the ability to dynamically affect the epigenetic code. It has become accepted that melatonin can reverse (epi)genetic aberrations present in oral and other cancers, suggesting the possibility of enhancing the oncostatic capacity of standard multimodal treatments by incorporating this indolamine as an adjuvant. First steps in this direction confirm the potential of melatonin as a countermeasure to mitigate the detrimental side effects of conventional first-line radiochemotherapy. This single effect could produce synergies of extraordinary clinical importance, allowing doses to be increased and treatments not to be interrupted, ultimately improving patients' quality of life and prognosis. Motivated by the urgency of improving the medical management of oral cancer, many authors advocate moving from in vitro and preclinical research, where the bulk of melatonin cancer research is concentrated, to systematic randomized clinical trials on large cohorts. Recognizing the challenge to improve the clinical management of cancer, our motivation is to encourage comprehensive and robust research to reveal the clinical potential of melatonin in oral cancer control. To improve the outcome and quality of life of patients with oral cancer, here we provide the latest evidence of the oncolytic activity that melatonin can achieve by manipulating epigenetic patterns in oronasopharyngeal tissue.
Collapse
Affiliation(s)
- Emilio Gil-Martín
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, 36310 Vigo, Spain
| | - Eva Ramos
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Francisco López-Muñoz
- Faculty of Health, Camilo José Cela University of Madrid (UCJC), 28692 Madrid, Spain
- Neuropsychopharmacology Unit, Hospital 12 de Octubre Research Institute, 28041 Madrid, Spain
| | - Javier Egea
- Unidad de Investigación, Hospital Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006 Madrid, Spain
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
6
|
Chiu YW, Su YF, Yang CC, Liu CJ, Chen YJ, Cheng HC, Wu CH, Chen PY, Lee YH, Chen YL, Chen YT, Peng CY, Lu MY, Yu CH, Kao SY, Fwu CW, Huang YF. Is OLP potentially malignant? A clue from ZNF582 methylation. Oral Dis 2023; 29:1282-1290. [PMID: 34967949 DOI: 10.1111/odi.14120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/19/2021] [Accepted: 12/10/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Whether oral lichen planus (OLP) was potentially malignant remains controversial. Here, we examined associations of ZNF582 methylation (ZNF582m ) with OLP lesions, dysplastic features and squamous cell carcinoma (OSCC). MATERIALS AND METHODS This is a case-control study. ZNF582m was evaluated in both lesion and adjacent normal sites of 42 dysplasia, 90 OSCC and 43 OLP patients, whereas ZNF582m was evaluated only in one mucosal site of 45 normal controls. High-risk habits affecting ZNF582m such as betel nut chewing and cigarette smoking were also compared in those groups. RESULTS OLP lesions showed significantly lower ZNF582m than those of dysplasia and OSCC. At adjacent normal mucosa, ZNF582m increased from patients of OLP, dysplasia, to OSCC. In addition, ZNF582m at adjacent normal sites in OLP patients was comparable to normal mucosa in control group. Dysplasia/OSCC patients with high-risk habits exhibited significantly higher ZNF582m than those without high-risk habits. However, ZNF582m in OLP patients was not affected by those high-risk habits. CONCLUSIONS OLP is unlikely to be potentially malignant based on ZNF582m levels. ZNF582m may also be a potential biomarker for distinguishing OLP from true dysplastic features and OSCC, and for monitoring the malignant transformation of OLP, potentially malignant disorders with dysplastic features and OSCC.
Collapse
Affiliation(s)
- Yu-Wei Chiu
- Department of Stomatology, Chung Shan Medical University Hospital, Taichung, Taiwan
- College of Oral Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, School of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yee-Fun Su
- iStat Biomedical Co., Ltd, New Taipei City, Taiwan
| | - Cheng-Chieh Yang
- Department of Dentistry, School of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Stomatology, Oral & Maxillofacial Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chung-Ji Liu
- Department of Oral and Maxillofacial Surgery, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yi-Ju Chen
- iStat Biomedical Co., Ltd, New Taipei City, Taiwan
| | - Han-Chieh Cheng
- Department of Dentistry, School of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Stomatology, Oral & Maxillofacial Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Cheng-Hsien Wu
- Department of Dentistry, School of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Stomatology, Oral & Maxillofacial Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Pei-Yin Chen
- Department of Stomatology, Chung Shan Medical University Hospital, Taichung, Taiwan
- College of Oral Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Hsien Lee
- Department of Stomatology, Chung Shan Medical University Hospital, Taichung, Taiwan
- College of Oral Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yen-Lin Chen
- Department of Stomatology, Chung Shan Medical University Hospital, Taichung, Taiwan
- College of Oral Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yi-Tzu Chen
- Department of Stomatology, Chung Shan Medical University Hospital, Taichung, Taiwan
- College of Oral Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chih-Yu Peng
- Department of Stomatology, Chung Shan Medical University Hospital, Taichung, Taiwan
- College of Oral Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Yi Lu
- Department of Stomatology, Chung Shan Medical University Hospital, Taichung, Taiwan
- College of Oral Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chuan-Hang Yu
- Department of Stomatology, Chung Shan Medical University Hospital, Taichung, Taiwan
- College of Oral Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shou-Yen Kao
- Department of Dentistry, School of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Stomatology, Oral & Maxillofacial Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | - Yu-Feng Huang
- Department of Stomatology, Chung Shan Medical University Hospital, Taichung, Taiwan
- College of Oral Medicine, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
7
|
Wan Z, Xiong H, Tan X, Su T, Xia K, Wang D. Integrative Multi-Omics Analysis Reveals Candidate Biomarkers for Oral Squamous Cell Carcinoma. Front Oncol 2022; 11:794146. [PMID: 35096593 PMCID: PMC8795899 DOI: 10.3389/fonc.2021.794146] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/17/2021] [Indexed: 01/10/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most common types of cancer worldwide. Due to the lack of early detection and treatment, the survival rate of OSCC remains poor and the incidence of OSCC has not decreased during the past decades. To explore potential biomarkers and therapeutic targets for OSCC, we analyzed differentially expressed genes (DEGs) associated with OSCC using RNA sequencing technology. Methylation-regulated and differentially expressed genes (MeDEGs) of OSCC were further identified via an integrative approach by examining publicly available methylomic datasets together with our transcriptomic data. Protein-protein interaction (PPI) networks of MeDEGs were constructed and highly connected hub MeDEGs were identified from these PPI networks. Subsequently, expression and survival analyses of hub genes were performed using The Cancer Genome Atlas (TCGA) database and the Gene Expression Profiling Interactive Analysis (GEPIA) online tool. A total of 56 upregulated MeDEGs and 170 downregulated MeDEGs were identified in OSCC. Eleven hub genes with high degree of connectivity were picked out from the PPI networks constructed by those MeDEGs. Among them, the expression level of four hub genes (CTLA4, CDSN, ACTN2, and MYH11) were found to be significantly changed in the head and neck squamous carcinoma (HNSC) patients. Three hypomethylated hub genes (CTLA4, GPR29, and TNFSF11) and one hypermethylated hub gene (ISL1) were found to be significantly associated with overall survival (OS) of HNSC patients. Therefore, these hub genes may serve as potential DNA methylation biomarkers and therapeutic targets of OSCC.
Collapse
Affiliation(s)
- Zhengqing Wan
- Hengyang Medical School, University of South China, Hengyang, China.,The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China.,Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Haofeng Xiong
- Xiangya Hospital, Central South University, Changsha, China.,Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Xian Tan
- Hengyang Medical School, University of South China, Hengyang, China
| | - Tong Su
- Xiangya Hospital, Central South University, Changsha, China
| | - Kun Xia
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Danling Wang
- Hengyang Medical School, University of South China, Hengyang, China.,The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| |
Collapse
|
8
|
Human Papillomaviruses-Associated Cancers: An Update of Current Knowledge. Viruses 2021; 13:v13112234. [PMID: 34835040 PMCID: PMC8623401 DOI: 10.3390/v13112234] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 12/21/2022] Open
Abstract
Human papillomaviruses (HPVs), which are small, double-stranded, circular DNA viruses infecting human epithelial cells, are associated with various benign and malignant lesions of mucosa and skin. Intensive research on the oncogenic potential of HPVs started in the 1970s and spread across Europe, including Croatia, and worldwide. Nowadays, the causative role of a subset of oncogenic or high-risk (HR) HPV types, led by HPV-16 and HPV-18, of different anogenital and head and neck cancers is well accepted. Two major viral oncoproteins, E6 and E7, are directly involved in the development of HPV-related malignancies by targeting synergistically various cellular pathways involved in the regulation of cell cycle control, apoptosis, and cell polarity control networks as well as host immune response. This review is aimed at describing the key elements in HPV-related carcinogenesis and the advances in cancer prevention with reference to past and on-going research in Croatia.
Collapse
|
9
|
DNA methylation patterns at and beyond the histological margin of early-stage invasive lung adenocarcinoma radiologically manifested as pure ground-glass opacity. Clin Epigenetics 2021; 13:153. [PMID: 34407868 PMCID: PMC8373430 DOI: 10.1186/s13148-021-01140-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/22/2021] [Indexed: 12/18/2022] Open
Abstract
Background Early-stage lung cancers radiologically manifested as ground-glass opacities (GGOs) have been increasingly identified, among which pure GGO (pGGO) has a good prognosis after local resection. However, the optimal surgical margin is still under debate. Precancerous lesions exist in tumor-adjacent tissues beyond the histological margin. However, potential precancerous epigenetic variation patterns beyond the histological margin of pGGO are yet to be discovered and described. Results A genome-wide high-resolution DNA methylation analysis was performed on samples collected from 15 pGGO at tumor core (TC), tumor edge (TE), para-tumor tissues at the 5 mm, 10 mm, 15 mm, 20 mm beyond the tumor, and peripheral normal (PN) tissue. TC and TE were tested with the same genetic alterations, which were also observed in histologically normal tissue at 5 mm in two patients with lower mutation allele frequency. According to the difference of methylation profiles between PN samples, 2284 methylation haplotype blocks (MHBs), 1657 differentially methylated CpG sites (DMCs), and 713 differentially methylated regions (DMRs) were identified using reduced representation bisulfite sequencing (RRBS). Two different patterns of methylation markers were observed: Steep (S) markers sharply changed at 5 mm beyond the histological margin, and Gradual (G) markers changed gradually from TC to PN. S markers composed 86.2% of the tumor-related methylation markers, and G markers composed the other 13.8%. S-marker-associated genes enriched in GO terms that were related to the hallmarks of cancer, and G-markers-associated genes enriched in pathways of stem cell pluripotency and transcriptional misregulation in cancer. Significant difference in DNA methylation score was observed between peripheral normal tissue and tumor-adjacent tissues 5 mm further from the histological margin (p < 0.001 in MHB markers). DNA methylation score at and beyond 10 mm from histological margin is not significantly different from peripheral normal tissues (p > 0.05 in all markers).
Conclusions According to the methylation pattern observed in our study, it was implied that methylation alterations were not significantly different between tissues at or beyond P10 and distal normal tissues. This finding explained for the excellent prognosis from radical resections with surgical margins of more than 15 mm. The inclusion of epigenetic characteristics into surgical margin analysis may yield a more sensitive and accurate assessment of remnant cancerous and precancerous cells in the surgical margins. ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01140-3.
Collapse
|
10
|
Jensen GL, Axelrud G, Fink D, Hammonds K, Walker K, Volz M, Gowan A, Rao A, Deb N, Jhavar SG. Improved local control in p16 negative oropharyngeal cancers with hypermethylated MGMT. Radiother Oncol 2021; 157:234-240. [PMID: 33577867 DOI: 10.1016/j.radonc.2021.01.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Patients with oropharyngeal cancers that are p16 negative (p16-) have worse outcomes than those who are p16 positive (p16+) and there is an unmet need for prognostic markers in this population. O6-Methylguanine (O6-MG)-DNA-methyltransferase (MGMT) gene methylation has been associated with response to chemoradiotherapy (CRT) in glioblastoma. We sought to find if MGMT promoter methylation was associated with outcomes of locally advanced oropharyngeal and oral cavity squamous cell carcinoma (OOSCC) in patients treated with definitive concurrent CRT. METHODS Patients were identified with primary OOSCC, known p16 status, retrievable pre-treatment biopsies, and at least 6 months of follow-up who received definitive concurrent CRT from 2004 to 2015. Biopsies were tested for MGMT hypermethylation (MGMT+) using a Qiagen pyrosequencing kit (Catalog number 970061). Outcomes were subsequently recorded and analyzed. RESULTS Fifty-eight patients were included with a median follow up of 78 (range 6-196) months. Fourteen patients (24.1%) had oral cavity cancer and 44 (75.9%) had oropharyngeal cancer. A significant difference was found for local recurrence free survival (LRFS) by combined MGMT and p16 status (p = 0.0004). Frequency of LR in MGMT+/p16+, MGMT+/p16-, MGMT-/p16+, and MGMT-p16- patients was 14.3%, 14.3%, 13.0%, and 69.2%, respectively (p = 0.0019). A significant difference was not found for distant recurrence free survival (p = 0.6165) or overall survival (p = 0.1615). LRFS remained significant on analysis restricted to oropharyngeal cancer patients (p-value = 0.0038). CONCLUSION Patients who are p16- and MGMT+ with oropharyngeal and oral cavity squamous cell carcinoma have significantly better LC with definitive CRT than those who are p16- and MGMT-. Prospective studies are needed to verify these findings.
Collapse
Affiliation(s)
- Garrett L Jensen
- Department of Radiation Oncology, Baylor Scott & White Health, Temple, USA.
| | - Gabriel Axelrud
- Department of Radiation Oncology, Baylor Scott & White Health, Temple, USA
| | - David Fink
- Department of Pathology, Baylor Scott & White Health, Temple, USA
| | - Kendall Hammonds
- Department of Biostatistics, Baylor Scott & White Health, Temple, USA
| | - Kimberly Walker
- Department of Pathology, Baylor Scott & White Health, Temple, USA
| | - Marcus Volz
- Department of Pathology, Baylor Scott & White Health, Temple, USA
| | - Alan Gowan
- Department of Medical Oncology, Baylor Scott & White Health, Temple, USA
| | - Arundhati Rao
- Department of Pathology, Baylor Scott & White Health, Temple, USA
| | - Niloyjyoti Deb
- Department of Radiation Oncology, Baylor Scott & White Health, Temple, USA
| | - Sameer G Jhavar
- Department of Radiation Oncology, Baylor Scott & White Health, Temple, USA.
| |
Collapse
|
11
|
Milutin Gašperov N, Sabol I, Božinović K, Dediol E, Mravak-Stipetić M, Licastro D, Dal Monego S, Grce M. DNA Methylome Distinguishes Head and Neck Cancer from Potentially Malignant Oral Lesions and Healthy Oral Mucosa. Int J Mol Sci 2020; 21:ijms21186853. [PMID: 32961999 PMCID: PMC7554960 DOI: 10.3390/ijms21186853] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/15/2022] Open
Abstract
There is a strong need to find new, good biomarkers of head and neck squamous cell carcinoma (HNSCC) because of the bad prognoses and high mortality rates. The aim of this study was to identify the potential biomarkers in HNSCC that have differences in their DNA methylome and potentially premalignant oral lesions, in comparison to healthy oral mucosa. In this study, 32 oral samples were tested: nine healthy oral mucosae, 13 HNSCC, and 10 oral lesions for DNA methylation by the Infinium MethylationEPIC BeadChip. Our findings showed that a panel of genes significantly hypermethylated in their promoters or specific sites in HNSCC samples in comparison to healthy oral samples, which are mainly oncogenes, receptor, and transcription factor genes, or genes included in cell cycle, transformation, apoptosis, and autophagy. A group of hypomethylated genes in HNSCC, in comparison to healthy oral mucosa, are mainly involved in the host immune response and transcriptional regulation. The results also showed significant differences in gene methylation between HNSCC and potentially premalignant oral lesions, as well as differently methylated genes that discriminate between oral lesions and healthy mucosa. The given methylation panels point to novel potential biomarkers for early diagnostics of HNSCC, as well as potentially premalignant oral lesions.
Collapse
Affiliation(s)
- Nina Milutin Gašperov
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (I.S.); (K.B.)
- Correspondence: (N.M.G.); (M.G.)
| | - Ivan Sabol
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (I.S.); (K.B.)
| | - Ksenija Božinović
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (I.S.); (K.B.)
| | - Emil Dediol
- Department of Maxillofacial Surgery, School of Medicine, Clinical Hospital Dubrava, University of Zagreb, 10000 Zagreb, Croatia;
| | - Marinka Mravak-Stipetić
- Department of Oral Medicine, School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Danilo Licastro
- ARGO Open Lab Platform for Genome sequencing, AREA Science Park, Padriciano, 99, 34149 Trieste, Italy; (D.L.); (S.D.M.)
| | - Simeone Dal Monego
- ARGO Open Lab Platform for Genome sequencing, AREA Science Park, Padriciano, 99, 34149 Trieste, Italy; (D.L.); (S.D.M.)
| | - Magdalena Grce
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (I.S.); (K.B.)
- Correspondence: (N.M.G.); (M.G.)
| |
Collapse
|
12
|
Reis RSD, Santos JAD, Abreu PMD, Dettogni RS, Santos EDVWD, Stur E, Agostini LP, Anders QS, Alves LNR, Valle IBD, Lima MA, Souza ED, Podestá JRV, Zeidler SVV, Cordeiro-Silva MDF, Louro ID. Hypermethylation status of DAPK, MGMT and RUNX3 in HPV negative oral and oropharyngeal squamous cell carcinoma. Genet Mol Biol 2020; 43:e20190334. [PMID: 32870234 PMCID: PMC7452731 DOI: 10.1590/1678-4685-gmb-2019-0334] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 06/28/2020] [Indexed: 01/08/2023] Open
Abstract
Squamous cell carcinoma of the oral cavity and oropharynx is the sixth most common type of cancer in the world. During tumorigenesis, gene promoter hypermethylation is considered an important mechanism of transcription silencing of tumor suppressor genes, such as DAPK, MGMT and RUNX3. These genes participate in signaling pathways related to apoptosis, DNA repair and proliferation whose loss of expression is possibly associated with cancer development and progression. In order to investigate associations between hypermethylation and clinicopathological and prognostic parameters, promoter methylation was evaluated in 72 HPV negative oral and oropharyngeal tumors using methylation-specific PCR. Hypermethylation frequencies found for DAPK, MGMT and RUNX3 were 38.88%, 19.44% and 1.38% respectively. Patients with MGMT hypermethylation had a better 2-year overall survival compared to patients without methylation. Being MGMT a repair gene for alkylating agents, it could be a biomarker of treatment response for patients who are candidates for cisplatin chemotherapy, predicting drug resistance. In view of the considerable levels of hypermethylation in cancer cells and, for MGMT, its prognostic relevance, DAPK and MGMT show potential as epigenetic markers, in a way that additional studies may test its viability and efficacy in clinical management.
Collapse
Affiliation(s)
- Raquel Silva Dos Reis
- Universidade Federal do Espírito Santo, Departamento de Ciências Biológicas, Núcleo de Genética Humana e Molecular, Vitória, ES, Brazil
| | - Jéssica Aflávio Dos Santos
- Universidade Federal do Espírito Santo, Departamento de Ciências Biológicas, Núcleo de Genética Humana e Molecular, Vitória, ES, Brazil
| | - Priscila Marinho de Abreu
- Universidade Federal do Espírito Santo, Programa de Pós-Graduação em Biotecnologia, Vitória, ES, Brazil.,Universidade Federal do Espírito Santo, Departamento de Patologia, Laboratório de Patologia Molecular, Vitória, ES, Brazil
| | - Raquel Spinassé Dettogni
- Universidade Federal do Espírito Santo, Departamento de Ciências Biológicas, Núcleo de Genética Humana e Molecular, Vitória, ES, Brazil
| | | | - Elaine Stur
- Universidade Federal do Espírito Santo, Departamento de Ciências Biológicas, Núcleo de Genética Humana e Molecular, Vitória, ES, Brazil
| | - Lidiane Pignaton Agostini
- Universidade Federal do Espírito Santo, Departamento de Ciências Biológicas, Núcleo de Genética Humana e Molecular, Vitória, ES, Brazil
| | - Quézia Silva Anders
- Universidade Federal do Espírito Santo, Programa de Pós-Graduação em Ciências Fisiológicas, Vitória, ES, Brazil
| | - Lyvia Neves Rebello Alves
- Universidade Federal do Espírito Santo, Departamento de Ciências Biológicas, Núcleo de Genética Humana e Molecular, Vitória, ES, Brazil.,Universidade Federal do Espírito Santo, Programa de Pós-Graduação em Biotecnologia, Vitória, ES, Brazil
| | - Isabella Bittencourt do Valle
- Universidade Federal do Espírito Santo, Programa de Pós-Graduação em Biotecnologia, Vitória, ES, Brazil.,Universidade Federal do Espírito Santo, Departamento de Patologia, Laboratório de Patologia Molecular, Vitória, ES, Brazil
| | - Marília Arantes Lima
- Universidade Federal do Espírito Santo, Departamento de Patologia, Laboratório de Patologia Molecular, Vitória, ES, Brazil
| | - Evandro Duccini Souza
- Hospital Santa Rita de Cássia - SESA, Programa de Prevenção e Detecção Precoce do Câncer Bucal, Setor de Cirurgia de Cabeça e Pescoço, Vitória, ES, Brazil
| | - José Roberto Vasconcelos Podestá
- Hospital Santa Rita de Cássia - SESA, Programa de Prevenção e Detecção Precoce do Câncer Bucal, Setor de Cirurgia de Cabeça e Pescoço, Vitória, ES, Brazil
| | - Sandra Ventorin von Zeidler
- Universidade Federal do Espírito Santo, Programa de Pós-Graduação em Biotecnologia, Vitória, ES, Brazil.,Universidade Federal do Espírito Santo, Departamento de Patologia, Laboratório de Patologia Molecular, Vitória, ES, Brazil
| | - Melissa de Freitas Cordeiro-Silva
- Universidade Federal do Espírito Santo, Departamento de Ciências Biológicas, Núcleo de Genética Humana e Molecular, Vitória, ES, Brazil
| | - Iúri Drumond Louro
- Universidade Federal do Espírito Santo, Departamento de Ciências Biológicas, Núcleo de Genética Humana e Molecular, Vitória, ES, Brazil.,Universidade Federal do Espírito Santo, Programa de Pós-Graduação em Biotecnologia, Vitória, ES, Brazil
| |
Collapse
|
13
|
Sun R, Juan YC, Su YF, Zhang WB, Yu Y, Yang HY, Yu GY, Peng X. Hypermethylated PAX1 and ZNF582 genes in the tissue sample are associated with aggressive progression of oral squamous cell carcinoma. J Oral Pathol Med 2020; 49:751-760. [PMID: 32428271 DOI: 10.1111/jop.13035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/22/2020] [Accepted: 05/01/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND DNA methylation of paired box gene 1 (PAX1) and zinc finger 582 (ZNF582) is promising cancer biomarkers for oral squamous cell carcinoma detection. This study aims to investigate the correlation between PAX1 or ZNF582 methylation and the progression of oral squamous cell carcinoma (OSCC). MATERIALS AND METHODS A total of 135 OSCC cases from Peking University School and Hospital of Stomatology were enrolled in this study. Tissue specimens were collected from the lesion site and corresponding adjacent normal site. The methylation level of these two genes was evaluated in primary and recurrent OSCC group. RESULTS Hypermethylation of PAX1 or ZNF582 was observed in lesion sites among primary and recurrent OSCC cases. In the lesion site of primary cases, promoter methylation was observed in T3/T4 (PAX1: P = .02; ZNF582: P = .01), stage III/IV (PAX1: P = .03; ZNF582: P = .01), and bone invasion cases (PAX1: P = .02; ZNF582: P = .047). In the subgroup analysis, the correlation between hypermethylation and OSCC severity remains significant with exposure to smoking/alcohol consumption. CONCLUSIONS Hypermethylated PAX1 and ZNF582 can sufficiently act as biomarkers to reflect the severity or progression of OSCC.
Collapse
Affiliation(s)
- Rui Sun
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yi-Chen Juan
- iStat Biomedical Co., Ltd, New Taipei Citys, Taiwan
| | - Yee-Fun Su
- iStat Biomedical Co., Ltd, New Taipei Citys, Taiwan
| | - Wen-Bo Zhang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yao Yu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Hong-Yu Yang
- Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Guang-Yan Yu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xin Peng
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
14
|
Pasvenskaite A, Vilkeviciute A, Liutkeviciene R, Gedvilaite G, Liutkevicius V, Uloza V. Associations of IL6 rs1800795, BLK rs13277113, TIMP3 rs9621532, IL1RL1 rs1041973 and IL1RAP rs4624606 single gene polymorphisms with laryngeal squamous cell carcinoma. Gene 2020; 747:144700. [PMID: 32330537 DOI: 10.1016/j.gene.2020.144700] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/06/2020] [Accepted: 04/18/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Survival rate of laryngeal squamous cell carcinoma (LSCC) patients is not improving. To understand more complete biology of LSCC, studies focused on identification of new specific and prognostic markers are performed. The aim of current study was to evaluate the impact of five different single nucleotide polymorphisms (SNP) (IL6 rs1800795, BLK rs13277113, TIMP3 rs9621532, IL1RL1 rs1041973 and IL1RAP rs4624606) on LSCC development. MATERIAL AND METHODS A total of 891 subjects (353 histologically verified LSCC patients and 538 healthy controls) were involved in this study. The genotyping was carried out using the real-time-PCR. RESULTS Statistical analysis revealed statistically significant associations between TIMP3 rs96215332 variants and LSCC in the codominant (OR = 0.600; 95% CI: 0.390-0.922; p = 0.020), overdominant (OR = 0.599; 95% CI: 0.390-0.922; p = 0.020) and additive (OR = 0.675; 95% CI: 0.459-0.991; p = 0.045) models. Also, significant variants of IL1RAP rs4624606 were determined in the codominant (OR = 1.372; 95% CI: 1.031-1.827; p = 0.030), overdominant (OR = 1.353; 95% CI: 1.018-1.798; p = 0.037) and additive (OR = 1.337; 95% CI: 1.038-1.724; p = 0.025) models. CONCLUSION Results of the current study indicate significant associations between TIMP3 rs9621532 and IL1RAP rs4624606 gene polymorphisms and LSCC development.
Collapse
Affiliation(s)
- Agne Pasvenskaite
- Department of Otorhinolaryngology, Lithuanian University of Health Sciences, Kaunas, Lithuania.
| | - Alvita Vilkeviciute
- Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania, Lithuania
| | - Rasa Liutkeviciene
- Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania, Lithuania
| | - Greta Gedvilaite
- Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania, Lithuania
| | - Vykintas Liutkevicius
- Department of Otorhinolaryngology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Virgilijus Uloza
- Department of Otorhinolaryngology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
15
|
Hsu PJ, Yan K, Shi H, Izumchenko E, Agrawal N. Molecular biology of oral cavity squamous cell carcinoma. Oral Oncol 2020; 102:104552. [PMID: 31918173 DOI: 10.1016/j.oraloncology.2019.104552] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/30/2019] [Accepted: 12/21/2019] [Indexed: 12/23/2022]
Abstract
Oral cavity squamous cell carcinoma (OCSCC) is a heterogeneous and complex disease that arises due to dysfunction of multiple molecular signaling pathways. Recent advances in high-throughput genetic sequencing technologies coupled with innovative analytical techniques have begun to characterize the molecular determinants driving OCSCC. An understanding of the key molecular signaling networks underlying the initiation and progression of is essential for informing treatment of the disease. In this chapter, we discuss recent findings of key genes altered in OCSCC and potential treatments targeting these genes.
Collapse
Affiliation(s)
- Phillip J Hsu
- Medical Scientist Training Program, The University of Chicago, Chicago, IL 60637, USA
| | - Kenneth Yan
- Section of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Chicago Medicine, Chicago, IL 60637, USA
| | - Hailing Shi
- Department of Chemistry and Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Evgeny Izumchenko
- Section of Hematology Oncology, Department of Medicine, University of Chicago Medicine, Chicago, IL 60637, USA
| | - Nishant Agrawal
- Section of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Chicago Medicine, Chicago, IL 60637, USA.
| |
Collapse
|
16
|
Gaździcka J, Gołąbek K, Strzelczyk JK, Ostrowska Z. Epigenetic Modifications in Head and Neck Cancer. Biochem Genet 2019; 58:213-244. [PMID: 31712935 PMCID: PMC7113219 DOI: 10.1007/s10528-019-09941-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 10/24/2019] [Indexed: 12/17/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common human malignancy in the world, with high mortality and poor prognosis for patients. Among the risk factors are tobacco and alcohol intake, human papilloma virus, and also genetic and epigenetic modifications. Many studies show that epigenetic events play an important role in HNSCC development and progression, including DNA methylation, chromatin remodeling, histone posttranslational covalent modifications, and effects of non-coding RNA. Epigenetic modifications may influence silencing of tumor suppressor genes by promoter hypermethylation, regulate transcription by microRNAs and changes in chromatin structure, or induce genome instability through hypomethylation. Moreover, getting to better understand aberrant patterns of methylation may provide biomarkers for early detection and diagnosis, while knowledge about target genes of microRNAs may improve the therapy of HNSCC and extend overall survival. The aim of this review is to present recent studies which demonstrate the role of epigenetic regulation in the development of HNSCC.
Collapse
Affiliation(s)
- Jadwiga Gaździcka
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19 Str., 41-808, Zabrze, Katowice, Poland.
| | - Karolina Gołąbek
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19 Str., 41-808, Zabrze, Katowice, Poland
| | - Joanna Katarzyna Strzelczyk
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19 Str., 41-808, Zabrze, Katowice, Poland
| | - Zofia Ostrowska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19 Str., 41-808, Zabrze, Katowice, Poland
| |
Collapse
|
17
|
Prawdzic Seńkowska A, Kiczmer P, Strzelczyk JK, Kowalski D, Krakowczyk Ł, Ostrowska Z. Impact of HPV infection on gene expression and methylation in oral cancer patients. J Med Microbiol 2019; 68:440-445. [DOI: 10.1099/jmm.0.000898] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Alicja Prawdzic Seńkowska
- 1Department of Medical and Molecular Biology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Paweł Kiczmer
- 1Department of Medical and Molecular Biology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Joanna Katarzyna Strzelczyk
- 1Department of Medical and Molecular Biology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Denis Kowalski
- 1Department of Medical and Molecular Biology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Łukasz Krakowczyk
- 2Department of Oncological and Reconstructive Surgery, Maria Sklodowska-Curie Memorial Cancer Centre and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Zofia Ostrowska
- 1Department of Medical and Molecular Biology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland
| |
Collapse
|