1
|
Velasco-Sampedro EA, Sánchez-Vicente C, Caloca MJ. β2-Chimaerin Deficiency Favors Polyp Growth in the Colon of Apc Min/+ Mice. Molecules 2025; 30:824. [PMID: 40005135 PMCID: PMC11858732 DOI: 10.3390/molecules30040824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/05/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
A Rho-GTPases are pivotal regulators of key cellular processes implicated in colorectal cancer (CRC) progression, yet the roles of their regulatory proteins, particularly GTPase-activating proteins (GAPs), remain poorly understood. This study focuses on β2-chimaerin, a Rac1-specific GAP, in Apc-driven tumorigenesis using the ApcMin/+ mouse model. We demonstrate that β2-chimaerin deficiency selectively promotes the growth of colonic polyps without influencing small intestinal polyp formation. Mechanistically, β2-chimaerin loss is associated with enhanced ERK phosphorylation, while canonical Wnt/β-catenin and E-cadherin pathways remain unaffected, suggesting its specific involvement in modulating proliferative signaling in the colon. Consistent with its tumor-suppressive role, bioinformatics analyses reveal that low β2-chimaerin expression correlates with poor prognosis in CRC patients. This study expands the understanding of Rho-GTPase regulatory mechanisms in intestinal tumorigenesis, providing a basis for future therapeutic strategies targeting Rho-GTPase pathways in CRC.
Collapse
Affiliation(s)
| | | | - María J. Caloca
- Instituto de Biomedicina y Genética Molecular (IBGM), CSIC-UVA, 47003 Valladolid, Spain (C.S.-V.)
| |
Collapse
|
2
|
Wahoski CC, Singh B. The Roles of RAC1 and RAC1B in Colorectal Cancer and Their Potential Contribution to Cetuximab Resistance. Cancers (Basel) 2024; 16:2472. [PMID: 39001533 PMCID: PMC11240352 DOI: 10.3390/cancers16132472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most diagnosed cancers and a leading contributor to cancer-related deaths in the United States. Clinically, standard treatment regimens include surgery, radiation, and chemotherapy; however, there has been increasing development and clinical use of targeted therapies for CRC. Unfortunately, many patients develop resistance to these treatments. Cetuximab, the first targeted therapy approved to treat advanced CRC, is a monoclonal antibody that targets the epidermal growth factor receptor and inhibits downstream pathway activation to restrict tumor cell growth and proliferation. CRC resistance to cetuximab has been well studied, and common resistance mechanisms include constitutive signal transduction through downstream protein mutations and promotion of the epithelial-to-mesenchymal transition. While the most common resistance mechanisms are known, a proportion of patients develop resistance through unknown mechanisms. One protein predicted to contribute to therapy resistance is RAC1, a small GTPase that is involved in cytoskeleton rearrangement, cell migration, motility, and proliferation. RAC1 has also been shown to be overexpressed in CRC. Despite evidence that RAC1 and its alternative splice isoform RAC1B play important roles in CRC and the pathways known to contribute to cetuximab resistance, there is a need to directly study the relationship between RAC1 and RAC1B and cetuximab resistance. This review highlights the recent studies investigating RAC1 and RAC1B in the context of CRC and suggests that these proteins could play a role in resistance to cetuximab.
Collapse
Affiliation(s)
- Claudia C. Wahoski
- Program in Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Bhuminder Singh
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
3
|
Rivera M, Toledo-Jacobo L, Romero E, Oprea TI, Moses ME, Hudson LG, Wandinger-Ness A, Grimes MM. Agent-based modeling predicts RAC1 is critical for ovarian cancer metastasis. Mol Biol Cell 2022; 33:ar138. [PMID: 36200848 PMCID: PMC9727804 DOI: 10.1091/mbc.e21-11-0540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Experimental and computational studies pinpoint rate-limiting step(s) in metastasis governed by Rac1. Using ovarian cancer cell and animal models, Rac1 expression was manipulated, and quantitative measurements of cell-cell and cell-substrate adhesion, cell invasion, mesothelial clearance, and peritoneal tumor growth discriminated the tumor behaviors most highly influenced by Rac1. The experimental data were used to parameterize an agent-based computational model simulating peritoneal niche colonization, intravasation, and hematogenous metastasis to distant organs. Increased ovarian cancer cell survival afforded by the more rapid adhesion and intravasation upon Rac1 overexpression is predicted to increase the numbers of and the rates at which tumor cells are disseminated to distant sites. Surprisingly, crowding of cancer cells along the blood vessel was found to decrease the numbers of cells reaching a distant niche irrespective of Rac1 overexpression or knockdown, suggesting that sites for tumor cell intravasation are rate limiting and become accessible if cells intravasate rapidly or are displaced due to diminished viability. Modeling predictions were confirmed through animal studies of Rac1-dependent metastasis to the lung. Collectively, the experimental and modeling approaches identify cell adhesion, rapid intravasation, and survival in the blood as parameters in the ovarian metastatic cascade that are most critically dependent on Rac1.
Collapse
Affiliation(s)
- Melanie Rivera
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131
| | - Leslie Toledo-Jacobo
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131
| | - Elsa Romero
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131
| | - Tudor I. Oprea
- Division of Translational Informatics, Department of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131,Translational Informatics, Roivant Discovery, Boston, MA 02210
| | - Melanie E. Moses
- Department of Computer Science, University of New Mexico, Albuquerque, NM 87131
| | - Laurie G. Hudson
- Cancer Research Facility, Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131,Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131
| | - Angela Wandinger-Ness
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131,Cancer Research Facility, Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131,*Address correspondence to: Angela Wandinger-Ness ()
| | - Martha M. Grimes
- Cancer Research Facility, Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131,Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131
| |
Collapse
|
4
|
Kitzinger R, Fritz G, Henninger C. Nuclear RAC1 is a modulator of the doxorubicin-induced DNA damage response. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119320. [PMID: 35817175 DOI: 10.1016/j.bbamcr.2022.119320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Rho GTPases like RAC1 are localized on the inner side of the outer cell membrane where they act as molecular switches that can trigger signal transduction pathways in response to various extracellular stimuli. Nuclear functions of RAC1 were identified that are related to mitosis, cell cycle arrest and apoptosis. Previously, we showed that RAC1 plays a role in the doxorubicin (Dox)-induced DNA damage response (DDR). In this context it is still unknown whether cytosolic RAC1 modulates the Dox-induced DDR or if a nuclear fraction of RAC1 is involved. Here, we silenced RAC1 in mouse embryonic fibroblasts (MEF) pharmacologically with EHT1864 or by using siRNA against Rac1. Additionally, we transfected MEF with RAC1 mutants (wild-type, dominant-negative, constitutively active) containing a nuclear localization sequence (NLS). Afterwards, we analysed the Dox-induced DDR by evaluation of fluorescent nuclear γH2AX and 53BP1 foci formation, as well as by detection of activated proteins of the DDR by western blot to elucidate the role of nuclear RAC1 in the DDR. Treatment with EHT1864 as well as Rac1 knock-down reduced the Dox-induced DSB-formation to a similar extent. Enhanced nuclear localization of dominant-negative as well as constitutively active RAC1 mimicked these effects. Expression of the RAC1 mutants altered the Dox-induced amount of pP53 and pKAP1 protein. The observed effects were independent of S1981 ATM phosphorylation. We conclude that RAC1 is required for a substantial activation of the Dox-induced DDR and balanced levels of active/inactive RAC1 inside the nucleus are a prerequisite for this response.
Collapse
Affiliation(s)
- Rebekka Kitzinger
- Institute of Toxicology, Medical Faculty of the Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Gerhard Fritz
- Institute of Toxicology, Medical Faculty of the Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Christian Henninger
- Institute of Toxicology, Medical Faculty of the Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
| |
Collapse
|
5
|
Bao F, Liu J, Chen H, Miao L, Xu Z, Zhang G. Diagnosis Biomarkers of Cholangiocarcinoma in Human Bile: An Evidence-Based Study. Cancers (Basel) 2022; 14:cancers14163921. [PMID: 36010914 PMCID: PMC9406189 DOI: 10.3390/cancers14163921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary A liquid biopsy has the characteristics of low trauma and easy acquisition in the diagnosis of cholangiocarcinoma. Many researchers try to find diagnostic or prognostic biomarkers of CCA through blood, urine, bile and other body fluids. Due to the close proximity of bile to the lesion and the stable nature, bile gradually comes into people’s view. The evaluation of human bile diagnostic biomarkers is not only to the benefit of screening more suitable clinical markers but also of exploring the pathological changes of the disease. Abstract Cholangiocarcinoma (CCA) is a multifactorial malignant tumor of the biliary tract, and the incidence of CCA is increasing in recent years. At present, the diagnosis of CCA mainly depends on imaging and invasive examination, with limited specificity and sensitivity and late detection. The early diagnosis of CCA always faces the dilemma of lacking specific diagnostic biomarkers. Non-invasive methods to assess the degree of CAA have been developed throughout the last decades. Among the many specimens looking for CCA biomarkers, bile has gotten a lot of attention lately. This paper mainly summarizes the recent developments in the current research on the diagnostic biomarkers for CCA in human bile at the levels of the gene, protein, metabolite, extracellular vesicles and volatile organic compounds.
Collapse
Affiliation(s)
- Fang Bao
- Institute of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian 116044, China
- Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Jiayue Liu
- Institute of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian 116044, China
- Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China
| | - Haiyang Chen
- Institute of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian 116044, China
- Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China
| | - Lu Miao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Zhaochao Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- Correspondence: (Z.X.); (G.Z.)
| | - Guixin Zhang
- Institute of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian 116044, China
- Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China
- Correspondence: (Z.X.); (G.Z.)
| |
Collapse
|
6
|
You JA, Gong Y, Wu Y, Jin L, Chi Q, Sun D. WGCNA, LASSO and SVM Algorithm Revealed RAC1 Correlated M0 Macrophage and the Risk Score to Predict the Survival of Hepatocellular Carcinoma Patients. Front Genet 2022; 12:730920. [PMID: 35493265 PMCID: PMC9044718 DOI: 10.3389/fgene.2021.730920] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/11/2021] [Indexed: 11/25/2022] Open
Abstract
Background: RAC1 is involved in the progression of HCC as a regulator, but its prognostic performance and the imbalance of immune cell infiltration mediated by it are still unclear. We aim to explore the prognostic and immune properties of RAC1 in HCC. Methods: We separately downloaded the data related to HCC from the Cancer Genome Atlas (TCGA) and GEO database. CIBERSORT deconvolution algorithm, weighted gene co-expression network analysis (WGCNA) and LASSO algorithm participate in identifying IRGs and the construction of prognostic signatures. Results: The study discovered that RAC1 expression was linked to the severity of HCC lesions, and that its high expression was linked to a poor prognosis. Cox analysis confirmed that RAC1 is a clinically independent prognostic marker. M0, M1 and M2 macrophages’ abundance are significantly different in HCC. We found 828 IRGs related to macrophage infiltration, and established a novel 11-gene signature with excellent prognostic performance. RAC1-based risk score and M0 macrophage has a good ability to predict overall survival. Conclusion: The immune state of irregular macrophage infiltration may be one of the precursors to carcinogenesis. The RAC1 correlated with M0 macrophage and the risk score to show a good performance to predict the survival of HCC patients.
Collapse
Affiliation(s)
- Ji-An You
- College of Technology, Hubei Engineering University, Xiaogan, China
| | - Yuhan Gong
- Department of Geotechnical Engineering, Wuhan University of Technology, Wuhan, China
| | - Yongzhe Wu
- Department of Mechanics and Engineering Structure, Wuhan University of Technology, Wuhan, China
| | - Libo Jin
- Institute of Life Sciences and Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Qingjia Chi
- Department of Mechanics and Engineering Structure, Wuhan University of Technology, Wuhan, China
- *Correspondence: Qingjia Chi, ; Da Sun,
| | - Da Sun
- Institute of Life Sciences and Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
- *Correspondence: Qingjia Chi, ; Da Sun,
| |
Collapse
|
7
|
Hypermethylation of DLG3 Promoter Upregulates RAC1 and Activates the PI3K/AKT Signaling Pathway to Promote Breast Cancer Progression. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8428130. [PMID: 34765009 PMCID: PMC8577895 DOI: 10.1155/2021/8428130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/15/2021] [Indexed: 12/24/2022]
Abstract
Objective This investigation aimed to figure out the relation between discs large homolog 3 (DLG3) expression and the progression and prognosis of breast cancer (BC). Methods qRT-PCR was utilized for confirming DLG3 expression and RAC1 mRNA expression in BC tissues and cells. Subsequently, after overexpression or interference of DLG3, the changes of the biological activities of BC cells, including cell proliferation, migration, invasion, and apoptosis, were detected through CCK-8, colony formation assay, wound healing assay, transwell assay, and flow cytometry, respectively. Furthermore, western blotting was utilized to measure the protein expression of DLG3 and RAC1, as well as related proteins of epithelial-mesenchymal transition (EMT) and the PI3K/AKT signaling pathway. Results At both cellular and tissue level in BC, DLG3 was downregulated and methylation level was upregulated; RAC1 showed an opposite change and was of a negative correlation with DLG3. In MCF-7 and HCC1937, we found that the upregulation of DLG3 could inhibit RAC1 expression as well as cell proliferation, invasion, migration, and EMT, while promoting apoptosis. Also, DLG3 inhibited the activation of the P13K/AKT pathway. Conclusion Hypermethylation of DLG3 promoter upregulates RAC1 and activates the PI3K/AKT pathway, thus promoting BC progression. This conclusion provides ideas and experimental basis for improving and treating BC patients.
Collapse
|
8
|
Ali A, Shafarin J, Unnikannan H, Al-Jabi N, Jabal RA, Bajbouj K, Muhammad JS, Hamad M. Co-targeting BET bromodomain BRD4 and RAC1 suppresses growth, stemness and tumorigenesis by disrupting the c-MYC-G9a-FTH1axis and downregulating HDAC1 in molecular subtypes of breast cancer. Int J Biol Sci 2021; 17:4474-4492. [PMID: 34803511 PMCID: PMC8579449 DOI: 10.7150/ijbs.62236] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 09/24/2021] [Indexed: 01/09/2023] Open
Abstract
BET bromodomain BRD4 and RAC1 oncogenes are considered important therapeutic targets for cancer and play key roles in tumorigenesis, survival and metastasis. However, combined inhibition of BRD4-RAC1 signaling pathways in different molecular subtypes of breast cancer including luminal-A, HER-2 positive and triple-negative breast (TNBC) largely remains unknown. Here, we demonstrated a new co-targeting strategy by combined inhibition of BRD4-RAC1 oncogenic signaling in different molecular subtypes of breast cancer in a context-dependent manner. We show that combined treatment of JQ1 (inhibitor of BRD4) and NSC23766 (inhibitor of RAC1) suppresses cell growth, clonogenic potential, cell migration and mammary stem cells expansion and induces autophagy and cellular senescence in molecular subtypes of breast cancer cells. Mechanistically, JQ1/NSC23766 combined treatment disrupts MYC/G9a axis and subsequently enhances FTH1 to exert antitumor effects. Furthermore, combined treatment targets HDAC1/Ac-H3K9 axis, thus suggesting a role of this combination in histone modification and chromatin modeling. C-MYC depletion and co-treatment with vitamin-C sensitizes different molecular subtypes of breast cancer cells to JQ1/NSC23766 combination and further reduces cell growth, cell migration and mammosphere formation. Importantly, co-targeting RAC1-BRD4 suppresses breast tumor growth in vivo using xenograft mouse model. Clinically, RAC1 and BRD4 expression positively correlates in breast cancer patient's samples and show high expression patterns across different molecular subtypes of breast cancer. Both RAC1 and BRD4 proteins predict poor survival in breast cancer patients. Taken together, our results suggest that combined inhibition of BRD4-RAC1 pathways represents a novel and potential therapeutic approach in different molecular subtypes of breast cancer and highlights the importance of co-targeting RAC1-BRD4 signaling in breast tumorigenesis via disruption of C-MYC/G9a/FTH1 axis and down regulation of HDAC1.
Collapse
Affiliation(s)
- Amjad Ali
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Jasmin Shafarin
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Hema Unnikannan
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Nour Al-Jabi
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Rola Abu Jabal
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Khuloud Bajbouj
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Jibran Sualeh Muhammad
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Mawieh Hamad
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
9
|
Bagheri-Yarmand R, Busaidy NL, McBeath E, Danysh BP, Evans KW, Moss TJ, Akcakanat A, Ng PKS, Knippler CM, Golden JA, Williams MD, Multani AS, Cabanillas ME, Shaw KR, Meric-Bernstam F, Shah MH, Ringel MD, Hofmann MC. RAC1 Alterations Induce Acquired Dabrafenib Resistance in Association with Anaplastic Transformation in a Papillary Thyroid Cancer Patient. Cancers (Basel) 2021; 13:4950. [PMID: 34638434 PMCID: PMC8507731 DOI: 10.3390/cancers13194950] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 11/19/2022] Open
Abstract
BRAF-activating mutations are the most frequent driver mutations in papillary thyroid cancer (PTC). Targeted inhibitors such as dabrafenib have been used in advanced BRAF-mutated PTC; however, acquired resistance to the drug is common and little is known about other effectors that may play integral roles in this resistance. In addition, the induction of PTC dedifferentiation into highly aggressive KRAS-driven anaplastic thyroid cancer (ATC) has been reported. We detected a novel RAC1 (P34R) mutation acquired during dabrafenib treatment in a progressive metastatic lesion with ATC phenotype. To identify a potential functional link between this novel mutation and tumor dedifferentiation, we developed a cell line derived from the metastatic lesion and compared its behavior to isogenic cell lines and primary tumor samples. Our data demonstrated that RAC1 mutations induce changes in cell morphology, reorganization of F-actin almost exclusively at the cell cortex, and changes in cell adhesion properties. We also established that RAC1 amplification, with or without mutation, is sufficient to drive cell proliferation and resistance to BRAF inhibition. Further, we identified polyploidy of chromosome 7, which harbors RAC1, in both the metastatic lesion and its derived cell line. Copy number amplification and overexpression of other genes located on this chromosome, such as TWIST1, EGFR, and MET were also detected, which might also lead to dabrafenib resistance. Our study suggests that polyploidy leading to increased expression of specific genes, particularly those located on chromosome 7, should be considered when analyzing aggressive thyroid tumor samples and in further treatments.
Collapse
Affiliation(s)
- Rozita Bagheri-Yarmand
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (R.B.-Y.); (N.L.B.); (E.M.); (B.P.D.); (J.A.G.); (M.E.C.)
| | - Naifa L. Busaidy
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (R.B.-Y.); (N.L.B.); (E.M.); (B.P.D.); (J.A.G.); (M.E.C.)
| | - Elena McBeath
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (R.B.-Y.); (N.L.B.); (E.M.); (B.P.D.); (J.A.G.); (M.E.C.)
| | - Brian P. Danysh
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (R.B.-Y.); (N.L.B.); (E.M.); (B.P.D.); (J.A.G.); (M.E.C.)
| | - Kurt W. Evans
- Department of Investigative Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (K.W.E.); (A.A.); (P.K.S.N.); (K.R.S.); (F.M.-B.)
| | - Tyler J. Moss
- Bioinformatics & Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Argun Akcakanat
- Department of Investigative Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (K.W.E.); (A.A.); (P.K.S.N.); (K.R.S.); (F.M.-B.)
| | - Patrick K. S. Ng
- Department of Investigative Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (K.W.E.); (A.A.); (P.K.S.N.); (K.R.S.); (F.M.-B.)
| | - Christina M. Knippler
- Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA; (C.M.K.); (M.D.R.)
- Department of Hematology and Medical Oncology, Emory University Winship Cancer Institute, Atlanta, GA 30322, USA
| | - Jalyn A. Golden
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (R.B.-Y.); (N.L.B.); (E.M.); (B.P.D.); (J.A.G.); (M.E.C.)
| | - Michelle D. Williams
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Asha S. Multani
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Maria E. Cabanillas
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (R.B.-Y.); (N.L.B.); (E.M.); (B.P.D.); (J.A.G.); (M.E.C.)
| | - Kenna R. Shaw
- Department of Investigative Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (K.W.E.); (A.A.); (P.K.S.N.); (K.R.S.); (F.M.-B.)
| | - Funda Meric-Bernstam
- Department of Investigative Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (K.W.E.); (A.A.); (P.K.S.N.); (K.R.S.); (F.M.-B.)
| | - Manisha H. Shah
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA;
| | - Matthew D. Ringel
- Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA; (C.M.K.); (M.D.R.)
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA;
| | - Marie Claude Hofmann
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (R.B.-Y.); (N.L.B.); (E.M.); (B.P.D.); (J.A.G.); (M.E.C.)
| |
Collapse
|
10
|
Liang J, Oyang L, Rao S, Han Y, Luo X, Yi P, Lin J, Xia L, Hu J, Tan S, Tang L, Pan Q, Tang Y, Zhou Y, Liao Q. Rac1, A Potential Target for Tumor Therapy. Front Oncol 2021; 11:674426. [PMID: 34079763 PMCID: PMC8165220 DOI: 10.3389/fonc.2021.674426] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/29/2021] [Indexed: 12/20/2022] Open
Abstract
RAS-related C3 botulinum toxin substrate 1 (Rac.1) is one of the important members of Rho GTPases. It is well known that Rac1 is a cytoskeleton regulation protein that regulates cell adhesion, morphology, and movement. Rac1 is highly expressed in different types of tumors, which is related to poor prognosis. Studies have shown that Rac1 not only participates in the tumor cell cycle, apoptosis, proliferation, invasion, migration and angiogenesis, but also participates in the regulation of tumor stem cell, thus promoting the occurrence of tumors. Rac1 also plays a key role in anti-tumor therapy and participates in immune escape mediated by the tumor microenvironment. In addition, the good prospects of Rac1 inhibitors in cancer prevention and treatment are exciting. Therefore, Rac1 is considered as a potential target for the prevention and treatment of cancer. The necessity and importance of Rac1 are obvious, but it still needs further study.
Collapse
Affiliation(s)
- Jiaxin Liang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Linda Oyang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Shan Rao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yaqian Han
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Xia Luo
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Pin Yi
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Jinguan Lin
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Longzheng Xia
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Jiaqi Hu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Shiming Tan
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Lu Tang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,University of South China, Hengyang, China
| | - Qing Pan
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,University of South China, Hengyang, China
| | - Yanyan Tang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Clinical Research Center for Wound Healing in Hunan Province, Changsha, China
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Clinical Research Center for Wound Healing in Hunan Province, Changsha, China
| |
Collapse
|
11
|
Zheng W, Zhang J, Song Q, Xu Y, Zhu M, Ma J. Rac Family Small GTPase 3 Correlates with Progression and Poor Prognosis in Bladder Cancer. DNA Cell Biol 2021; 40:469-481. [PMID: 33600260 DOI: 10.1089/dna.2020.5613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Bladder cancer (BC) is a common genitourinary malignancy worldwide. However, the molecular pathogenesis of BC remains unclear. The current study conducted bioinformatic analyses to discover key genes involved in BC progression. A total of 375 differentially expressed genes (DEGs) were screened in the GEO database and The Cancer Genome Atlas (TCGA) database, which were further evaluated by the core level in the protein-protein interaction network. RAC3 (Rac family small GTPase 3), one of the top hub genes, was focused on for its gene expression and prognostic value in BC. Immunohistochemical assays indicated elevated RAC3 levels in BC tissues compared with normal tissues. Overexpression of RAC3 expression was closely associated with poor differentiation (p = 0.035), advanced TNM stage (p = 0.014), lymph metastasis (p = 0.033), and recurrence (p < 0.001). Kaplan-Meier and Cox proportional hazards analyses demonstrated that high RAC3 expression indicated poor survival of BC patients, which could serve as an independent prognostic factor for overall survival (HR = 3.159, p = 0.023) and disease-free survival (HR = 4.633, p = 0.002). Moreover, bioinformatic analyses indicated that RAC3 might be correlated with malignant phenotypes and immune infiltration of BC. Taken together, RAC3 could be a novel prognostic biomarker for BC.
Collapse
Affiliation(s)
- Wenjie Zheng
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Jie Zhang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Qianqian Song
- Department of Radiology, Wake Forest School of Medicine, One Medical Center Boulevard, Winston-Salem, North Carolina, USA
| | - Yuqing Xu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Mengqi Zhu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Jianguo Ma
- Department of Urology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
12
|
Wei T, Fa B, Luo C, Johnston L, Zhang Y, Yu Z. An Efficient and Easy-to-Use Network-Based Integrative Method of Multi-Omics Data for Cancer Genes Discovery. Front Genet 2021; 11:613033. [PMID: 33488678 PMCID: PMC7820902 DOI: 10.3389/fgene.2020.613033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/25/2020] [Indexed: 12/25/2022] Open
Abstract
Identifying personalized driver genes is essential for discovering critical biomarkers and developing effective personalized therapies of cancers. However, few methods consider weights for different types of mutations and efficiently distinguish driver genes over a larger number of passenger genes. We propose MinNetRank (Minimum used for Network-based Ranking), a new method for prioritizing cancer genes that sets weights for different types of mutations, considers the incoming and outgoing degree of interaction network simultaneously, and uses minimum strategy to integrate multi-omics data. MinNetRank prioritizes cancer genes among multi-omics data for each sample. The sample-specific rankings of genes are then integrated into a population-level ranking. When evaluating the accuracy and robustness of prioritizing driver genes, our method almost always significantly outperforms other methods in terms of precision, F1 score, and partial area under the curve (AUC) on six cancer datasets. Importantly, MinNetRank is efficient in discovering novel driver genes. SP1 is selected as a candidate driver gene only by our method (ranked top three), and SP1 RNA and protein differential expression between tumor and normal samples are statistically significant in liver hepatocellular carcinoma. The top seven genes stratify patients into two subtypes exhibiting statistically significant survival differences in five cancer types. These top seven genes are associated with overall survival, as illustrated by previous researchers. MinNetRank can be very useful for identifying cancer driver genes, and these biologically relevant marker genes are associated with clinical outcome. The R package of MinNetRank is available at https://github.com/weitinging/MinNetRank.
Collapse
Affiliation(s)
- Ting Wei
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,SJTU-Yale Joint Center for Biostatistics and Data Science, Shanghai Jiao Tong University, Shanghai, China
| | - Botao Fa
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,SJTU-Yale Joint Center for Biostatistics and Data Science, Shanghai Jiao Tong University, Shanghai, China
| | - Chengwen Luo
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,SJTU-Yale Joint Center for Biostatistics and Data Science, Shanghai Jiao Tong University, Shanghai, China
| | - Luke Johnston
- SJTU-Yale Joint Center for Biostatistics and Data Science, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Zhang
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,SJTU-Yale Joint Center for Biostatistics and Data Science, Shanghai Jiao Tong University, Shanghai, China
| | - Zhangsheng Yu
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,SJTU-Yale Joint Center for Biostatistics and Data Science, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
13
|
Grimes MM, Kenney SR, Dominguez DR, Brayer KJ, Guo Y, Wandinger-Ness A, Hudson LG. The R-enantiomer of ketorolac reduces ovarian cancer tumor burden in vivo. BMC Cancer 2021; 21:40. [PMID: 33413202 PMCID: PMC7791840 DOI: 10.1186/s12885-020-07716-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Rho-family GTPases, including Ras-related C3 botulinum toxin substrate 1 (Rac1) and cell division control protein 42 (Cdc42), are important modulators of cancer-relevant cell functions and are viewed as promising therapeutic targets. Based on high-throughput screening and cheminformatics we identified the R-enantiomer of an FDA-approved drug (ketorolac) as an inhibitor of Rac1 and Cdc42. The corresponding S-enantiomer is a non-steroidal anti-inflammatory drug (NSAID) with selective activity against cyclooxygenases. We reported previously that R-ketorolac, but not the S-enantiomer, inhibited Rac1 and Cdc42-dependent downstream signaling, growth factor stimulated actin cytoskeleton rearrangements, cell adhesion, migration and invasion in ovarian cancer cell lines and patient-derived tumor cells. METHODS In this study we treated mice with R-ketorolac and measured engraftment of tumor cells to the omentum, tumor burden, and target GTPase activity. In order to gain insights into the actions of R-ketorolac, we also performed global RNA-sequencing (RNA-seq) analysis on tumor samples. RESULTS Treatment of mice with R-ketorolac decreased omental engraftment of ovarian tumor cells at 18 h post tumor cell injection and tumor burden after 2 weeks of tumor growth. R-ketorolac treatment inhibited tumor Rac1 and Cdc42 activity with little impact on mRNA or protein expression of these GTPase targets. RNA-seq analysis revealed that R-ketorolac decreased expression of genes in the HIF-1 signaling pathway. R-ketorolac treatment also reduced expression of additional genes associated with poor prognosis in ovarian cancer. CONCLUSION These findings suggest that R-ketorolac may represent a novel therapeutic approach for ovarian cancer based on its pharmacologic activity as a Rac1 and Cdc42 inhibitor. R-ketorolac modulates relevant pathways and genes associated with disease progression and worse outcome.
Collapse
Affiliation(s)
- Martha M. Grimes
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico USA
| | - S. Ray Kenney
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico USA
- Division of Molecular Medicine, School of Medicine, University of New Mexico, Albuquerque, New Mexico USA
| | - Dayna R. Dominguez
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico USA
| | - Kathryn J. Brayer
- Analytical and Translational Genomics Shared Resource, Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico USA
- Department of Internal Medicine, School of Medicine, University of New Mexico, Albuquerque, New Mexico USA
| | - Yuna Guo
- Department of Pathology, School of Medicine, University of New Mexico, Albuquerque, New Mexico USA
| | - Angela Wandinger-Ness
- Department of Pathology, School of Medicine, University of New Mexico, Albuquerque, New Mexico USA
| | - Laurie G. Hudson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico USA
| |
Collapse
|
14
|
Pradhan R, Ngo PA, Martínez-Sánchez LDC, Neurath MF, López-Posadas R. Rho GTPases as Key Molecular Players within Intestinal Mucosa and GI Diseases. Cells 2021; 10:cells10010066. [PMID: 33406731 PMCID: PMC7823293 DOI: 10.3390/cells10010066] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023] Open
Abstract
Rho proteins operate as key regulators of the cytoskeleton, cell morphology and trafficking. Acting as molecular switches, the function of Rho GTPases is determined by guanosine triphosphate (GTP)/guanosine diphosphate (GDP) exchange and their lipidation via prenylation, allowing their binding to cellular membranes and the interaction with downstream effector proteins in close proximity to the membrane. A plethora of in vitro studies demonstrate the indispensable function of Rho proteins for cytoskeleton dynamics within different cell types. However, only in the last decades we have got access to genetically modified mouse models to decipher the intricate regulation between members of the Rho family within specific cell types in the complex in vivo situation. Translationally, alterations of the expression and/or function of Rho GTPases have been associated with several pathological conditions, such as inflammation and cancer. In the context of the GI tract, the continuous crosstalk between the host and the intestinal microbiota requires a tight regulation of the complex interaction between cellular components within the intestinal tissue. Recent studies demonstrate that Rho GTPases play important roles for the maintenance of tissue homeostasis in the gut. We will summarize the current knowledge on Rho protein function within individual cell types in the intestinal mucosa in vivo, with special focus on intestinal epithelial cells and T cells.
Collapse
|
15
|
RhoA and Rac1 in Liver Cancer Cells: Induction of Overexpression Using Mechanical Stimulation. MICROMACHINES 2020; 11:mi11080729. [PMID: 32731493 PMCID: PMC7463892 DOI: 10.3390/mi11080729] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 01/21/2023]
Abstract
Liver cancer, especially hepatocellular carcinoma (HCC), is an aggressive disease with an extremely high mortality rate. Unfortunately, no promising markers are currently available for the early diagnosis of this disease. Thus, a reliable biomarker reflecting the early behaviour of the tumour will be valuable for diagnosis and treatment. The Ras homologous (Rho) GTPases, which belong to the small guanosine triphosphate (GTP) binding proteins, have been reported to play an important role in mediating liver cancer based on their important function in cytoskeletal reorganisation. These proteins can be either oncogenic or tumour suppressors. They are also associated with the acquirement of malignant features by cancer cells. The overexpression of RhoA and Rac1, members of the Rho GTPases, have been linked with carcinogenesis and the progression of different types of cancer. In the quest of elucidating the role of mechanical stimulation in the mechanobiology of liver cancer cells, this paper evaluates the effect of stretching on the expression levels of RhoA and Rac1 in different types of liver cancers. It is shown that that stretching liver cancer cells significantly increases the expression levels of RhoA and Rac1 in HCC and cholangiocarcinoma cell lines. We hypothesise that this relatively simple and sensitive method could be helpful for screening biological features and provide suitable treatment guidance for liver cancer patients.
Collapse
|
16
|
RNA Sequencing Analyses Reveal the Potential Mechanism of Pulmonary Injury Induced by Gallium Arsenide Particles in Human Bronchial Epithelioid Cells. Sci Rep 2020; 10:8685. [PMID: 32457348 PMCID: PMC7250905 DOI: 10.1038/s41598-020-65518-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 05/04/2020] [Indexed: 02/06/2023] Open
Abstract
Extensive use of gallium arsenide (GaAs) has led to increased exposure to humans working in the semiconductor industry. This study employed physicochemical characterization of GaAs obtained from a workplace, cytotoxicity analysis of damage induced by GaAs in 16HBE cells, RNA-seq and related bioinformatic analysis, qRT-PCR verification and survival analysis to comprehensively understand the potential mechanism leading to lung toxicity induced by GaAs. We found that GaAs-induced abnormal gene expression was mainly related to the cellular response to chemical stimuli, the regulation of signalling, cell differentiation and the cell cycle, which are involved in transcriptional misregulation in cancer, the MAPK signalling pathway, the TGF-β signalling pathway and pulmonary disease-related pathways. Ten upregulated genes (FOS, JUN, HSP90AA1, CDKN1A, ESR1, MYC, RAC1, CTNNB1, MAPK8 and FOXO1) and 7 downregulated genes (TP53, AKT1, NFKB1, SMAD3, CDK1, E2F1 and PLK1) related to GaAs-induced pulmonary toxicity were identified. High expression of HSP90AA1, RAC1 and CDKN1A was significantly associated with a lower rate of overall survival in lung cancers. The results of this study indicate that GaAs-associated toxicities affected the misregulation of oncogenes and tumour suppressing genes, activation of the TGF-β/MAPK pathway, and regulation of cell differentiation and the cell cycle. These results help to elucidate the molecular mechanism underlying GaAs-induced pulmonary injury.
Collapse
|
17
|
Nikolaou S, Machesky LM. The stressful tumour environment drives plasticity of cell migration programmes, contributing to metastasis. J Pathol 2020; 250:612-623. [PMID: 32057095 PMCID: PMC7216910 DOI: 10.1002/path.5395] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/21/2020] [Accepted: 02/10/2020] [Indexed: 12/19/2022]
Abstract
Tumours evolve to cope with environmental stresses or challenges such as nutrient starvation, depletion of survival factors, and unbalanced mechanical forces. The uncontrolled growth and aberrant deregulation of core cell homeostatic pathways induced by genetic mutations create an environment of stress. Here, we explore how the adaptations of tumours to the changing environment can drive changes in the motility machinery of cells, affecting migration, invasion, and metastasis. Tumour cells can invade individually or collectively, or they can be extruded out of the surrounding epithelium. These mechanisms are thought to be modifications of normal processes occurring during development or tissue repair. Therefore, tumours may activate these pathways in response to environmental stresses, enabling them to survive in hostile environments and spread to distant sites. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Savvas Nikolaou
- Division of Cancer Metastasis and RecurrenceCRUK Beatson InstituteGlasgowUK
| | - Laura M Machesky
- Division of Cancer Metastasis and RecurrenceCRUK Beatson InstituteGlasgowUK
- Institute of Cancer SciencesUniversity of GlasgowGlasgowUK
| |
Collapse
|
18
|
RAC1 as a Therapeutic Target in Malignant Melanoma. Trends Cancer 2020; 6:478-488. [PMID: 32460002 DOI: 10.1016/j.trecan.2020.02.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/19/2020] [Accepted: 02/26/2020] [Indexed: 12/22/2022]
Abstract
Small GTPases of the RAS and RHO families are related signaling proteins that, when activated by growth factors or by mutation, drive oncogenic processes. While activating mutations in KRAS, NRAS, and HRAS genes have long been recognized and occur in many types of cancer, similar mutations in RHO family genes, such as RAC1 and RHOA, have only recently been detected as the result of extensive cancer genome-sequencing efforts and are linked to a restricted set of malignancies. In this review, we focus on the role of RAC1 signaling in malignant melanoma, emphasizing recent advances that describe how this oncoprotein alters melanocyte proliferation and motility and how these findings might lead to new therapeutics in RAC1-mutant tumors.
Collapse
|
19
|
Kotelevets L, Chastre E. Rac1 Signaling: From Intestinal Homeostasis to Colorectal Cancer Metastasis. Cancers (Basel) 2020; 12:cancers12030665. [PMID: 32178475 PMCID: PMC7140047 DOI: 10.3390/cancers12030665] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/06/2020] [Accepted: 03/08/2020] [Indexed: 12/14/2022] Open
Abstract
The small GTPase Rac1 has been implicated in a variety of dynamic cell biological processes, including cell proliferation, cell survival, cell-cell contacts, epithelial mesenchymal transition (EMT), cell motility, and invasiveness. These processes are orchestrated through the fine tuning of Rac1 activity by upstream cell surface receptors and effectors that regulate the cycling Rac1-GDP (off state)/Rac1-GTP (on state), but also through the tuning of Rac1 accumulation, activity, and subcellular localization by post translational modifications or recruitment into molecular scaffolds. Another level of regulation involves Rac1 transcripts stability and splicing. Downstream, Rac1 initiates a series of signaling networks, including regulatory complex of actin cytoskeleton remodeling, activation of protein kinases (PAKs, MAPKs) and transcription factors (NFkB, Wnt/β-catenin/TCF, STAT3, Snail), production of reactive oxygen species (NADPH oxidase holoenzymes, mitochondrial ROS). Thus, this GTPase, its regulators, and effector systems might be involved at different steps of the neoplastic progression from dysplasia to the metastatic cascade. After briefly placing Rac1 and its effector systems in the more general context of intestinal homeostasis and in wound healing after intestinal injury, the present review mainly focuses on the several levels of Rac1 signaling pathway dysregulation in colorectal carcinogenesis, their biological significance, and their clinical impact.
Collapse
Affiliation(s)
- Larissa Kotelevets
- Institut National de la Santé et de la Recherche Médicale, UMR S 938, Centre de Recherche Saint-Antoine, 75012 Paris, France
- Sorbonne Université, Hôpital Saint-Antoine, Site Bâtiment Kourilsky, 75012 Paris, France
- Correspondence: (L.K.); (E.C.)
| | - Eric Chastre
- Institut National de la Santé et de la Recherche Médicale, UMR S 938, Centre de Recherche Saint-Antoine, 75012 Paris, France
- Sorbonne Université, Hôpital Saint-Antoine, Site Bâtiment Kourilsky, 75012 Paris, France
- Correspondence: (L.K.); (E.C.)
| |
Collapse
|
20
|
Li B, Lin JP, Li Z, Yin C, Yang JB, Meng YQ. Clinicopathological and prognostic significance of epithelial cell transforming sequence 2 expression in cancers: a systematic review and meta-analysis. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:4139-4148. [PMID: 31698961 DOI: 10.1080/21691401.2019.1687503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Numerous studies have investigated the prognostic significance of ECT2 (epithelial cell transforming sequence 2) expression in patients with cancer. Nevertheless, conflicting results have been obtained. We thus performed a meta-analysis to systematically assess the prognostic significance of ECT2 in cancer. Electronic databases (PubMed and EMBASE) were searched for eligible studies. Hazard ratios (HR) and odds ratios (OR) with 95% confidence intervals (CIs) were used to estimate effect sizes. A total of 5,305 patients from 19 articles and 21 studies were included. The pooled results revealed that high ECT2 expression was correlated with advanced TNM stage (OR = 2.17; 95% CI: 1.42-3.32), positive lymph node metastasis (OR = 2.98; 95% CI: 2.28-3.89), distant metastasis (OR = 2.25; 95% CI: 1.03-4.92), and poor tumour differentiation (OR = 2.25; 95% CI: 1.03-4.92). More importantly, high ECT2 expression was significantly associated with poor overall survival (HR = 2.26; 95% CI, 1.84-2.78) and recurrence-free survival (HR = 1.52; 95% CI, 1.24-1.86). Our results suggested that ECT2 is a promising prognostic indicator and therapeutic target for cancer.
Collapse
Affiliation(s)
- Bin Li
- Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou University Second Clinical Medical College, Lanzhou, China
| | - Jun-Ping Lin
- Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou University Second Clinical Medical College, Lanzhou, China
| | - Zheng Li
- Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou University Second Clinical Medical College, Lanzhou, China
| | - Ci Yin
- Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou University Second Clinical Medical College, Lanzhou, China
| | - Jian-Bao Yang
- Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou University Second Clinical Medical College, Lanzhou, China
| | - Yu-Qi Meng
- Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou University Second Clinical Medical College, Lanzhou, China
| |
Collapse
|
21
|
Dual Actions of Ketorolac in Metastatic Ovarian Cancer. Cancers (Basel) 2019; 11:cancers11081049. [PMID: 31344967 PMCID: PMC6721416 DOI: 10.3390/cancers11081049] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/11/2019] [Accepted: 07/17/2019] [Indexed: 12/21/2022] Open
Abstract
Cytoreductive surgery and chemotherapy are cornerstones of ovarian cancer treatment, yet disease recurrence remains a significant clinical issue. Surgery can release cancer cells into the circulation, suppress anti-tumor immunity, and induce inflammatory responses that support the growth of residual disease. Intervention within the peri-operative window is an under-explored opportunity to mitigate these consequences of surgery and influence the course of metastatic disease to improve patient outcomes. One drug associated with improved survival in cancer patients is ketorolac. Ketorolac is a chiral molecule administered as a 1:1 racemic mixture of the S- and R-enantiomers. The S-enantiomer is considered the active component for its FDA indication in pain management with selective activity against cyclooxygenase (COX) enzymes. The R-enantiomer has a previously unrecognized activity as an inhibitor of Rac1 (Ras-related C3 botulinum toxin substrate) and Cdc42 (cell division control protein 42) GTPases. Therefore, ketorolac differs from other non-steroidal anti-inflammatory drugs (NSAIDs) by functioning as two distinct pharmacologic entities due to the independent actions of each enantiomer. In this review, we summarize evidence supporting the benefits of ketorolac administration for ovarian cancer patients. We also discuss how simultaneous inhibition of these two distinct classes of targets, COX enzymes and Rac1/Cdc42, by S-ketorolac and R-ketorolac respectively, could each contribute to anti-cancer activity.
Collapse
|
22
|
Zhang L, Zhou H, Wei G. miR-506 regulates cell proliferation and apoptosis by affecting RhoA/ROCK signaling pathway in hepatocellular carcinoma cells. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:1163-1173. [PMID: 31933931 PMCID: PMC6947048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 12/26/2018] [Indexed: 06/10/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC), is the third leading cause of cancer-related death. MicroRNA-506 (miR-506) has been reported to exhibit abnormal expression in HCC; however, the role of miR-506 in HCC and the molecular mechanisms underlying miR-506 in HCC remain unclarified. METHODS Quantitative reverse transcription polymerase chain reaction (qRT-PCR) assay was performed to detect the expression of miR-506 and Rho associated coiled-coil containing protein kinase 2 (ROCK2). Cell proliferation and apoptosis were evaluated by MTT assay and flow cytometry, respectively. Bioinformatics analysis and luciferase reporter assays were performed to identify the regulation between miR-506 and ROCK2. Western blot assay was performed to detect the expression of ROCK2, RhoA, and Ras-related C3 botulinum toxin substrate 1 (Rac1). The tumor growth in vivo was evaluated in a HCC xenograft mice model. RESULTS The mRNA levels of ROCK2 were significantly upregulated, while miR-506 levels were significantly downregulated in HCC tissues and cells. The expression of ROCK2 was negatively correlated with miR-506 in HCC tissues. In vitro, upregulation of miR-506 inhibited proliferation and induced apoptosis, and downregulation of miR-506 promoted proliferation and blocked apoptosis in HepG2 and Hep3B cells. ROCK2 was a target gene of miR-506 and miR-506 regulated the expression of ROCK2 in HepG2 and Hep3B cells. Furthermore, downregulation of miR-506 partially attenuated the tumor-suppressive effect of ROCK2 knockout on HepG2 and Hep3B cells, and upregulation of miR-506 partially attenuated the oncogenic effect of ROCK2 overexpression on HepG2 and Hep3B cells; Overexpression of ROCK2 increased and ROCK2 knockdown decreased the expression of Rac1, which were attenuated by upregulation of miR-506 or downregulation of miR-506, respectively. In addition, ROCK2 overexpression or knockdown hadno significant effect on RhoA expression. In vivo, upregulation of miR-506 suppressed tumor growth, while downregulation of miR-506 promoted tumor growth. CONCLUSION miR-506 was involved in cell proliferation and apoptosis by affecting RhoA/ROCK signaling pathway in HCC cells. Our results provide a novel mechanism of miR-506-mediated suppressive effects on HCC tumorigenesis.
Collapse
Affiliation(s)
- Linfei Zhang
- Department of Hepatobiliary Pancreatic Surgery, Renmin Hospital, Hubei University of MedicineShiyan 442000, Hubei, PR China
| | - Huadong Zhou
- Department of Hepatobiliary Pancreatic Surgery, Renmin Hospital, Hubei University of MedicineShiyan 442000, Hubei, PR China
| | - Gang Wei
- Department of Gastroenterology, Renmin Hospital, Hubei University of MedicineShiyan 442000, Hubei, PR China
| |
Collapse
|
23
|
Dolcino M, Tinazzi E, Puccetti A, Lunardi C. In Systemic Sclerosis, a Unique Long Non Coding RNA Regulates Genes and Pathways Involved in the Three Main Features of the Disease (Vasculopathy, Fibrosis and Autoimmunity) and in Carcinogenesis. J Clin Med 2019; 8:jcm8030320. [PMID: 30866419 PMCID: PMC6462909 DOI: 10.3390/jcm8030320] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/25/2019] [Accepted: 03/04/2019] [Indexed: 12/11/2022] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune disease characterized by three main features: vasculopathy, immune system dysregulation and fibrosis. Long non-coding RNAs (lncRNAs) may play a role in the pathogenesis of autoimmune diseases and a comprehensive analysis of lncRNAs expression in SSc is still lacking. We profiled 542,500 transcripts in peripheral blood mononuclear cells (PBMCs) from 20 SSc patients and 20 healthy donors using Clariom D arrays, confirming the results by Reverse Transcription Polymerase-chain reaction (RT-PCR). A total of 837 coding-genes were modulated in SSc patients, whereas only one lncRNA, heterogeneous nuclear ribonucleoprotein U processed transcript (ncRNA00201), was significantly downregulated. This transcript regulates tumor proliferation and its gene target hnRNPC (Heterogeneous nuclear ribonucleoproteins C) encodes for a SSc-associated auto-antigen. NcRNA00201 targeted micro RNAs (miRNAs) regulating the most highly connected genes in the Protein-Protein interaction (PPI) network of the SSc transcriptome. A total of 26 of these miRNAs targeted genes involved in pathways connected to the three main features of SSc and to cancer development including Epidermal growth factor (EGF) receptor, ErbB1 downstream, Sphingosine 1 phosphate receptor 1 (S1P1), Activin receptor-like kinase 1 (ALK1), Endothelins, Ras homolog family member A (RhoA), Class I Phosphoinositide 3-kinase (PI3K), mammalian target of rapamycin (mTOR), p38 mitogen-activated protein kinase (MAPK), Ras-related C3 botulinum toxin substrate 1 (RAC1), Transforming growth factor (TGF)-beta receptor, Myeloid differentiation primary response 88 (MyD88) and Toll-like receptors (TLRs) pathways. In SSc, the identification of a unique deregulated lncRNA that regulates genes involved in the three main features of the disease and in tumor-associated pathways, provides insight in disease pathogenesis and opens avenues for the design of novel therapeutic strategies.
Collapse
Affiliation(s)
- Marzia Dolcino
- Department of Medicine, University of Verona, 37134 Verona, Italy.
| | - Elisa Tinazzi
- Department of Medicine, University of Verona, 37134 Verona, Italy.
| | - Antonio Puccetti
- Department of Experimental Medicine, Section of Histology, University of Genova, 16132 Genova, Italy.
| | - Claudio Lunardi
- Department of Medicine, University of Verona, 37134 Verona, Italy.
| |
Collapse
|
24
|
Hudson LG, Gillette JM, Kang H, Rivera MR, Wandinger-Ness A. Ovarian Tumor Microenvironment Signaling: Convergence on the Rac1 GTPase. Cancers (Basel) 2018; 10:cancers10100358. [PMID: 30261690 PMCID: PMC6211091 DOI: 10.3390/cancers10100358] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 09/25/2018] [Accepted: 09/25/2018] [Indexed: 02/06/2023] Open
Abstract
The tumor microenvironment for epithelial ovarian cancer is complex and rich in bioactive molecules that modulate cell-cell interactions and stimulate numerous signal transduction cascades. These signals ultimately modulate all aspects of tumor behavior including progression, metastasis and therapeutic response. Many of the signaling pathways converge on the small GTPase Ras-related C3 botulinum toxin substrate (Rac)1. In addition to regulating actin cytoskeleton remodeling necessary for tumor cell adhesion, migration and invasion, Rac1 through its downstream effectors, regulates cancer cell survival, tumor angiogenesis, phenotypic plasticity, quiescence, and resistance to therapeutics. In this review we discuss evidence for Rac1 activation within the ovarian tumor microenvironment, mechanisms of Rac1 dysregulation as they apply to ovarian cancer, and the potential benefits of targeting aberrant Rac1 activity in this disease. The potential for Rac1 contribution to extraperitoneal dissemination of ovarian cancer is addressed.
Collapse
Affiliation(s)
- Laurie G Hudson
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
- Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| | - Jennifer M Gillette
- Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| | - Huining Kang
- Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
- Department of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| | - Melanie R Rivera
- Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| | - Angela Wandinger-Ness
- Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| |
Collapse
|