1
|
Shafi S, Khan MA, Ahmad J, Rabbani SA, Singh S, Najmi AK. Envisioning Glucose Transporters (GLUTs and SGLTs) as Novel Intervention against Cancer: Drug Discovery Perspective and Targeting Approach. Curr Drug Targets 2025; 26:109-131. [PMID: 39377414 DOI: 10.2174/0113894501335877240926101134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 10/09/2024]
Abstract
Metabolic reprogramming and altered cellular energetics have been recently established as an important cancer hallmark. The modulation of glucose metabolism is one of the important characteristic features of metabolic reprogramming in cancer. It contributes to oncogenic progression by supporting the increased biosynthetic and bio-energetic demands of tumor cells. This oncogenic transformation consequently results in elevated expression of glucose transporters in these cells. Moreover, various cancers exhibit abnormal transporter expression patterns compared to normal tissues. Recent investigations have underlined the significance of glucose transporters in regulating cancer cell survival, proliferation, and metastasis. Abnormal regulation of these transporters, which exhibit varying affinities for hexoses, could enable cancer cells to efficiently manage their energy supply, offering a crucial edge for proliferation. Exploiting the upregulated expression of glucose transporters, GLUTs, and Sodium Linked Glucose Transporters (SGLTs), could serve as a novel therapeutic intervention for anti-cancer drug discovery as well as provide a unique targeting approach for drug delivery to specific tumor tissues. This review aims to discussthe previous and emerging research on the expression of various types of glucose transporters in tumor tissues, the role of glucose transport inhibitors as a cancer therapy intervention as well as emerging GLUT/SGLT-mediated drug delivery strategies that can be therapeutically employed to target various cancers.
Collapse
Affiliation(s)
- Sadat Shafi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Mohammad Ahmed Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Kingdom of Saudi Arabia (KSA)
| | - Syed Arman Rabbani
- Department of Clinical Pharmacy and Pharmacology, Ras Al Khaimah College of Pharmacy, Ras Al Khaimah Medical and Health Science University, Ras Al Khaimah, United Arab Emirates
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
2
|
Brigant B, Metzinger-Le Meuth V, Boyartchuk V, Ouled-Haddou H, Guerrera IC, Rochette J, Metzinger L. A proteomic study of the downregulation of TRIM37 on chondrocytes: Implications for the MULIBREY syndrome. Bone 2024; 187:117205. [PMID: 39019132 DOI: 10.1016/j.bone.2024.117205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/12/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
MULIBREY nanism which results from autosomal recessive mutations in TRIM37 impacts skeletal development, leading to growth delay with complications in multiple organs. In this study, we employed a combined proteomics and qPCR screening approach to investigate the molecular alterations in the CHON-002 cell line by comparing CHON-002 wild-type (WT) cells to CHON-002 TRIM37 knockdown (KD) cells. Our proteomic analysis demonstrated that TRIM37 depletion predominantly affects the expression of extracellular matrix proteins (ECM). Specifically, nanoLC-MS/MS experiments revealed an upregulation of SPARC, and collagen products (COL1A1, COL3A1, COL5A1) in response to TRIM37 KD. Concurrently, large-scale qPCR assays targeting osteogenesis-related genes corroborated these dysregulations of SPARC at the mRNA level. Gene ontology enrichment analysis highlighted the involvement of dysregulated proteins in ECM organization and TGF-β signaling pathways, indicating a role for TRIM37 in maintaining ECM integrity and regulating chondrocyte proliferation. These findings suggest that TRIM37 deficiency in chondrocytes change ECM protein composition and could impairs long bone growth, contributing to the pathophysiology of MULIBREY nanism.
Collapse
Affiliation(s)
- Benjamin Brigant
- HEMATIM UR-UPJV 4666, C.U.R.S, University of Picardie Jules Verne, 80000 Amiens, France; Centre of Molecular Inflammation Research (CEMIR), Department of Clinical Research and Molecular Medicine (IKOM), Faculty of Medicine and Health Sciences (MH), Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Valérie Metzinger-Le Meuth
- INSERM UMRS 1148, Laboratory for Vascular Translational Science (LVTS), UFR SMBH, University of Sorbonne Paris Nord, 93000 Bobigny, France
| | - Victor Boyartchuk
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical Research and Molecular Medicine (IKOM), Faculty of Medicine and Health Sciences (MH), Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Surgery Clinic, St. Olav's Hospital HF, Trondheim, Norway; Centre for Integrative Genetics, Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Hakim Ouled-Haddou
- HEMATIM UR-UPJV 4666, C.U.R.S, University of Picardie Jules Verne, 80000 Amiens, France
| | - Ida Chiara Guerrera
- Proteomics Platform Necker, Université Paris Cité-Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR3633, 75015, Paris, France
| | - Jacques Rochette
- HEMATIM UR-UPJV 4666, C.U.R.S, University of Picardie Jules Verne, 80000 Amiens, France
| | - Laurent Metzinger
- HEMATIM UR-UPJV 4666, C.U.R.S, University of Picardie Jules Verne, 80000 Amiens, France.
| |
Collapse
|
3
|
Parama D, BharathwajChetty B, Jayaprakash S, Lee EHC, Khatoon E, Alqahtani MS, Abbas M, Kumar AP, Kunnumakkara AB. The emerging role of human papillomavirus in lung cancer. Life Sci 2024; 351:122785. [PMID: 38851420 DOI: 10.1016/j.lfs.2024.122785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/20/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
Lung cancer stands as one of the most lethal diseases and is the foremost cause of cancer-related mortalities worldwide. The pathophysiology of lung cancer is multifaceted, and it includes multiple cell signaling pathways and other complex factors such as oxidative stress and genetics. The association of HPV with lung carcinogenesis was first proposed in 1979, and since then, scientists worldwide have been putting forward several hypotheses to establish a relationship between this virus and lung cancer. Although studies have reported the presence of HPV in lung cancer, the exact mechanism of entry and the route of transmission have not been elucidated clearly till date. Numerous studies across the globe have detected differentially expressed HPV oncoproteins in lung cancer patients and found their association with the critical cell signaling pathways that leads to the development and progression of lung cancer. Many reports have also provided evidence stating the involvement of HPV in determining the survival status of lung cancer patients. The present review recapitulates the studies evincing the association of HPV and lung cancer, its route of transmission and mechanism of action; the detection of the virus and treatment opportunities for HPV-positive lung cancer; and the severity associated with this disease. Therefore, this will provide an explicit idea and would help to develop preventive measures and specific as well as effective treatment for HPV-associated lung carcinogenesis.
Collapse
Affiliation(s)
- Dey Parama
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati 781039, Assam, India
| | - Bandari BharathwajChetty
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati 781039, Assam, India
| | - Sujitha Jayaprakash
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati 781039, Assam, India
| | - E Hui Clarissa Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Elina Khatoon
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati 781039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia; BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 7RH, U.K
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati 781039, Assam, India.
| |
Collapse
|
4
|
Luo H, Wei J, Wu S, Zheng Q, Lin X, Chen P. Elucidating the role of the GC/GR/GLUT1 axis in steroid-induced osteonecrosis of the femoral head: A proteomic approach. Bone 2024; 183:117074. [PMID: 38513307 DOI: 10.1016/j.bone.2024.117074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/04/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Steroid-induced osteonecrosis of the femoral head (SONFH) is a prevalent and incapacitating condition that affects the hip joint. Unfortunately, early diagnostic and treatment measures are limited. METHODS Our study employed Tandem Mass Tag (TMT) labeling mass spectrometry (MS)-based quantitative proteome to compare the proteins of femoral head tissues in patients with SONFH with those of patients who sustained femoral neck fracture (FNF). We investigated the level and effects of glucose transporter member 1 (GLUT1) in SONFH patients and MC3T3-E1 cells and examined the function and molecular mechanism of GLUT1 in the context of SONFH using in vivo and in vitro approaches. RESULTS The SONFH group exhibited significant changes in protein expression levels compared to the fracture group. Specifically, we observed the up-regulation of 86 proteins and the down-regulation of 138 proteins in the SONFH group. Among the differentially expressed proteins, GLUT1 was down-regulated and associated with glucose metabolic processes in the SONFH group. Further analysis using Parallel Reaction Monitoring (PRM), WB, and PCR confirmed that the protein was significantly down-regulated in both femoral head tissue samples from SONFH patients and dexamethasone-treated MC3T3-E1 cells. Moreover, overexpression of GLUT1 effectively reduced glucocorticoid (GC)-induced apoptosis and the suppression of osteoblast proliferation and osteogenic differentiation in MC3T3-E1 cells, as well as GC-induced femoral head destruction in GC-induced ONFH rat models. Additionally, our research demonstrated that GC down-regulated GLUT1 transcription via glucocorticoid receptors in MC3T3-E1 cells. CONCLUSIONS GLUT1 was down-regulated in patients with SONFH; furthermore, down-regulated GLUT1 promoted apoptosis and inhibited osteoblast ossification in dexamethasone-induced MC3T3-E1 cells and contributed to GC-induced femoral head destruction in a SONFH rat model. Glucocorticoids inhibited the transcriptional activity of GLUT1, leading to a reduction in the amount and activity of GLUT1 in the cells and ultimately promoting apoptosis and inhibiting osteoblast ossification via the GC/GR/GLUT1 axis in SONFH.
Collapse
Affiliation(s)
- Hongbin Luo
- Department of Sports Medicine, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China; Department of Sports Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China; The School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Jie Wei
- The School of Clinical Medical, Fujian Medical University, Fuzhou, China
| | - Songye Wu
- Department of Sports Medicine, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China; Department of Sports Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Qunya Zheng
- The School of Clinical Medical, Fujian Medical University, Fuzhou, China
| | - Xinhua Lin
- The School of Pharmacy, Fujian Medical University, Fuzhou, China.
| | - Peng Chen
- Department of Sports Medicine, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China; Department of Sports Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
5
|
Winz C, Zong WX, Suh N. Endocrine-disrupting compounds and metabolomic reprogramming in breast cancer. J Biochem Mol Toxicol 2023; 37:e23506. [PMID: 37598318 PMCID: PMC10840637 DOI: 10.1002/jbt.23506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/23/2023] [Accepted: 08/11/2023] [Indexed: 08/21/2023]
Abstract
Endocrine-disrupting chemicals pose a growing threat to human health through their increasing presence in the environment and their potential interactions with the mammalian endocrine systems. Due to their structural similarity to hormones like estrogen, these chemicals can interfere with endocrine signaling, leading to many deleterious effects. Exposure to estrogenic endocrine-disrupting compounds (EDC) is a suggested risk factor for the development of breast cancer, one of the most frequently diagnosed cancers in women. However, the mechanisms through which EDCs contribute to breast cancer development remain elusive. To rapidly proliferate, cancer cells undertake distinct metabolic programs to utilize existing nutrients in the tumor microenvironment and synthesize macromolecules de novo. EDCs are known to dysregulate cell signaling pathways related to cellular metabolism, which may be an important mechanism through which they exert their cancer-promoting effects. These altered pathways can be studied via metabolomic analysis, a new advancement in -omics technologies that can interrogate molecular pathways that favor cancer development and progression. This review will summarize recent discoveries regarding EDCs and the metabolic reprogramming that they may induce to facilitate the development of breast cancer.
Collapse
Affiliation(s)
- Cassandra Winz
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Department of Pharmacology and Toxicology, Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Wei-Xing Zong
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Nanjoo Suh
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
6
|
Zhao H, Wang Z, Wu G, Lu Y, Zheng J, Zhao Y, Han Y, Wang J, Yang L, Du J, Wang E. Role of MicroRNA-214 in Dishevelled1-Modulated β-catenin Signalling in Non-Small Cell Lung Cancer Progression. J Cancer 2023; 14:239-249. [PMID: 36741266 PMCID: PMC9891876 DOI: 10.7150/jca.80291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/24/2022] [Indexed: 01/04/2023] Open
Abstract
Background: The mortality of patients with non-small cell lung cancer (NSCLC) is rather high. This is largely because of the lack of specific targets and understanding of the molecular mechanism for early diagnosis. Dishevelled (Dvl) dysregulation leads to malignant progression. We confirmed that Dvl1 expression is associated with a poor prognosis of patients with NSCLC. However, how Dvl1 transmits signals through the Wnt/β-catenin pathway remains unknown. Methods: In this study, the expression levels of Dvl1 and β-catenin in resected NSCLC samples were immunohistochemically analysed. Dvl1 cDNA and small interfering RNA against β-catenin were transfected into NSCLC cells, and their effects on canonical Wnt signalling and biological behaviour of NSCLC cells were analysed. Using bioinformatics analyses, an interaction between microRNA (miR)-214 and β-catenin was identified; miR-214 expression was determined in NSCLC tissues using quantitative real-time polymerase chain reaction. An exogenous miR-214 (mimic) was used to analyse the biological behaviour of NSCLC cells and the effect of Dvl1 on canonical Wnt activation. Results: Dvl1 overexpression in NSCLC tissues as well as Dvl1 and β-catenin nuclear coexpression were significantly associated with poor prognosis of NSCLC (P < 0.05). Additionally, Dvl1 promoted Wnt/β-catenin signalling to enhance the malignant phenotype of NSCLC cells. Moreover, miR-214 directly targeted the 3' untranslated region of β-catenin to inhibit the activation of canonical Wnt signalling induced by Dvl1. Conclusions: Our results suggest that Dvl1 is a potential therapeutic target for NSCLC and that miR-214 plays an inhibitory role in Dvl1-mediated activation of Wnt/β-catenin signalling in NSCLC cells, which could affect NSCLC progression.
Collapse
Affiliation(s)
- Huanyu Zhao
- Department of Pathology, The First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China.,✉ Corresponding author: Huanyu Zhao (Phone/fax number: 86-24-23261638; )
| | - Zhao Wang
- Department of Pathology, Beidahuang Industry Group General Hospital, Harbin, Heilongjiang, China
| | - Guangping Wu
- Department of Pathology, The First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Yudie Lu
- Department of Pathology, The First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Jingrong Zheng
- Department of Pathology, The First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Yue Zhao
- Department of Pathology, The First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Yang Han
- Department of Pathology, The First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Jian Wang
- Department of Pathology, The First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Lianhe Yang
- Department of Pathology, The First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Jiang Du
- Department of Pathology, The First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Enhua Wang
- Department of Pathology, The First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| |
Collapse
|
7
|
Mutant p53, the Mevalonate Pathway and the Tumor Microenvironment Regulate Tumor Response to Statin Therapy. Cancers (Basel) 2022; 14:cancers14143500. [PMID: 35884561 PMCID: PMC9323637 DOI: 10.3390/cancers14143500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Tumor cells have the ability to co-opt multiple metabolic pathways, enhance glucose uptake and utilize aerobic glycolysis to promote tumorigenesis, which are characteristics constituting an emerging hallmark of cancer. Mutated tumor suppressor and proto-oncogenes are frequently responsible for enhanced metabolic pathway signaling. The link between mutant p53 and the mevalonate (MVA) pathway has been implicated in the advancement of various malignancies, with tumor cells relying heavily on increased MVA signaling to fuel their rapid growth, metastatic spread and development of therapy resistance. Statin drugs inhibit HMG-CoA reductase, the pathway’s rate-limiting enzyme, and as such, have long been studied as a potential anti-cancer therapy. However, whether statins provide additional anti-cancer properties is worthy of debate. Here, we examine retrospective, prospective and pre-clinical studies involving the use of statins in various cancer types, as well as potential issues with statins’ lack of efficacy observed in clinical trials and future considerations for upcoming clinical trials.
Collapse
|
8
|
Dong P, Wang F, Taheri M, Xiong Y, Ihira K, Kobayashi N, Konno Y, Yue J, Watari H. Long Non-Coding RNA TMPO-AS1 Promotes GLUT1-Mediated Glycolysis and Paclitaxel Resistance in Endometrial Cancer Cells by Interacting With miR-140 and miR-143. Front Oncol 2022; 12:912935. [PMID: 35712514 PMCID: PMC9195630 DOI: 10.3389/fonc.2022.912935] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/29/2022] [Indexed: 01/05/2023] Open
Abstract
Increased glycolysis in tumor cells is frequently associated with drug resistance. Overexpression of glucose transporter-1 (GLUT1) promotes the Warburg effect and mediates chemoresistance in various cancers. Aberrant GLUT1 expression is considered as an essential early step in the development of endometrial cancer (EC). However, its role in EC glycolysis and chemoresistance and the upstream mechanisms underlying GLUT1 overexpression, remain undefined. Here, we demonstrated that GLUT1 was highly expressed in EC tissues and cell lines and that high GLUT1 expression was associated with poor prognosis in EC patients. Both gain-of-function and loss-of-function studies showed that GLUT1 increased EC cell proliferation, invasion, and glycolysis, while also making them resistant to paclitaxel. The long non-coding RNA TMPO-AS1 was found to be overexpressed in EC tissues and to be negatively associated with EC patient outcomes. RNA-immunoprecipitation and luciferase reporter assays confirmed that TMPO-AS1 elevated GLUT1 expression by directly binding to two critical tumor suppressor microRNAs (miR-140 and miR-143). Downregulation of TMPO-AS1 remarkably reduced EC cell proliferation, invasion, glycolysis, and paclitaxel resistance in EC cells. This study established that dysregulation of the TMPO-AS1-miR-140/miR-143 axis contributes to glycolysis and drug resistance in EC cells by up-regulating GLUT1 expression. Thus, inhibiting TMPO-AS1 and GLUT1 may prove beneficial in overcoming glycolysis-induced paclitaxel resistance in patients with EC.
Collapse
Affiliation(s)
- Peixin Dong
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Feng Wang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Jiangsu, China
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Ying Xiong
- Department of Gynecology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Kei Ihira
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Noriko Kobayashi
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yosuke Konno
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Junming Yue
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN, United States.,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Hidemichi Watari
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
9
|
Leitner BP, Siebel S, Akingbesote ND, Zhang X, Perry RJ. Insulin and cancer: a tangled web. Biochem J 2022; 479:583-607. [PMID: 35244142 PMCID: PMC9022985 DOI: 10.1042/bcj20210134] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 12/13/2022]
Abstract
For a century, since the pioneering work of Otto Warburg, the interwoven relationship between metabolism and cancer has been appreciated. More recently, with obesity rates rising in the U.S. and worldwide, epidemiologic evidence has supported a link between obesity and cancer. A substantial body of work seeks to mechanistically unpack the association between obesity, altered metabolism, and cancer. Without question, these relationships are multifactorial and cannot be distilled to a single obesity- and metabolism-altering hormone, substrate, or factor. However, it is important to understand the hormone-specific associations between metabolism and cancer. Here, we review the links between obesity, metabolic dysregulation, insulin, and cancer, with an emphasis on current investigational metabolic adjuncts to standard-of-care cancer treatment.
Collapse
Affiliation(s)
- Brooks P. Leitner
- Departments of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, U.S.A
- Departments of Internal Medicine, Yale School of Medicine, New Haven, CT, U.S.A
| | - Stephan Siebel
- Departments of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, U.S.A
- Departments of Internal Medicine, Yale School of Medicine, New Haven, CT, U.S.A
- Departments of Pediatrics, Yale School of Medicine, New Haven, CT, U.S.A
| | - Ngozi D. Akingbesote
- Departments of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, U.S.A
- Departments of Internal Medicine, Yale School of Medicine, New Haven, CT, U.S.A
| | - Xinyi Zhang
- Departments of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, U.S.A
- Departments of Internal Medicine, Yale School of Medicine, New Haven, CT, U.S.A
| | - Rachel J. Perry
- Departments of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, U.S.A
- Departments of Internal Medicine, Yale School of Medicine, New Haven, CT, U.S.A
| |
Collapse
|
10
|
Szablewski L. Glucose transporters as markers of diagnosis and prognosis in cancer diseases. Oncol Rev 2022; 16:561. [PMID: 35340885 PMCID: PMC8941341 DOI: 10.4081/oncol.2022.561] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/24/2021] [Indexed: 11/22/2022] Open
Abstract
The primary metabolic substrate for cells is glucose, which acts as both a source of energy and a substrate in several processes. However, being lipophilic, the cell membrane is impermeable to glucose and specific carrier proteins are needed to allow transport. In contrast to normal cells, cancer cells are more likely to generate energy by glycolysis; as this process generates fewer molecules of adenosine triphosphate (ATP) than complete oxidative breakdown, more glucose molecules are needed. The increased demand for glucose in cancer cells is satisfied by overexpression of a number of glucose transporters, and decreased levels of others. As specific correlations have been observed between the occurrence of cancer and the expression of glucose carrier proteins, the presence of changes in expression of glucose transporters may be treated as a marker of diagnosis and/or prognosis for cancer patients.
Collapse
|
11
|
Qin Q, Yang B, Liu J, Song E, Song Y. Polychlorinated biphenyl quinone exposure promotes breast cancer aerobic glycolysis: An in vitro and in vivo examination. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127512. [PMID: 34736186 DOI: 10.1016/j.jhazmat.2021.127512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/27/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
Polychlorinated biphenyls (PCBs) were classified as group I carcinogenic to humans, as their toxicological mechanisms have been associated with cancer initiation and promotion. However, whether PCBs have effects on cancer progression are still largely veiled. Here, we for the first time discovered that a PCB quinone-type metabolite, namely PCB29-pQ, exposure significantly promoted aerobic glycolysis, a hallmark property of metabolic reprogramming in cancer progression. PCB29-pQ exposure activated corresponding glucose transporter type 1 (GLUT1)/integrin β1/Src/focal adhesion kinase (FAK) signaling pathway in breast cancer MDA-MB-231 cells. Conversely, the inhibition of GLUT1 reversed this effect, as well as the ability of migration and invasion of MDA-MB-231 cells. In addition, PCB29-pQ-induced breast cancer metastasis in 4T1-luc cell inoculated nude mice is repressed by GLUT1 inhibition. Overall, our results demonstrated a novel mechanism that PCB29-pQ exposure promotes aerobic glycolysis in both in vitro and in vivo breast cancer models in a GLUT1-dependent fashion, which may provide a strategy to prevent breast cancer cell spread.
Collapse
Affiliation(s)
- Qi Qin
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing 400715, China
| | - Bingwei Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing 400715, China
| | - Jing Liu
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing 400715, China
| | - Yang Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing 400715, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
12
|
Boscaro C, Baggio C, Carotti M, Sandonà D, Trevisi L, Cignarella A, Bolego C. Targeting of PFKFB3 with miR-206 but not mir-26b inhibits ovarian cancer cell proliferation and migration involving FAK downregulation. FASEB J 2022; 36:e22140. [PMID: 35107852 DOI: 10.1096/fj.202101222r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/02/2021] [Accepted: 12/20/2021] [Indexed: 12/19/2022]
Abstract
Few studies explored the role of microRNAs (miRNAs) in the post-transcriptional regulation of glycolytic proteins and downstream effectors in ovarian cancer cells. We recently showed that the functional activation of the cytoskeletal regulator FAK in endothelial cells is fostered by the glycolytic enhancer 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3). We tested the hypothesis that miR-206 and mir-26b, emerging onco-suppressors targeting PFKFB3 in estrogen-dependent tumors, would regulate proliferation and migration of serous epithelial ovarian cancer (EOC) cells via common glycolytic proteins, i.e., GLUT1 and PFKFB3, and downstream FAK. PFKFB3 was overexpressed in SKOV3, and its pharmacological inhibition with 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO) significantly reduced cell proliferation and motility. Both miR-206 and miR-26b directly targeted PFKFB3 as evaluated by a luciferase reporter assay. However, endogenous levels of miR-26b were higher than those of miR-206, which was barely detectable in SKOV3 as well as OVCAR5 and CAOV3 cells. Accordingly, only the anti-miR-26b inhibitor concentration-dependently increased PFKFB3 levels. While miR-206 overexpression impaired proliferation and migration by downregulating PFKFB3 levels, the decreased PFKFB3 protein levels related to miR-26 overexpression had no functional consequences in all EOC cell lines. Finally, consistent with the migration outcome, exogenous miR-206 and miR-26b induced opposite effects on the levels of total FAK and of its phosphorylated form at Tyr576/577. 3PO did not prevent miR-26b-induced SKOV3 migration. Overall, these results support the inverse relation between endogenous miRNA levels and their tumor-suppressive effects and suggest that restoring miR-206 expression represents a potential dual anti-PFKFB3/FAK strategy to control ovarian cancer progression.
Collapse
Affiliation(s)
- Carlotta Boscaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Chiara Baggio
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Marcello Carotti
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Dorianna Sandonà
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Lucia Trevisi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | | | - Chiara Bolego
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| |
Collapse
|
13
|
Verhulst E, Garnier D, De Meester I, Bauvois B. Validating Cell Surface Proteases as Drug Targets for Cancer Therapy: What Do We Know, and Where Do We Go? Cancers (Basel) 2022; 14:624. [PMID: 35158891 PMCID: PMC8833564 DOI: 10.3390/cancers14030624] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
Cell surface proteases (also known as ectoproteases) are transmembrane and membrane-bound enzymes involved in various physiological and pathological processes. Several members, most notably dipeptidyl peptidase 4 (DPP4/CD26) and its related family member fibroblast activation protein (FAP), aminopeptidase N (APN/CD13), a disintegrin and metalloprotease 17 (ADAM17/TACE), and matrix metalloproteinases (MMPs) MMP2 and MMP9, are often overexpressed in cancers and have been associated with tumour dysfunction. With multifaceted actions, these ectoproteases have been validated as therapeutic targets for cancer. Numerous inhibitors have been developed to target these enzymes, attempting to control their enzymatic activity. Even though clinical trials with these compounds did not show the expected results in most cases, the field of ectoprotease inhibitors is growing. This review summarizes the current knowledge on this subject and highlights the recent development of more effective and selective drugs targeting ectoproteases among which small molecular weight inhibitors, peptide conjugates, prodrugs, or monoclonal antibodies (mAbs) and derivatives. These promising avenues have the potential to deliver novel therapeutic strategies in the treatment of cancers.
Collapse
Affiliation(s)
- Emile Verhulst
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (E.V.); (I.D.M.)
| | - Delphine Garnier
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, F-75006 Paris, France;
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (E.V.); (I.D.M.)
| | - Brigitte Bauvois
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, F-75006 Paris, France;
| |
Collapse
|
14
|
Analysis of the Single-Cell Heterogeneity of Adenocarcinoma Cell Lines and the Investigation of Intratumor Heterogeneity Reveals the Expression of Transmembrane Protein 45A (TMEM45A) in Lung Adenocarcinoma Cancer Patients. Cancers (Basel) 2021; 14:cancers14010144. [PMID: 35008313 PMCID: PMC8750076 DOI: 10.3390/cancers14010144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/14/2021] [Accepted: 12/24/2021] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Non-small cell lung cancer (NSCLC) is one of the main causes of cancer-related deaths worldwide. Intratumoral heterogeneity (ITH) is responsible for the majority of difficulties encountered in the treatment of lung-cancer patients. Therefore, the heterogeneity of NSCLC cell lines and primary lung adenocarcinoma was investigated by single-cell mass cytometry (CyTOF). Human NSCLC adenocarcinoma cells A549, H1975, and H1650 were studied at single-cell resolution for the expression pattern of 13 markers: GLUT1, MCT4, CA9, TMEM45A, CD66, CD274, CD24, CD326, pan-keratin, TRA-1-60, galectin-3, galectin-1, and EGFR. The intra- and inter-cell-line heterogeneity of A549, H1975, and H1650 cells were demonstrated through hypoxic modeling. Additionally, human primary lung adenocarcinoma, and non-involved healthy lung tissue were homogenized to prepare a single-cell suspension for CyTOF analysis. The single-cell heterogeneity was confirmed using unsupervised viSNE and FlowSOM analysis. Our results also show, for the first time, that TMEM45A is expressed in lung adenocarcinoma. Abstract Intratumoral heterogeneity (ITH) is responsible for the majority of difficulties encountered in the treatment of lung-cancer patients. Therefore, the heterogeneity of NSCLC cell lines and primary lung adenocarcinoma was investigated by single-cell mass cytometry (CyTOF). First, we studied the single-cell heterogeneity of frequent NSCLC adenocarcinoma models, such as A549, H1975, and H1650. The intra- and inter-cell-line single-cell heterogeneity is represented in the expression patterns of 13 markers—namely GLUT1, MCT4, CA9, TMEM45A, CD66, CD274 (PD-L1), CD24, CD326 (EpCAM), pan-keratin, TRA-1-60, galectin-3, galectin-1, and EGFR. The qRT-PCR and CyTOF analyses revealed that a hypoxic microenvironment and altered metabolism may influence cell-line heterogeneity. Additionally, human primary lung adenocarcinoma and non-involved healthy lung tissue biopsies were homogenized to prepare a single-cell suspension for CyTOF analysis. The CyTOF showed the ITH of human primary lung adenocarcinoma for 14 markers; particularly, the higher expressions of GLUT1, MCT4, CA9, TMEM45A, and CD66 were associated with the lung-tumor tissue. Our single-cell results are the first to demonstrate TMEM45A expression in human lung adenocarcinoma, which was verified by immunohistochemistry.
Collapse
|
15
|
Gao ZY, Gu NJ, Wu MZ, Wang SY, Xu HT, Li QC, Wu GP. Human papillomavirus16 E6 but not E7 upregulates GLUT1 expression in lung cancer cells by upregulating thioredoxin expression. Technol Cancer Res Treat 2021; 20:15330338211067111. [PMID: 34939468 PMCID: PMC8721363 DOI: 10.1177/15330338211067111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background and objective: E6 and E7 proteins in human papillomavirus (HPV) 16 are major oncogenes in several types of tumors, including lung cancer. Previous studies have demonstrated that both E6 and E7 oncoproteins can upregulate GLUT1 protein and mRNA expression levels in lung cancer cells. Thus, the present study aimed to investigate the main differences in the molecular mechanisms of GLUT1 expression regulated by E6 and E7. Methods: The double directional genetic manipulation and immunofluorescence were performed to explore the molecular mechanism of E6 or E7 upregulating the expression of GLUT1 in H1299 and A549 cell lines. Results: The overexpression of E6 in well-established lung cancer cell lines upregulated thioredoxin (Trx) protein expression. Notably, plasmid transfection or small interfering RNA transfection with E7 had no regulatory effect on Trx expression. As an important disulfide reductase of the intracellular antioxidant system, Trx plays important role in maintaining oxidative stress balance and protecting cells from oxidative damage. The overexpression of Trx increased the activation of NF-κB by upregulating p65 expression and promoting p65 nuclear translocation, and further upregulated GLUT1 protein and mRNA expression levels. The results of the present study demonstrated that E6, but not E7, upregulated GLUT1 expression in lung cancer cells by activating NF-κB due to the participation of Trx. Conclusion: These results suggest that Trx plays an important role in the pathogenesis of HPV-associated lung cancer, and propose a novel therapeutic target for HPV-associated lung cancer.
Collapse
Affiliation(s)
- Zi-Yu Gao
- The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China.,The College of Basic Medical Sciences of Jinzhou Medical University, Jinzhou, China
| | - Na-Jin Gu
- The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Ming-Zhe Wu
- The First Hospital of China Medical University, Shenyang, China
| | - Shi-Yu Wang
- 24460White River Health System, Batesville, AR, USA
| | - Hong-Tao Xu
- The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Qing-Chang Li
- The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Guang-Ping Wu
- The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| |
Collapse
|
16
|
Cargill KR, Hasken WL, Gay CM, Byers LA. Alternative Energy: Breaking Down the Diverse Metabolic Features of Lung Cancers. Front Oncol 2021; 11:757323. [PMID: 34745994 PMCID: PMC8566922 DOI: 10.3389/fonc.2021.757323] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/29/2021] [Indexed: 12/24/2022] Open
Abstract
Metabolic reprogramming is a hallmark of cancer initiation, progression, and relapse. From the initial observation that cancer cells preferentially ferment glucose to lactate, termed the Warburg effect, to emerging evidence indicating that metabolic heterogeneity and mitochondrial metabolism are also important for tumor growth, the complex mechanisms driving cancer metabolism remain vastly unknown. These unique shifts in metabolism must be further investigated in order to identify unique therapeutic targets for individuals afflicted by this aggressive disease. Although novel therapies have been developed to target metabolic vulnerabilities in a variety of cancer models, only limited efficacy has been achieved. In particular, lung cancer metabolism has remained relatively understudied and underutilized for the advancement of therapeutic strategies, however recent evidence suggests that lung cancers have unique metabolic preferences of their own. This review aims to provide an overview of essential metabolic mechanisms and potential therapeutic agents in order to increase evidence of targeted metabolic inhibition for the treatment of lung cancer, where novel therapeutics are desperately needed.
Collapse
Affiliation(s)
| | | | | | - Lauren A. Byers
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
17
|
Honeder S, Tomin T, Nebel L, Gindlhuber J, Fritz-Wallace K, Schinagl M, Heininger C, Schittmayer M, Ghaffari-Tabrizi-Wizsy N, Birner-Gruenberger R. Adipose Triglyceride Lipase Loss Promotes a Metabolic Switch in A549 Non-Small Cell Lung Cancer Cell Spheroids. Mol Cell Proteomics 2021; 20:100095. [PMID: 33992777 PMCID: PMC8214150 DOI: 10.1016/j.mcpro.2021.100095] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/09/2021] [Accepted: 05/10/2021] [Indexed: 12/26/2022] Open
Abstract
Cancer cells undergo complex metabolic adaptations to survive and thrive in challenging environments. This is particularly prominent for solid tumors, where cells in the core of the tumor are under severe hypoxia and nutrient deprivation. However, such conditions are often not recapitulated in the typical 2D in vitro cancer models, where oxygen as well as nutrient exposure is quite uniform. The aim of this study was to investigate the role of a key neutral lipid hydrolase, namely adipose triglyceride lipase (ATGL), in cancer cells that are exposed to more tumor-like conditions. To that end, we cultured lung cancer cells lacking ATGL as multicellular spheroids in 3D and subjected them to comprehensive proteomics analysis and metabolic phenotyping. Proteomics data are available via ProteomeXchange with identifier PXD021105. As a result, we report that loss of ATGL enhanced growth of spheroids and facilitated their adaptation to hypoxia, by increasing the influx of glucose and endorsing a pro-Warburg effect. This was followed by changes in lipid metabolism and an increase in protein production. Interestingly, the observed phenotype was also recapitulated in an even more "in vivo like" setup, when cancer spheroids were grown on chick chorioallantoic membrane, but not when cells were cultured as a 2D monolayer. In addition, we demonstrate that according to the publicly available cancer databases, an inverse relation between ATGL expression and higher glucose dependence can be observed. In conclusion, we provide indications that ATGL is involved in regulation of glucose metabolism of cancer cells when grown in 3D (mimicking solid tumors) and as such could be an important factor of the treatment outcome for some cancer types. Finally, we also ratify the need for alternative cell culture models, as the majority of phenotypes observed in 3D and spheroids grown on chick chorioallantoic membrane were not observed in 2D cell culture.
Collapse
Affiliation(s)
- Sophie Honeder
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria; Omics Center Graz, BioTechMed-Graz, Graz, Austria
| | - Tamara Tomin
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria; Omics Center Graz, BioTechMed-Graz, Graz, Austria; Faculty of Technical Chemistry, Institute of Chemical Technologies and Analytics, Technische Universität Wien, Vienna, Austria
| | - Laura Nebel
- Otto Loewi Research Center - Immunology and Pathophysiology, Medical University of Graz, Graz, Austria; QPS Austria GmbH, Grambach, Austria
| | - Jürgen Gindlhuber
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria; Omics Center Graz, BioTechMed-Graz, Graz, Austria
| | - Katarina Fritz-Wallace
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria; National Center for Tumor Diseases (NCT), Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Maximilian Schinagl
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria; Omics Center Graz, BioTechMed-Graz, Graz, Austria
| | - Christoph Heininger
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria; Omics Center Graz, BioTechMed-Graz, Graz, Austria
| | - Matthias Schittmayer
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria; Omics Center Graz, BioTechMed-Graz, Graz, Austria; Faculty of Technical Chemistry, Institute of Chemical Technologies and Analytics, Technische Universität Wien, Vienna, Austria
| | | | - Ruth Birner-Gruenberger
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria; Omics Center Graz, BioTechMed-Graz, Graz, Austria; Faculty of Technical Chemistry, Institute of Chemical Technologies and Analytics, Technische Universität Wien, Vienna, Austria.
| |
Collapse
|
18
|
Kang MK, Lee SY, Choi JE, Baek SA, Do SK, Lee JE, Park J, Yoo SS, Choi S, Shin KM, Jeong JY, Park JY. Prognostic significance of genetic variants in GLUT1 in stage III non-small cell lung cancer treated with radiotherapy. Thorac Cancer 2021; 12:874-879. [PMID: 33522072 PMCID: PMC7952810 DOI: 10.1111/1759-7714.13851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND To examine the impact of polymorphisms of glucose transporter 1 (GLUT1) gene on the prognosis of patients with stage III non-small cell lung cancer (NSCLC) who received radiotherapy. METHODS Five single nucleotide polymorphisms (SNPs) (rs4658C>G, rs1385129G>A, rs3820589A>T, rs3806401A>C and rs3806400C>T) in GLUT1 gene were evaluated in 90 patients with pathologically confirmed stage III NSCLC. A total of 21 patients were treated with radiotherapy alone, 25 with sequential chemoradiotherapy, and 44 with concurrent chemoradiotherapy. The association of the genetic variations of five SNPs with overall survival (OS) and progression-free survival (PFS) was analyzed. RESULTS Two SNPs (rs1385129 and rs3806401) were significant risk factors for OS. Three SNPs (rs1385129, rs3820589 and rs3806401) were in linkage disequilibrium. In Cox proportional hazard models, GAA haplotype was a good prognostic factor for OS (hazard ratio [HR] = 0.57, 95% confidence interval [CI]: 0.39-0.81, p = 0.002) and PFS (HR = 0.68, 95% CI: 0.47-0.99, p = 0.043), compared to variant haplotypes. The GAA/GAA diplotype was observed in 46.7% of patients; these patients showed significantly better OS (HR = 0.38, 95% CI: 0.22-0.65, p < 0.001) and PFS (HR = 0.51, 95% CI: 0.31-0.85, p = 0.009) compared to those with other diplotypes. CONCLUSIONS These results suggest that polymorphisms of GLUT1 gene could be used as a prognostic marker for patients with stage III NSCLC treated with radiotherapy.
Collapse
Affiliation(s)
- Min Kyu Kang
- Department of Radiation Oncology, School of MedicineKyungpook National UniversityDaeguSouth Korea
| | - Shin Yup Lee
- Department of Internal Medicine, School of MedicineKyungpook National UniversityDaeguSouth Korea
| | - Jin Eun Choi
- Department of Biochemistry and Cell Biology, School of MedicineKyungpook National UniversityDaeguSouth Korea
- Cell and Matrix Research Institute, School of MedicineKyungpook National UniversityDaeguSouth Korea
| | - Sun Ah Baek
- Cell and Matrix Research Institute, School of MedicineKyungpook National UniversityDaeguSouth Korea
| | - Sook Kyung Do
- Department of Biochemistry and Cell Biology, School of MedicineKyungpook National UniversityDaeguSouth Korea
- Cell and Matrix Research Institute, School of MedicineKyungpook National UniversityDaeguSouth Korea
| | - Jeong Eun Lee
- Department of Radiation Oncology, School of MedicineKyungpook National UniversityDaeguSouth Korea
| | - Jongmoo Park
- Department of Radiation Oncology, School of MedicineKyungpook National UniversityDaeguSouth Korea
| | - Seung Soo Yoo
- Department of Internal Medicine, School of MedicineKyungpook National UniversityDaeguSouth Korea
| | - Sunha Choi
- Department of Internal Medicine, School of MedicineKyungpook National UniversityDaeguSouth Korea
| | - Kyung Min Shin
- Department of Radiology, School of MedicineKyungpook National UniversityDaeguSouth Korea
| | - Ji Yun Jeong
- Department of Pathology, School of MedicineKyungpook National UniversityDaeguSouth Korea
| | - Jae Yong Park
- Department of Internal Medicine, School of MedicineKyungpook National UniversityDaeguSouth Korea
- Department of Biochemistry and Cell Biology, School of MedicineKyungpook National UniversityDaeguSouth Korea
- Cell and Matrix Research Institute, School of MedicineKyungpook National UniversityDaeguSouth Korea
| |
Collapse
|
19
|
Wang D, Gao J, Zhao C, Li S, Zhang D, Hou X, Zhuang X, Liu Q, Luo Y. Cyclin G2 Inhibits Oral Squamous Cell Carcinoma Growth and Metastasis by Binding to IGFBP3 and Regulating the FAK-SRC-STAT Signaling Pathway. Front Oncol 2020; 10:560572. [PMID: 33240810 PMCID: PMC7677509 DOI: 10.3389/fonc.2020.560572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/13/2020] [Indexed: 12/29/2022] Open
Abstract
The cell cycle protein cyclin G2 is considered a tumor suppressor. However, its regulatory effects and potential mechanisms in oral cancers are not well understood. This study aimed to investigate the effect of cyclin G2 on oral squamous cell carcinoma (OSCC). The data from 80 patients with OSCC were utilized to predict the abnormal expression of cyclin G2. The proliferation and metastasis were determined by a cell counting Kit-8 assay, flow cytometry, a wound-healing assay, and a cell invasion assay. The expression of key proteins and genes associated with the cyclin G2 signaling pathways was determined by western blotting and real-time PCR, respectively. The orthotopic nude mice model was established by a mouth injection of SCC9 cells overexpressing cyclin G2. We showed that the low level of cyclin G2 in OSCC, which is negatively correlated with clinical staging, was a negative prognostic factor for the disease. We also found that cyclin G2 inhibited the proliferation, metastasis, and blocked the cell cycle at G1/S of OSCC cells, suggesting that cyclin G2 has an inhibitory effect in OSCC. Mechanistically, cyclin G2 inhibited the growth and metastasis of OSCC by binding to insulin-like growth factor binding protein 3 (IGFBP3) and regulating the focal adhesion kinase (FAK) -SRC-STAT signal transduction pathway. Cyclin G2 competed with integrin to bind to IGFBP3; the binding between integrin and IGFBP3 was reduced after cyclin G2 overexpression, thereby inhibiting the phosphorylation of FAK and SRC. These results showed that cyclin G2 inhibited the progression of OSCC by interacting with IGFBP3 and that it may be a new target for OSCC treatment.
Collapse
Affiliation(s)
- Danning Wang
- The Research Center for Medical Genomics, Key Laboratory of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang, China
| | - Jinlan Gao
- The Research Center for Medical Genomics, Key Laboratory of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang, China
| | - Chenyang Zhao
- The Research Center for Medical Genomics, Key Laboratory of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang, China
| | - Sen Li
- The Research Center for Medical Genomics, Key Laboratory of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang, China
| | - Di Zhang
- The Research Center for Medical Genomics, Key Laboratory of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang, China
| | - Xiaoyu Hou
- The Research Center for Medical Genomics, Key Laboratory of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang, China
| | - Xinbin Zhuang
- The Research Center for Medical Genomics, Key Laboratory of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang, China
| | - Qi Liu
- The Research Center for Medical Genomics, Key Laboratory of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang, China
| | - Yang Luo
- The Research Center for Medical Genomics, Key Laboratory of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang, China
| |
Collapse
|
20
|
Wu W, Hu Z, Zhao Q, Zhang X, Zhang H, Wang H, Xue W, Yu L, Duan G. Down-Regulation of Hypoxia-Inducible Factor-1α and Downstream Glucose Transporter Protein-1 Gene by β-elemene Enhancing the Radiosensitivity of Lung Adenocarcinoma Transplanted Tumor. Onco Targets Ther 2020; 13:11627-11635. [PMID: 33223837 PMCID: PMC7671467 DOI: 10.2147/ott.s275956] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/29/2020] [Indexed: 12/26/2022] Open
Abstract
Purpose To study the effect of β-elemene on the radiosensitivity of A549 cell xenograft tumor and potential mechanisms by which β-elemene regulates the expression of hypoxia-inducible factor-1α (HIF-1α) and glucose transporter protein-1 (GLUT-1). Methods Using an A549 cell transplantation tumor model with male nude mice, we studied the effect of β-elemene on the radiosensitivity of non-small cell lung cancer (NSCLC). The expression of HIF-1α and GLUT-1 was detected by real-time PCR, Western blotting and immunohistochemistry. The relationship between the radiosensitivity of β-elemene and the expression of HIF-1α and GLUT-1 was analyzed. Results β-elemene and radiotherapy intervened in the growth of transplanted tumors in varying degrees. The enhancement factor (EF=2.44>1) was calculated; β-elemene at 45 mg/kg had the most significant enhanced effect on radiosensitivity. When β-elemene was used in combination with radiation, the expression of HIF-1α and GLUT-1 was significantly decreased, and there was a positive correlation between the two genes. Conclusion β-elemene exhibits a radiosensitizing effect on A549 cell xenograft tumor. The underlying molecular mechanism is probably associated with the down-regulation of HIF-1α and GLUT-1 expression, suggesting that β-elemene may directly or indirectly inhibit the expression of HIF-1α and GLUT-1. There is a positive significant correlation between expression of HIF-1α and GLUT-1. HIF-1α and downstream GLUT-1 could be used as a new target for the radiosensitization of NSCLC.
Collapse
Affiliation(s)
- Wenbo Wu
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, People's Republic of China.,Graduate School of Hebei North University, Zhangjiakou, People's Republic of China
| | - Zhonghui Hu
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, People's Republic of China.,Graduate School of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Qingtao Zhao
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, People's Republic of China
| | - Xiaopeng Zhang
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, People's Republic of China
| | - Hua Zhang
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, People's Republic of China
| | - Huien Wang
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, People's Republic of China
| | - Wenfei Xue
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, People's Republic of China
| | - Lei Yu
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, People's Republic of China
| | - Guochen Duan
- Department of Thoracic Surgery, Hebei Children's Hospital, Shijiazhuang, People's Republic of China
| |
Collapse
|
21
|
Tang JY, Li DY, He L, Qiu XS, Wang EH, Wu GP. HPV 16 E6/E7 Promote the Glucose Uptake of GLUT1 in Lung Cancer Through Downregulation of TXNIP Due to Inhibition of PTEN Phosphorylation. Front Oncol 2020; 10:559543. [PMID: 33282728 PMCID: PMC7689016 DOI: 10.3389/fonc.2020.559543] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/15/2020] [Indexed: 12/23/2022] Open
Abstract
High-risk human papillomavirus (HPV) infection play an important role in the development of lung cancer. Our previously study showed that E6 and E7 in HPV16 upregulated the expression of GLUT1 in lung cancer cells. However, whether they can promote the glucose uptake by GLUT1 and the underlying molecular mechanism has not been identified. It has been reported that thioredoxin interacting protein (TXNIP) regulates both the expression of GLUT1 and its glucose uptake. We speculate that high risk HPV16 infection may be closely related to TXNIP expression. Therefore, we associate HPV16 with TXNIP to explore the potential molecular mechanism of their regulation of GLUT1 expression and glucose uptake. Using double directional genetic manipulation in lung cancer cells, we showed that HPV16 E6/E7 proteins downregulated the expression of p-PTEN in lung cancer cells, the knockdown of PTEN further inhibited the expression of TXNIP, the inhibition of TXNIP further promoted the accumulation of HIF-1α by inhibiting the translocation of nuclear HIF-1α to the cytoplasm, and subsequently upregulated the expression of GLUT1 at the protein and mRNA levels. More interestingly, we found that the knockdown of TXNIP played a decisive role to promote the glucose uptake by GLUT1. Together, these findings suggested that the PTEN-TXNIP-HIF-1α axis might be related to the E6/E7-mediated expression of GLUT1 and its glucose uptake.
Collapse
Affiliation(s)
- Jia-Yi Tang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Dong-Yu Li
- Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysms, Department of Vascular and Thyroid Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ling He
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Xue-Shan Qiu
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - En-Hua Wang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Guang-Ping Wu
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| |
Collapse
|
22
|
Pezzuto A, D'Ascanio M, Ricci A, Pagliuca A, Carico E. Expression and role of p16 and GLUT1 in malignant diseases and lung cancer: A review. Thorac Cancer 2020; 11:3060-3070. [PMID: 32945604 PMCID: PMC7606016 DOI: 10.1111/1759-7714.13651] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022] Open
Abstract
Non‐small cell lung cancer (NSCLC) is the leading cause of cancer death and in most cases it is often diagnosed at an advanced stage. Many genetic and microenvironmental factors are able to modify the cell cycle inducing carcinogenesis and tumor growth. Among the metabolic and genetic factors that come into play in carcinogenesis and tumor cell differentiation and growth there are two different proteins that should be considered which are glucose transporters (GLUTs) and p16INK4 The first are glucose transporters which are strongly involved in tumor metabolism, notably accelerating cancer cell metabolism both in aerobic and anaerobic conditions. There are different subtypes of GLUT family factors of which GLUT 1 is the most important and widely expressed. By contrast, p16 is mainly a tumor‐suppressor protein that acts on cyclin‐dependent kinase favoring cell cycle arrest in the G1 phase. Our search focused on the action of the aforementioned factors.
Collapse
Affiliation(s)
- Aldo Pezzuto
- Cardiovascular-Pulmonary Science Department, Sant' Andrea Hospital-Sapienza University, Rome, Italy
| | - Michela D'Ascanio
- Clinical and Molecular Medicine Department, Sant' Andrea Hospital- Sapienza University, Rome, Italy
| | - Alberto Ricci
- Clinical and Molecular Medicine Department, Sant' Andrea Hospital- Sapienza University, Rome, Italy
| | - Alessandra Pagliuca
- Cardiovascular-Pulmonary Science Department, Sant' Andrea Hospital-Sapienza University, Rome, Italy
| | - Elisabetta Carico
- Clinical and Molecular Medicine Department, Sant' Andrea Hospital- Sapienza University, Rome, Italy
| |
Collapse
|
23
|
Chu YH, Tai YH, Yeh CC, Tsou MY, Lee HS, Ho ST, Li MH, Lin TC, Lu CC. Glucose reduces the osmopressor response in connection with the tyrosine phosphorylation of focal adhesion kinase in red blood cells. CHINESE J PHYSIOL 2020; 63:128-136. [PMID: 32594066 DOI: 10.4103/cjp.cjp_32_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Glucose ingestion attenuates the water ingestion-induced increase in the total peripheral vascular resistance and orthostatic tolerance. We investigated the gastrointestinal physiology of glucose by examining the effect of glucose ingestion on the functional expression of focal adhesion kinase (FAK) in red blood cell (RBC) membrane. This study was performed in 24 young, healthy subjects. Blood samples were collected at 5 min before and 25 min and 50 min after an ingestion of 10% glucose water 500 mL, water 500 mL, or normal saline 500 mL. We determined glucose and osmolality in plasma, and phosphorylation of aquaporin 1 (AQP1), glucose transporter 1 (Glut1), and FAK in RBC membrane. Our results showed that glucose ingestion reduced the rise of peripheral vascular resistance after water ingestion and upregulated the serine phosphorylation of Glut1. It also lowered both the serine phosphorylation of FAK and tyrosine phosphorylation of AQP1, compared with the ingestion of either water or saline. In an ex vivo experiment, glucose activated the Glut1 receptor and subsequently reduced the expression of FAK compared with 0.8% saline alone. We concluded that glucose activates Glut1 and subsequently lowers the functional expression of FAK, a cytoskeleton protein of RBCs. The functional change in the RBC membrane proteins in connection with the attenuation of osmopressor response may elucidate the pathophysiology of glucose in postprandial hypotension.
Collapse
Affiliation(s)
- You-Hsiang Chu
- Department of Anesthesiology, Taipei Veterans General Hospital; Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Ying-Hsuan Tai
- Department of Anesthesiology, Taipei Veterans General Hospital; School of Medicine, National Yang-Ming University, Taipei; Department of Anesthesiology, Shuang Ho Hospital, Taipei Medical University, New Taipei City; Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chun-Chang Yeh
- Department of Anesthesiology, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Mei-Yung Tsou
- Department of Anesthesiology, Taipei Veterans General Hospital; School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Herng-Sheng Lee
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Shung-Tai Ho
- Department of Anesthesiology, Taipei Veterans General Hospital, Taipei; Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Min-Hui Li
- Department of Physical Medicine and Rehabilitation, Kaohsiung Veterans General Hospital, Kaohsiung; Institute of Aerospace Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Tso-Chou Lin
- Department of Anesthesiology, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Chih-Cherng Lu
- Department of Anesthesiology, Taipei Veterans General Hospital; Graduate Institute of Life Sciences, National Defense Medical Center; Department of Anesthesiology, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
24
|
Prognostic value of TP53 co-mutation status combined with EGFR mutation in patients with lung adenocarcinoma. J Cancer Res Clin Oncol 2020; 146:2851-2859. [PMID: 32743759 DOI: 10.1007/s00432-020-03340-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/24/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE TP53/EGFR co-mutation has been reported to affect the efficacy of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in lung adenocarcinoma (LUAD). However, its impact on survival is unclear. In this analysis, we explored the prognostic effect of TP53/EGFR co-mutation in LUAD. METHODS Clinical data and transcriptome sequencing of LUAD patients with matched genomic data were downloaded from the Cancer Genome Atlas (TCGA) database for overall survival (OS) analysis. Differential expression genes (DEGs) were recognized by R software and bioconductor package. Clusterprofiler was used for functional analysis. STRING was used for estimating PPI information and plug-in CytoHubba to screen hub modules in Cytoscape. The association between tumor mutation burden (TMB) and survival was also analyzed. RESULTS OS was shorter for patients carrying TP53 mutation (MUT) than that of wild type (WT) (37.7 m vs 52.8 m; p = 0.040, HR = 1.38, 95% CI 1.01-1.89). Dual TP53/EGFR-MUT was associated with inferior OS compared with the dual WT/WT cohort (38.4 m vs 51.9 m; p = 0.023, HR 1.83, 95% CI 0.95-3.52). 316 DEGs between dual TP53/EGFR-MUT and dual WT/WT samples were obtained and functional analysis made known that DEGs were strikingly enriched in regulating the metabolism of important amino acids, cell division, cell cycle regulation, cell adhesion, and extracellular matrix composition. KEGG analysis discovered that DEGs were mainly enriched in signaling pathways such as PI3K-Akt, cytokine-cytokine receptor interaction, focal adhesions, and extracellular matrix receptor interaction. PPI network suggested that GPC3, CCL28, GPR37, and NPY genes were up-regulated in dual mutation samples. OS in the high TMB cohort was significantly better than that in the low TMB in patients with TP53 MUT(43.2 m vs 32.4 m; P = 0.007, HR = 0.52, 95% CI: 0.34-0.81), as well as in the combination of TP53 MUT and EGFR WT group (44.4 m vs 31.2 m; P = 0.021, HR = 0.55, 95% CI 0.34 - 0.89). CONCLUSIONS TP53 MUT is a poor prognostic factor in LUAD patients, and the prognosis of TP53/EGFR co-mutation is worse. GPC3, CCL28, GPR37, and NPY may be novel prognostic markers and potential therapeutic targets for patients with dual TP53/EGFR mutation LUAD.
Collapse
|
25
|
D'Angelo E, Lindoso RS, Sensi F, Pucciarelli S, Bussolati B, Agostini M, Collino F. Intrinsic and Extrinsic Modulators of the Epithelial to Mesenchymal Transition: Driving the Fate of Tumor Microenvironment. Front Oncol 2020; 10:1122. [PMID: 32793478 PMCID: PMC7393251 DOI: 10.3389/fonc.2020.01122] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/04/2020] [Indexed: 12/11/2022] Open
Abstract
The epithelial to mesenchymal transition (EMT) is an evolutionarily conserved process. In cancer, EMT can activate biochemical changes in tumor cells that enable the destruction of the cellular polarity, leading to the acquisition of invasive capabilities. EMT regulation can be triggered by intrinsic and extrinsic signaling, allowing the tumor to adapt to the microenvironment demand in the different stages of tumor progression. In concomitance, tumor cells undergoing EMT actively interact with the surrounding tumor microenvironment (TME) constituted by cell components and extracellular matrix as well as cell secretome elements. As a result, the TME is in turn modulated by the EMT process toward an aggressive behavior. The current review presents the intrinsic and extrinsic modulators of EMT and their relationship with the TME, focusing on the non-cell-derived components, such as secreted metabolites, extracellular matrix, as well as extracellular vesicles. Moreover, we explore how these modulators can be suitable targets for anticancer therapy and personalized medicine.
Collapse
Affiliation(s)
- Edoardo D'Angelo
- First Surgical Clinic, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
- LIFELAB Program, Consorzio per la Ricerca Sanitaria–CORIS, Veneto Region, Padua, Italy
- Institute of Pediatric Research, Fondazione Citta della Speranza, Padua, Italy
| | - Rafael Soares Lindoso
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Regenerative Medicine–REGENERA, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Francesca Sensi
- Institute of Pediatric Research, Fondazione Citta della Speranza, Padua, Italy
- Department of Molecular Sciences and Nanosystems, Cà Foscari University of Venice, Venice, Italy
| | - Salvatore Pucciarelli
- First Surgical Clinic, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Benedetta Bussolati
- Department of Medical Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Marco Agostini
- First Surgical Clinic, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
- LIFELAB Program, Consorzio per la Ricerca Sanitaria–CORIS, Veneto Region, Padua, Italy
- Institute of Pediatric Research, Fondazione Citta della Speranza, Padua, Italy
| | - Federica Collino
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Biomedical Sciences, University of Padova, Padua, Italy
- Pediatric Nephrology, Dialysis and Transplant Unit, Fondazione Ca' Granda, IRCCS Policlinico di Milano, Milan, Italy
| |
Collapse
|
26
|
Wang N, Chang LL. Maspin suppresses cell invasion and migration in gastric cancer through inhibiting EMT and angiogenesis via ITGB1/FAK pathway. Hum Cell 2020; 33:663-675. [PMID: 32409959 DOI: 10.1007/s13577-020-00345-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/04/2020] [Indexed: 02/07/2023]
Abstract
This study aims to investigate how Maspin affects the EMT and angiogenesis of gastric cancer (GC) cells via ITGB1/FAK pathway. Immunohistochemistry was used to evaluate the expressions of Maspin, ITGB1, FAK, E-cadherin, Vimentin, D2-40, and CD34 in GC and adjacent normal tissues from 160 patients. Then, the human GC cells with different degree of differentiation were transfected with Maspin CRISPR activation plasmid, ITGB1 siRNA and/or Maspin siRNA, followed by the following experiments, including qRT-PCR, western blotting, tube formation assay, Transwell assay and wound healing. GC tumor tissues manifested decreased Maspin with the activated ITGB1/FAK pathway. In tumor tissues, Maspin was negatively correlated with the expressions of ITGB1 and FAK, as well as Lauren's classification, differentiation degree, and TNM stage. Besides, Maspin was negatively related with lymphatic vessel density (LVD) and microvessel density (MVD), Vimentin and VEGF, but was positive correlated with E-cadherin. Maspin expression decreased, but ITGB1 and p-FAK expressions increased gradually in MKN-28 (well differentiated), SGC-7901 (moderate differentiated), and MKN-45 (poorly differentiated). Maspin CRISPR and ITGB1 siRNA increased E-cadherin with the decreased Vimentin, VEGF and bFGF, and the reductions of tube length. In comparison with the ITGB1 siRNA group, cells in the Maspin siRNA + ITGB1 siRNA group presented the more evident EMT and angiogenesis. Furthermore, ITGB1 siRNA reduced the malignancies of GC cells, which could be restored by Maspin siRNA. Maspin was downregulated in GC tissues, which could inhibit the EMT and angiogenesis by blocking the ITGB1/FAK pathway, thereby decreasing cell invasion and migration of GC.
Collapse
Affiliation(s)
- Ning Wang
- Department of Gastroenterology, No. 1 Ward, ShiJiaZhuang No. 1 Hospital, No. 36, Fanxi Road, Chang'an District, Shijiazhuang, 050011, China
| | - Li-Li Chang
- Department of Gastroenterology, No. 1 Ward, ShiJiaZhuang No. 1 Hospital, No. 36, Fanxi Road, Chang'an District, Shijiazhuang, 050011, China.
| |
Collapse
|
27
|
Chai Z, Yang Y, Gu Z, Cai X, Ye W, Kong L, Qiu X, Ying L, Wang Z, Wang L. Recombinant Viral Capsid Protein L2 (rVL2) of HPV 16 Suppresses Cell Proliferation and Glucose Metabolism via ITGB7/C/EBPβ Signaling Pathway in Cervical Cancer Cell Lines. Onco Targets Ther 2019; 12:10415-10425. [PMID: 31819523 PMCID: PMC6890187 DOI: 10.2147/ott.s228631] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 11/11/2019] [Indexed: 12/17/2022] Open
Abstract
Purpose Capsid protein L2 is the minor capsid protein of human papillomavirus 16 (HPV16). Although L2-based vaccines were developed, the therapeutic effect of recombinant viral capsid protein L2 (rVL2) was still to be illustrated. Methods We used glucose uptake and lactate production assay to verify the inhibitory effect of rVL2 on the glucose metabolism in cervical cancer cells. Secondly, we performed gene-chip assay, RT-PCR, and Western blot to determine the role of ITGB7/C/EBPβ signaling pathway in rVL2-mediated glucose metabolism in vitro. Finally, we used an animal model to verify the function of rVL2 in cervical cancer. Results We found that rVL2 reduced glucose uptake and lactate production levels in cervical cancer cells, which caused the inhibition of cell proliferation. rVL2 decreased the expression levels of key metabolic enzymes, including GLUT1, LDHA, and ALDOA, to affect cell metabolism in cervical cancer cells by inhibiting ITGB7/C/EBPβ signaling pathway in vitro and in vivo. Conclusion These results demonstrated the vital role of rVL2 in the glycolysis-induced cell growth and proliferation via suppressing ITGB7/C/EBPβ signaling axis.
Collapse
Affiliation(s)
- Zhihong Chai
- Department of Gynecology and Department of Radiology, Taizhou Municipal Hospital Affiliated to Taizhou University School of Medicine, Taizhou 318000, People's Republic of China
| | - Yufei Yang
- Department of Obstetrics and Gynecology, Xihua Hospital Affiliated to Shanghai Jiaotong University School Medicine, Shanghai 200092, People's Republic of China.,Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China
| | - ZhongYi Gu
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai 201102, People's Republic of China
| | - Xianli Cai
- Department of Gynecology and Department of Radiology, Taizhou Municipal Hospital Affiliated to Taizhou University School of Medicine, Taizhou 318000, People's Republic of China
| | - Wenwei Ye
- Department of Gynecology and Department of Radiology, Taizhou Municipal Hospital Affiliated to Taizhou University School of Medicine, Taizhou 318000, People's Republic of China
| | - Lin Kong
- Department of Gynecology and Department of Radiology, Taizhou Municipal Hospital Affiliated to Taizhou University School of Medicine, Taizhou 318000, People's Republic of China
| | - Xiaoxiao Qiu
- Department of Gynecology and Department of Radiology, Taizhou Municipal Hospital Affiliated to Taizhou University School of Medicine, Taizhou 318000, People's Republic of China
| | - Lingxiao Ying
- Department of Gynecology and Department of Radiology, Taizhou Municipal Hospital Affiliated to Taizhou University School of Medicine, Taizhou 318000, People's Republic of China
| | - Ziliang Wang
- Department of Obstetrics and Gynecology, Xihua Hospital Affiliated to Shanghai Jiaotong University School Medicine, Shanghai 200092, People's Republic of China.,Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China
| | - Linyou Wang
- Department of Gynecology and Department of Radiology, Taizhou Municipal Hospital Affiliated to Taizhou University School of Medicine, Taizhou 318000, People's Republic of China
| |
Collapse
|