1
|
Tram VTN, Khoa Ta HD, Anuraga G, Dung PVT, Xuan DTM, Dey S, Wang CY, Liu YN. Dysbindin Domain-Containing 1 in Prostate Cancer: New Insights into Bioinformatic Validation of Molecular and Immunological Features. Int J Mol Sci 2023; 24:11930. [PMID: 37569304 PMCID: PMC10418609 DOI: 10.3390/ijms241511930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
Prostate cancer (PCa) is one of the most prevalent cancers in men, yet its pathogenic pathways remain poorly understood. Transcriptomics and high-throughput sequencing can help uncover cancer diagnostic targets and understand biological circuits. Using prostate adenocarcinoma (PRAD) datasets of various web-based applications (GEPIA, UALCAN, cBioPortal, SR Plot, hTFtarget, Genome Browser, and MetaCore), we found that upregulated dysbindin domain-containing 1 (DBNDD1) expression in primary prostate tumors was strongly correlated with pathways involving the cell cycle, mitotic in KEGG, WIKI, and REACTOME database, and transcription factor-binding sites with the DBNDD1 gene in prostate samples. DBNDD1 gene expression was influenced by sample type, cancer stage, and promoter methylation levels of different cancers, such as PRAD, liver hepatocellular carcinoma (LIHC), and lung adenocarcinoma (LUAD). Regulation of glycogen synthase kinase (GSK)-3β in bipolar disorder and ATP/ITP/GTP/XTP/TTP/CTP/UTP metabolic pathways was closely correlated with the DBNDD1 gene and its co-expressed genes in PCa. DBNDD1 gene expression was positively associated with immune infiltration of B cells, Myeloid-derived suppressor cell (MDSC), M2 macrophages, andneutrophil, whereas negatively correlated with CD8+ T cells, T follicular helper cells, M1 macrophages, and NK cells in PCa. These findings suggest that DBNDD1 may serve as a viable prognostic marker not only for early-stage PCa but also for immunotherapies.
Collapse
Affiliation(s)
- Van Thi Ngoc Tram
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Department of Medical Laboratory, University Medical Center Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
| | - Hoang Dang Khoa Ta
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (H.D.K.T.); (G.A.); (P.V.T.D.); (D.T.M.X.); (S.D.)
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 110, Taiwan
| | - Gangga Anuraga
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (H.D.K.T.); (G.A.); (P.V.T.D.); (D.T.M.X.); (S.D.)
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 110, Taiwan
- Department of Statistics, Faculty of Science and Technology, Universitas PGRI Adi Buana, Surabaya 60234, Indonesia
| | - Phan Vu Thuy Dung
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (H.D.K.T.); (G.A.); (P.V.T.D.); (D.T.M.X.); (S.D.)
| | - Do Thi Minh Xuan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (H.D.K.T.); (G.A.); (P.V.T.D.); (D.T.M.X.); (S.D.)
| | - Sanskriti Dey
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (H.D.K.T.); (G.A.); (P.V.T.D.); (D.T.M.X.); (S.D.)
| | - Chih-Yang Wang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (H.D.K.T.); (G.A.); (P.V.T.D.); (D.T.M.X.); (S.D.)
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 110, Taiwan
| | - Yen-Nien Liu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (H.D.K.T.); (G.A.); (P.V.T.D.); (D.T.M.X.); (S.D.)
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 110, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
2
|
Chen XJ, Cui QX, Wang GL, Li XL, Zhou XL, Zhao HJ, Zhang MQ, Li MJ, He XJ, Zheng QS, Wang YL, Li D, Hong P. Sanggenon C Suppresses Tumorigenesis of Gastric Cancer by Blocking ERK-Drp1-Mediated Mitochondrial Fission. JOURNAL OF NATURAL PRODUCTS 2022; 85:2351-2362. [PMID: 36256535 DOI: 10.1021/acs.jnatprod.2c00524] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Sanggenon C is a flavonoid extracted from the root bark of white mulberry, which is a traditional Chinese medicine with anti-inflammatory, antioxidative, and antitumor pharmacological effects. In this study, sanggenon C was found to inhibit human gastric cancer (GC) cell proliferation and colony formation, induce GC cell cycle arrest in the G0-G1 phase, and promote GC cell apoptosis. Moreover, sanggenon C was found to decrease the level of mitochondrial membrane potential in GC cells and inhibit mitochondrial fission. Mechanistically, RNA sequencing, bioinformatics analysis, and a series of functional analyses confirmed that sanggenon C inhibited mitochondrial fission to induce apoptosis by blocking the extracellular regulated protein kinases (ERK) signaling pathway, and constitutive activation of ERK significantly abrogated these effects. Finally, sanggenon C was found to suppress the growth of tumor xenografts in nude mice without obvious side effects to the vital organs of animals. This study reveals that sanggenon C could be a novel therapeutic strategy for GC treatment.
Collapse
Affiliation(s)
- Xiao-Jie Chen
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, People's Republic of China
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, People's Republic of China
| | - Qi-Xiao Cui
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, People's Republic of China
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, People's Republic of China
- College of Stomatology, Binzhou Medical University, Yantai 264003, Shandong, People's Republic of China
| | - Guo-Li Wang
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, People's Republic of China
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, People's Republic of China
| | - Xiao-Li Li
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, People's Republic of China
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, People's Republic of China
| | - Xiao-Lin Zhou
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, People's Republic of China
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, People's Republic of China
| | - Hui-Jie Zhao
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, People's Republic of China
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, People's Republic of China
| | - Ming-Qian Zhang
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, People's Republic of China
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, People's Republic of China
| | - Min-Jing Li
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, People's Republic of China
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, People's Republic of China
| | - Xiao-Juan He
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Qiu-Sheng Zheng
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, People's Republic of China
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, People's Republic of China
| | - Yu-Liang Wang
- College of Stomatology, Binzhou Medical University, Yantai 264003, Shandong, People's Republic of China
| | - Defang Li
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, People's Republic of China
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, People's Republic of China
| | - Pan Hong
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, People's Republic of China
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, People's Republic of China
| |
Collapse
|
3
|
Qian H, Lv X, Song Q, Su R, Xie T, Wu D, Chang R, Chen L, Yang Y, Chen Y, Wang X, Ru Y, Shang L, Guo X. Association of dysbindin expression with individualized postoperative prognosis and chemotherapy benefit among patients with gastric adenocarcinoma. J Cancer 2021; 12:6740-6748. [PMID: 34659563 PMCID: PMC8518004 DOI: 10.7150/jca.60576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/28/2021] [Indexed: 12/09/2022] Open
Abstract
Background: The current model for predicting prognosis and chemotherapy response of patients with gastric adenocarcinoma is the TNM staging system, which may lack adequate accuracy and evaluations of molecular features at the individual level. We aimed to develop a prediction model to assess the individualized prognosis and responsiveness to fluorouracil-based adjuvant chemotherapy. Method: This retrospective study concluded 2 independent cohorts of patients with GAC. The expression of dysbindin was quantified and evaluated the association with the overall survival for GAC patients. A prediction model for postoperative overall survival was generated and internally and externally validated. The interaction between dysbindin expression and PACT was detected in advanced GAC patients. Results: Of the 637 patients enrolled in the study, 425 were men (66.7%) with a mean (SD) age of 59.79 (9.81) years. High levels of dysbindin expression predicted a poor prognosis in patients with GAC. Multivariate analysis demonstrated dysbindin expression was an independent prognostic predictor of overall survival in the test, validation and combined cohorts. A prognostic predictive model incorporating age, dysbindin expression, pathological differentiation, Lauren's classification and the TNM staging system was established. This model had better predictive accuracy for overall survival than the traditional TNM staging system and was internally and externally validated. More importantly, advanced GAC patients with low dysbindin expression were likely to benefit from fluorouracil-based PACT. Conclusion: The risk stratification model incorporating dysbindin expression and TNM staging system showed better predictive accuracy. Advanced GAC patients with low dysbindin expression revealed better response of fluorouracil-based adjuvant chemotherapy.
Collapse
Affiliation(s)
- Hao Qian
- Department of Health Statistics, School of Public Health, Fourth Military Medical University.,Department of Endoscopic Surgery, Xijing Hospital, Fourth Military Medical University
| | - Xiaohui Lv
- Department of Gynecology and Obstetrics, Xijing Hospital, Fourth Military Medical University
| | - Qiying Song
- Department of General Surgery, Chinese PLA General Hospital
| | - Rujuan Su
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University
| | - Tianyu Xie
- Department of General Surgery, Chinese PLA General Hospital
| | - Di Wu
- Department of General Surgery, Chinese PLA General Hospital
| | - Rongyan Chang
- Department of Endoscopic Surgery, Xijing Hospital, Fourth Military Medical University
| | - Lubin Chen
- Department of Endoscopic Surgery, Xijing Hospital, Fourth Military Medical University
| | - Yanling Yang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University
| | - Yong Chen
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University
| | - Xinxin Wang
- Department of General Surgery, Chinese PLA General Hospital
| | - Yi Ru
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University
| | - Lei Shang
- Department of Health Statistics, School of Public Health, Fourth Military Medical University
| | - Xin Guo
- Department of Endoscopic Surgery, Xijing Hospital, Fourth Military Medical University.,Department of General Surgery, Chinese PLA General Hospital
| |
Collapse
|
4
|
Chang WS, Tsai CW, Yang JS, Hsu YM, Shih LC, Chiu HY, Bau DT, Tsai FJ. Resveratrol inhibited the metastatic behaviors of cisplatin-resistant human oral cancer cells via phosphorylation of ERK/p-38 and suppression of MMP-2/9. J Food Biochem 2021; 45:e13666. [PMID: 34008860 DOI: 10.1111/jfbc.13666] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 12/19/2022]
Abstract
Cisplatin resistance is a major clinical problem in the clinical management of oral squamous cell carcinoma (OSCC) patients. Resveratrol is a natural phytoestrogen with antitumor activities. Whether resveratrol can overcome cisplatin resistance and prevent metastasis in OSCC cells is not known. In this study, we first examined the anti-metastatic capacity of resveratrol and then explored the underlying mechanisms using a cisplatin-resistant human OSCC cell line (CAR). The results demonstrated that at a non-toxic dose range (25 to 75 µM), 24-hr treatment of resveratrol was able to suppress the migration and invasion capacities of CAR cells dose dependently. Interestingly, 50 µM resveratrol treatment could significantly down-regulate the expression of the phosphorylated forms of ERK and p-38, in addition to those of MMP-2 and MMP-9. At the same time, the expression levels of phosphorylated ERK together with those unphosphorylated forms of ERK, p38, and JNK were all insignificantly altered. In conclusion, the signaling cascade for resveratrol's suppression of cisplatin-resistant human oral cancer CAR cells was revealed and summarized. Also the rapid effectiveness in suppressing metastatic behaviors of drug-resistant oral cancer cells of non-toxic resveratrol might extend its application to the drug-resistant oral cancer treatment in the near future. PRACTICAL APPLICATIONS: Based on the evidence we provided in the study, we have proposed a model recording the possible pathway for resveratrol inhibiting the metastasis of cisplatin-resistant oral cancer cells. We suppose this signaling pathway may work in other cancer cell lines, and can be helpful in full understanding of the drug-resistance.
Collapse
Affiliation(s)
- Wen-Shin Chang
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Wen Tsai
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Yuan-Man Hsu
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Liang-Chun Shih
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,Department of Otorhinolaryngology, China Medical University Hospital, Taichung, Taiwan
| | - Hong-Yi Chiu
- Department of Pharmacy, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Da-Tian Bau
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | - Fuu-Jen Tsai
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan.,China Medical University Children's Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|