1
|
Li Y, Yuan Z, Wang L, Yang J, Pu P, Le Y, Chen X, Wang C, Gao Y, Liu Y, Wang J, Gao X, Li Y, Wang H, Zou C. Prolyl isomerase Pin1 sculpts the immune microenvironment of colorectal cancer. Cell Signal 2024; 115:111041. [PMID: 38199598 DOI: 10.1016/j.cellsig.2024.111041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/14/2023] [Accepted: 01/06/2024] [Indexed: 01/12/2024]
Abstract
Pin1, a peptide prolyl cis-trans isomerase, is overexpressed and/or overactivated in many human malignancies. However, whether Pin1 regulates the immunosuppressive TME has not been well defined. In this study, we detected the effect of Pin1 on immune cells and immune checkpoint PD-L1 in the TME of CRC and explored the anti-tumor efficacy of Pin1 inhibitor ATRA combined with PD-1 antibody. We found that Pin1 facilitated the immunosuppressive TME by raising the proportion of myeloid-derived suppressor cells (MDSCs) and declining the percentage of CD8+ T cells and CD4+ T cells. Pin1 restrained PD-L1 protein expression in CRC cells and the effect was tempered by endoplasmic reticulum (ER) stress inducers. Mechanically, Pin1 overexpression decreased the stability of PD-L1 and promoted its degradation by mitigating ER stress. Silencing or inhibiting Pin1 promoted PD-L1 protein expression by inducing ER stress. Hence, Pin1 inhibitor ATRA enhanced the anti-tumor efficacy of PD-1 antibody in the CRC allograft by upregulating PD-L1. Our results reveal the critical and pleiotropic effects of Pin1 on managing the immune cells and immune checkpoint PD-L1 in the TME of CRC, providing a new promising candidate for combination with immunotherapy.
Collapse
Affiliation(s)
- Yang Li
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China
| | - Zhongnan Yuan
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China
| | - Linlin Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China
| | - Jing Yang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China
| | - Pei Pu
- The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Yunting Le
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China
| | - XianWei Chen
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China
| | - Chongyang Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China
| | - Yating Gao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China
| | - Yi Liu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China
| | - Jialin Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China
| | - Xu Gao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medicine Sciences, Harbin 150081, China; Key Laboratory of Cardiovascular Medicine Research of Harbin Medical University, Ministry of Education, Harbin 150081, China; Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin 150081, China
| | - Yanze Li
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China.
| | - Hefei Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China.
| | - Chaoxia Zou
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medicine Sciences, Harbin 150081, China.
| |
Collapse
|
2
|
Abstract
Significance: Thioredoxin (Trx) is a powerful antioxidant that reduces protein disulfides to maintain redox stability in cells and is involved in regulating multiple redox-dependent signaling pathways. Recent Advance: The current accumulation of findings suggests that Trx participates in signaling pathways that interact with various proteins to manipulate their dynamic regulation of structure and function. These network pathways are critical for cancer pathogenesis and therapy. Promising clinical advances have been presented by most anticancer agents targeting such signaling pathways. Critical Issues: We herein link the signaling pathways regulated by the Trx system to potential cancer therapeutic opportunities, focusing on the coordination and strengths of the Trx signaling pathways in apoptosis, ferroptosis, immunomodulation, and drug resistance. We also provide a mechanistic network for the exploitation of therapeutic small molecules targeting the Trx signaling pathways. Future Directions: As research data accumulate, future complex networks of Trx-related signaling pathways will gain in detail. In-depth exploration and establishment of these signaling pathways, including Trx upstream and downstream regulatory proteins, will be critical to advancing novel cancer therapeutics. Antioxid. Redox Signal. 38, 403-424.
Collapse
Affiliation(s)
- Junmin Zhang
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Xinming Li
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China.,State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Zhengjia Zhao
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | | | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China.,School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, China
| |
Collapse
|
3
|
Zhang S, Sui M, Zhang Z, Su Y. Brusatol From Brucea javanica Suppresses Arsenic Trioxide-Induced PD-L1 Upregulation Through Inhibition of NRF2 in Leukemia Cells. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221132699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Overexpression of programed death-ligand 1 (PD-L1) is associated with poor prognosis in leukemia. Moreover, antitumor pharmaceuticals have been shown to induce immunoresistance, leading to reduced efficacy. Previous studies have indicated that arsenic trioxide (ATO) promotes immune evasion by inducing PD-L1 expression in solid tumors; however, little is known about its role in leukemia. A proportion of patients with acute promyelocytic leukemia were resistant to ATO therapy. Thus, this study aimed to investigate the effect of ATO on the expression of PD-L1 in leukemia cells and the underlying mechanism mediated through the nuclear factor erythroid 2 related factor (NRF2) protein. Brusatol, extracted from Brucea javanica, was selected as a unique NRF2 inhibitor, and we evaluated the possibility of using a regimen combining ATO/Brusatol in leukemia therapy. Promyelocytic NB4 and lymphocytic Jurkat cells were treated with ATO and brusatol either alone or in combination. We found that ATO significantly upregulated the expression of PD-L1 in NB4 and Jurkat cells at both the protein and mRNA levels compared with its expression in the untreated cell group. Mechanistically, ATO increased nuclear NRF2 expression and the extent of NRF2 binding to the PD-L1 promoter. Pharmacological inhibition of NRF2 by brusatol significantly blocked this effect, thereby reducing ATO-induced PD-L1 expression. In addition, the combination of brusatol and ATO showed stronger cytotoxicity than ATO alone indicated by cell counting kit-8 assay. Therefore, brusatol may further enhance the antileukemia effect of ATO not only by inhibiting ATO-induced PD-L1 expression but also by enhancing ATO-induced cytotoxicity. Our study provides a rationale for the clinical application of ATO/brusatol combination therapy.
Collapse
Affiliation(s)
- Shunji Zhang
- First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Meijuan Sui
- NHC Key Laboratory of Cell Transplantation, First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Zhuo Zhang
- NHC Key Laboratory of Cell Transplantation, First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Yanhua Su
- First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| |
Collapse
|
4
|
Bennett AN, Huang RX, He Q, Lee NP, Sung WK, Chan KHK. Drug repositioning for esophageal squamous cell carcinoma. Front Genet 2022; 13:991842. [PMID: 36246638 PMCID: PMC9554346 DOI: 10.3389/fgene.2022.991842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Esophageal cancer (EC) remains a significant challenge globally, having the 8th highest incidence and 6th highest mortality worldwide. Esophageal squamous cell carcinoma (ESCC) is the most common form of EC in Asia. Crucially, more than 90% of EC cases in China are ESCC. The high mortality rate of EC is likely due to the limited number of effective therapeutic options. To increase patient survival, novel therapeutic strategies for EC patients must be devised. Unfortunately, the development of novel drugs also presents its own significant challenges as most novel drugs do not make it to market due to lack of efficacy or safety concerns. A more time and cost-effective strategy is to identify existing drugs, that have already been approved for treatment of other diseases, which can be repurposed to treat EC patients, with drug repositioning. This can be achieved by comparing the gene expression profiles of disease-states with the effect on gene-expression by a given drug. In our analysis, we used previously published microarray data and identified 167 differentially expressed genes (DEGs). Using weighted key driver analysis, 39 key driver genes were then identified. These driver genes were then used in Overlap Analysis and Network Analysis in Pharmomics. By extracting drugs common to both analyses, 24 drugs are predicted to demonstrate therapeutic effect in EC patients. Several of which have already been shown to demonstrate a therapeutic effect in EC, most notably Doxorubicin, which is commonly used to treat EC patients, and Ixazomib, which was recently shown to induce apoptosis and supress growth of EC cell lines. Additionally, our analysis predicts multiple psychiatric drugs, including Venlafaxine, as repositioned drugs. This is in line with recent research which suggests that psychiatric drugs should be investigated for use in gastrointestinal cancers such as EC. Our study shows that a drug repositioning approach is a feasible strategy for identifying novel ESCC therapies and can also improve the understanding of the mechanisms underlying the drug targets.
Collapse
Affiliation(s)
- Adam N. Bennett
- Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Rui Xuan Huang
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Qian He
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Nikki P. Lee
- Department of Surgery, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Wing-Kin Sung
- Department of Computer Sciences, National University of Singapore, Singapore, Singapore
| | - Kei Hang Katie Chan
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Epidemiology, Centre for Global Cardiometabolic Health, Brown University, Providence, RI, United States
| |
Collapse
|
5
|
Self-activated arsenic manganite nanohybrids for visible and synergistic thermo/immuno-arsenotherapy. J Control Release 2022; 350:761-776. [PMID: 36063961 DOI: 10.1016/j.jconrel.2022.08.054] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 08/21/2022] [Accepted: 08/27/2022] [Indexed: 11/20/2022]
Abstract
Arsenotherapy has been clinically exploited to treat a few types of solid tumors despite of acute promyelocytic leukemia using arsenic trioxide (ATO), however, its efficacy is hampered by inadequate delivery of ATO into solid tumors owing to the absence of efficient and biodegradable vehicles. Precise spatiotemporal control of subcellular ATO delivery for potent arsenotherapy thus remains challengeable. Herein, we report the self-activated arsenic manganite nanohybrids for high-contrast magnetic resonance imaging (MRI) and arsenotherapeutic synergy on triple-negative breast cancer (TNBC). The nanohybrids, composed of arsenic‑manganese-co-biomineralized nanoparticles inside albumin nanocages (As/Mn-NHs), switch signal-silent background to high proton relaxivity, and simultaneously afford remarkable subcellular ATO level in acidic and glutathione environments, together with reduced ATO resistance against tumor cells. Then, the nanohybrids enable in vivo high-contrast T1-weighted MRI signals in various tumor models for delineating tumor boundary, and simultaneously yield efficient arsenotherapeutic efficacy through multiple apoptotic pathways for potently suppressing subcutaneous and orthotopic breast models. As/Mn-NHs exhibited the maximum tumor-to-normal tissue (T/N) contrast ratio of 205% and tumor growth inhibition rate of 88% at subcutaneous 4T1 tumors. These nanohybrids further yield preferable synergistic antitumor efficacy against both primary and metastatic breast tumors upon combination with concurrent thermotherapy. More importantly, As/Mn-NHs considerably induce immunogenic cell death (ICD) effect to activate the immunogenically "cold" tumor microenvironment into "hot" one, thus synergizing with immune checkpoint blockade to yield the strongest tumor inhibition and negligible metastatic foci in the lung. Our study offers the insight into clinically potential arsenotherapeutic nanomedicine for potent therapy against solid tumors.
Collapse
|
6
|
Zhang M, Gao L, Ye Y, Li X. Advances in glioma-associated oncogene (GLI) inhibitors for cancer therapy. Invest New Drugs 2022; 40:370-388. [PMID: 34837604 DOI: 10.1007/s10637-021-01187-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/22/2021] [Indexed: 10/19/2022]
Abstract
The Hedgehog/Glioma-associated oncogene homolog (HH/GLI) signaling pathway regulates self-renewal of rare and highly malignant cancer stem cells, which have been shown to account for the initiation and maintenance of tumor growth as well as for drug resistance, metastatic spread and relapse. As an important component of the Hh signaling pathway, glioma-associated oncogene (GLI) acts as a key signal transmission hub for various signaling pathways in many tumors. Here, we review direct and indirect inhibitors of GLI; summarize the abundant active structurally diverse natural GLI inhibitors; and discuss how to better develop and utilize GLI inhibitors to solve the problem of drug resistance in tumors of interest. In summary, GLI inhibitors will be promising candidates for various cancer treatments.
Collapse
Affiliation(s)
- Meng Zhang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lijuan Gao
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yiping Ye
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiaoyu Li
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China.
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Souza VGD, Santos DJS, Silva AG, Ribeiro RIMDA, Loyola AM, Cardoso SV, Miranda CSS, Cardoso LPV. Immunoexpression of PD-L1, CD4+ and CD8+ cell infiltrates and tumor-infiltrating lymphocytes (TILs) in the microenvironment of actinic cheilitis and lower lip squamous cell carcinoma. J Appl Oral Sci 2022; 30:e20210344. [PMID: 35195152 PMCID: PMC8860405 DOI: 10.1590/1678-7757-2021-0344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 12/01/2021] [Indexed: 11/25/2022] Open
Abstract
Lower lip squamous cell carcinomas (LLSCC) could be associated with a previous history of potentially malignant oral diseases (PMOD), especially actinic cheilitis (AC), with high sun exposure being a well-described risk factor. Immune evasion mechanisms, such as the PD-1/PD-L1 (programmed cell death protein 1/programmed death-ligand 1) pathway has been gaining prominence since immunotherapy with immune checkpoint inhibitors showed a positive effect on the survival of patients with different types of neoplasms. Concomitant with the characterization of the tumor microenvironment, the expression of either or both PD-1 and PD-L1 molecules may estimate mutual relations of progression or regression of the carcinoma and prognostic values of the patient.
Collapse
|
8
|
The Role of Oncogenes and Redox Signaling in the Regulation of PD-L1 in Cancer. Cancers (Basel) 2021; 13:cancers13174426. [PMID: 34503236 PMCID: PMC8431622 DOI: 10.3390/cancers13174426] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/29/2021] [Accepted: 08/16/2021] [Indexed: 12/17/2022] Open
Abstract
Tumor cells can evade the immune system via multiple mechanisms, including the dysregulation of the immune checkpoint signaling. These signaling molecules are important factors that can either stimulate or inhibit tumor immune response. Under normal physiological conditions, the interaction between programmed cell death ligand 1 (PD-L1) and its receptor, programmed cell death 1 (PD-1), negatively regulates T cell function. In cancer cells, high expression of PD-L1 plays a key role in cancer evasion of the immune surveillance and seems to be correlated with clinical response to immunotherapy. As such, it is important to understand various mechanisms by which PD-L1 is regulated. In this review article, we provide an up-to-date review of the different mechanisms that regulate PD-L1 expression in cancer. We will focus on the roles of oncogenic signals (c-Myc, EML4-ALK, K-ras and p53 mutants), growth factor receptors (EGFR and FGFR), and redox signaling in the regulation of PD-L1 expression and discuss their clinical relevance and therapeutic implications. These oncogenic signalings have common and distinct regulatory mechanisms and can also cooperatively control tumor PD-L1 expression. Finally, strategies to target PD-L1 expression in tumor microenvironment including combination therapies will be also discussed.
Collapse
|