1
|
Xue R, Li X, Yang L, Yang M, Zhang B, Zhang X, Li L, Duan X, Yan R, He X, Cui F, Wang L, Wang X, Wu M, Zhang C, Zhao J. Evaluation and integration of cell-free DNA signatures for detection of lung cancer. Cancer Lett 2024; 604:217216. [PMID: 39233043 DOI: 10.1016/j.canlet.2024.217216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
Cell-free DNA (cfDNA) analysis has shown potential in detecting early-stage lung cancer based on non-genetic features. To distinguish patients with lung cancer from healthy individuals, peripheral blood were collected from 926 lung cancer patients and 611 healthy individuals followed by cfDNA extraction. Low-pass whole genome sequencing and targeted methylation sequencing were conducted and various features of cfDNA were evaluated. With our customized algorithm using the most optimal features, the ensemble stacked model was constructed, called ESim-seq (Early Screening tech with Integrated Model). In the independent validation cohort, the ESim-seq model achieved an area under the curve (AUC) of 0.948 (95 % CI: 0.915-0.981), with a sensitivity of 79.3 % (95 % CI: 71.5-87.0 %) across all stages at a specificity of 96.0 % (95 % CI: 90.6-100.0 %). Specifically, the sensitivity of the ESim-seq model was 76.5 % (95 % CI: 67.3-85.8 %) in stage I patients, 100 % (95 % CI: 100.0-100.0 %) in stage II patients, 100 % (95 % CI: 100.0-100.0 %) in stage III patients and 87.5 % (95 % CI: 64.6%-100.0 %) in stage IV patients in the independent validation cohort. Besides, we constructed LCSC model (Lung Cancer Subtype multiple Classification), which was able to accurately distinguish patients with small cell lung cancer from those with non-small cell lung cancer, achieving an AUC of 0.961 (95 % CI: 0.949-0.957). The present study has established a framework for assessing cfDNA features and demonstrated the benefits of integrating multiple features for early detection of lung cancer.
Collapse
Affiliation(s)
- Ruyue Xue
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaomin Li
- Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., The State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China; Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Lu Yang
- Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., The State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China; Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Meijia Yang
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bei Zhang
- Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., The State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China
| | - Xu Zhang
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lifeng Li
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoran Duan
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rui Yan
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xianying He
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fangfang Cui
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Linlin Wang
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoqiang Wang
- Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., The State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China
| | - Mengsi Wu
- Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., The State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China
| | - Chao Zhang
- Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., The State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China
| | - Jie Zhao
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
2
|
Qiang P, Chen Y, Shao Y, Deng Q, Xu S, Zhu W. Deciphering the role of SAMHD1 in endometrial cancer progression. Biol Direct 2024; 19:89. [PMID: 39394602 PMCID: PMC11468744 DOI: 10.1186/s13062-024-00525-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/31/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND Endometrial cancer (EC) presents significant clinical challenges due to its heterogeneity and complex pathophysiology. SAMHD1, known for its role as a deoxynucleotide triphosphate triphosphohydrolase, has been implicated in the progression of various cancers, including EC. This study focuses on elucidating the role of SAMHD1 in EC through its impact on TRIM27-mediated PTEN ubiquitination. RESULTS Utilizing a combination of bioinformatics and cellular biology techniques, we investigated the interactions among SAMHD1, TRIM27, and PTEN. Our findings reveal that SAMHD1 modulates PTEN ubiquitination via TRIM27, impacting key pathways involved in EC pathogenesis. These interactions suggest a critical mechanism by which SAMHD1 could influence tumor behavior and progression in EC. CONCLUSIONS The results from this study underscore the potential of targeting the SAMHD1-TRIM27-PTEN axis as a therapeutic strategy in EC. By providing new insights into the molecular mechanisms underlying EC progression, our research supports the development of novel therapeutic approaches that could contribute to improve treatment strategies for patients with EC.
Collapse
Affiliation(s)
- Ping Qiang
- Department of Obstetrics and Gynecology, The First People's Hospital of Zhangjiagang City, The Zhangjiagang Affiliated Hospital of Soochow University, Suzhou, 215600, China
| | - Ying Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Suzhou, Jiangsu Province, 215000, China
| | - Yang Shao
- Department of Obstetrics and Gynecology, The First People's Hospital of Zhangjiagang City, The Zhangjiagang Affiliated Hospital of Soochow University, Suzhou, 215600, China
| | - Qicheng Deng
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Suzhou, Jiangsu Province, 215000, China
| | - Songyuan Xu
- Department of Obstetrics and Gynecology, The First People's Hospital of Zhangjiagang City, The Zhangjiagang Affiliated Hospital of Soochow University, Suzhou, 215600, China
| | - Weipei Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Suzhou, Jiangsu Province, 215000, China.
| |
Collapse
|
3
|
Zhao W, Hu X, Chen Z, Li X. Major Facilitator Superfamily Domain Containing 12 Is Overexpressed in Lung Cancer and Exhibits an Oncogenic Role in Lung Adenocarcinoma Cells. DNA Cell Biol 2024; 43:331-340. [PMID: 38687351 DOI: 10.1089/dna.2023.0378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
Major facilitator superfamily domain containing 12 (MFSD12) regulates lysosomal cysteine import and promotes the proliferation and survival of melanoma cells. However, the expression and function of MFSD12 in other cancers, particularly in lung cancer, remain unclear. The expression of MFSD12 across various types of cancers and corresponding control tissues was examined using TIMER. MFSD12 expression in lung adenocarcinoma (LUAD) and its correlation with distinct clinicopathological features of LUAD patients were analyzed with UALCAN. The correlation between MFSD12 expression and survival of LUAD patients was assessed using the R package, survival, and the relationship between MFSD12 expression and immune infiltration status in LUAD was investigated using CIBERSORT. In addition, MFSD12 expression was knocked down in PC9 LUAD cells and their proliferation, capacity for expansion, cell cycle, apoptosis, and migration/invasion were evaluated through CCK-8 assays, colony formation assays, 7-AAD staining, Annexin V/PI staining, and Transwell assays, respectively. The stemness of these PC9 cells was determined through Western blotting, flow cytometry, and tumor sphere formation assays. MFSD12 mRNA levels were significantly elevated in multiple types of cancers, including LUAD. MFSD12 expression was also positively correlated with cancer stage, nodal metastasis, and infiltration of various immune cells in LUAD, and high MFSD12 levels predicted poor survival among LUAD patients. Knockdown of MFSD12 in PC9 cells resulted in decreased proliferation, attenuated colony formation capacity, cell cycle arrest, elevated apoptosis, impaired migration/invasion, and reduced stemness in PC9 cells. MFSD12 is an oncogene in LUAD.
Collapse
Affiliation(s)
- Weijun Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Xilin Hu
- Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Zixuan Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Xinjian Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
4
|
Rubio K, Müller JM, Mehta A, Watermann I, Olchers T, Koch I, Wessels S, Schneider MA, Araujo-Ramos T, Singh I, Kugler C, Stoleriu MG, Kriegsmann M, Eichhorn M, Muley T, Merkel OM, Braun T, Ammerpohl O, Reck M, Tresch A, Barreto G. Preliminary results from the EMoLung clinical study showing early lung cancer detection by the LC score. Discov Oncol 2023; 14:181. [PMID: 37787775 PMCID: PMC10547665 DOI: 10.1007/s12672-023-00799-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/22/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND Lung cancer (LC) causes more deaths worldwide than any other cancer type. Despite advances in therapeutic strategies, the fatality rate of LC cases remains high (95%) since the majority of patients are diagnosed at late stages when patient prognosis is poor. Analysis of the International Association for the Study of Lung Cancer (IASLC) database indicates that early diagnosis is significantly associated with favorable outcome. However, since symptoms of LC at early stages are unspecific and resemble those of benign pathologies, current diagnostic approaches are mostly initiated at advanced LC stages. METHODS We developed a LC diagnosis test based on the analysis of distinct RNA isoforms expressed from the GATA6 and NKX2-1 gene loci, which are detected in exhaled breath condensates (EBCs). Levels of these transcript isoforms in EBCs were combined to calculate a diagnostic score (the LC score). In the present study, we aimed to confirm the applicability of the LC score for the diagnosis of early stage LC under clinical settings. Thus, we evaluated EBCs from patients with early stage, resectable non-small cell lung cancer (NSCLC), who were prospectively enrolled in the EMoLung study at three sites in Germany. RESULTS LC score-based classification of EBCs confirmed its performance under clinical conditions, achieving a sensitivity of 95.7%, 91.3% and 84.6% for LC detection at stages I, II and III, respectively. CONCLUSIONS The LC score is an accurate and non-invasive option for early LC diagnosis and a valuable complement to LC screening procedures based on computed tomography.
Collapse
Affiliation(s)
- Karla Rubio
- Université de Lorraine, CNRS, Laboratoire IMoPA, UMR 7365, 54000, Nancy, France
- Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Gießen, Germany
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, EcoCampus, Benemérita Universidad Autónoma de Puebla, 72570, Puebla, Mexico
| | - Jason M Müller
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Institute of Medical Statistics and Computational Biology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Aditi Mehta
- German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Gießen, Germany
- Pharmaceutical Technology and Biopharmaceutics, Department of Pharmacy, Ludwig-Maximilians-University (LMU) Munich, 81377, Munich, Germany
- Comprehensive Pneumology Center Munich (CPC-M), Munich, Germany
| | - Iris Watermann
- German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Gießen, Germany
- LungenClinic Grosshansdorf (GHD), Airway Research Center North (ARCN), German Center for Lung Research (DZL), 22927, Großhansdorf, Germany
| | - Till Olchers
- German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Gießen, Germany
- LungenClinic Grosshansdorf (GHD), Airway Research Center North (ARCN), German Center for Lung Research (DZL), 22927, Großhansdorf, Germany
| | - Ina Koch
- German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Gießen, Germany
- Comprehensive Pneumology Center Munich (CPC-M), Munich, Germany
- Asklepios Biobank für Lungenerkrankungen, Asklepios Klinik Gauting GmbH, 82131, Gauting, Germany
| | - Sabine Wessels
- German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Gießen, Germany
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, 69126, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), 69120, Heidelberg, Germany
| | - Marc A Schneider
- German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Gießen, Germany
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, 69126, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), 69120, Heidelberg, Germany
| | - Tania Araujo-Ramos
- German Cancer Research Center (DKFZ) Heidelberg, Division Chronic Inflammation and Cancer, Emmy Noether Research Group Epigenetic Machineries and Cancer, 69120, Heidelberg, Germany
| | - Indrabahadur Singh
- German Cancer Research Center (DKFZ) Heidelberg, Division Chronic Inflammation and Cancer, Emmy Noether Research Group Epigenetic Machineries and Cancer, 69120, Heidelberg, Germany
| | - Christian Kugler
- German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Gießen, Germany
- LungenClinic Grosshansdorf (GHD), Airway Research Center North (ARCN), German Center for Lung Research (DZL), 22927, Großhansdorf, Germany
| | - Mircea Gabriel Stoleriu
- German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Gießen, Germany
- Comprehensive Pneumology Center Munich (CPC-M), Munich, Germany
- Asklepios Biobank für Lungenerkrankungen, Asklepios Klinik Gauting GmbH, 82131, Gauting, Germany
| | - Mark Kriegsmann
- German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Gießen, Germany
- Translational Lung Research Center Heidelberg (TLRC), 69120, Heidelberg, Germany
- Institute of Pathology, University of Heidelberg, 69120, Heidelberg, Germany
| | - Martin Eichhorn
- German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Gießen, Germany
- Translational Lung Research Center Heidelberg (TLRC), 69120, Heidelberg, Germany
- Department of Thoracic Surgery, University of Heidelberg, 69120, Heidelberg, Germany
| | - Thomas Muley
- German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Gießen, Germany
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, 69126, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), 69120, Heidelberg, Germany
| | - Olivia M Merkel
- German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Gießen, Germany
- Pharmaceutical Technology and Biopharmaceutics, Department of Pharmacy, Ludwig-Maximilians-University (LMU) Munich, 81377, Munich, Germany
- Comprehensive Pneumology Center Munich (CPC-M), Munich, Germany
| | - Thomas Braun
- Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- Department of Cardiac Development, Max-Planck-Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
| | - Ole Ammerpohl
- German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Gießen, Germany
- Institute of Human Genetics, University Medical Center Ulm, 89081, Ulm, Germany
| | - Martin Reck
- German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Gießen, Germany
- LungenClinic Grosshansdorf (GHD), Airway Research Center North (ARCN), German Center for Lung Research (DZL), 22927, Großhansdorf, Germany
| | - Achim Tresch
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
- Institute of Medical Statistics and Computational Biology, Faculty of Medicine, University of Cologne, Cologne, Germany.
- Center for Data and Simulation Science, University of Cologne, Cologne, Germany.
| | - Guillermo Barreto
- Université de Lorraine, CNRS, Laboratoire IMoPA, UMR 7365, 54000, Nancy, France.
- Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany.
- Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany.
- German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Gießen, Germany.
| |
Collapse
|
5
|
Aktar A, Heit B. Role of the pioneer transcription factor GATA2 in health and disease. J Mol Med (Berl) 2023; 101:1191-1208. [PMID: 37624387 DOI: 10.1007/s00109-023-02359-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023]
Abstract
The transcription factor GATA2 is involved in human diseases ranging from hematopoietic disorders, to cancer, to infectious diseases. GATA2 is one of six GATA-family transcription factors that act as pioneering transcription factors which facilitate the opening of heterochromatin and the subsequent binding of other transcription factors to induce gene expression from previously inaccessible regions of the genome. Although GATA2 is essential for hematopoiesis and lymphangiogenesis, it is also expressed in other tissues such as the lung, prostate gland, gastrointestinal tract, central nervous system, placenta, fetal liver, and fetal heart. Gene or transcriptional abnormalities of GATA2 causes or predisposes patients to several diseases including the hematological cancers acute myeloid leukemia and acute lymphoblastic leukemia, the primary immunodeficiency MonoMAC syndrome, and to cancers of the lung, prostate, uterus, kidney, breast, gastric tract, and ovaries. Recent data has also linked GATA2 expression and mutations to responses to infectious diseases including SARS-CoV-2 and Pneumocystis carinii pneumonia, and to inflammatory disorders such as atherosclerosis. In this article we review the role of GATA2 in the etiology and progression of these various diseases.
Collapse
Affiliation(s)
- Amena Aktar
- Department of Microbiology and Immunology; the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Bryan Heit
- Department of Microbiology and Immunology; the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, ON, N6A 5C1, Canada.
- Robarts Research Institute, London, ON, N6A 3K7, Canada.
| |
Collapse
|
6
|
Li H, Sha X, Wang W, Huang Z, Zhang P, Liu L, Wang S, Zhou Y, He S, Shi J. Identification of lysosomal genes associated with prognosis in lung adenocarcinoma. Transl Lung Cancer Res 2023; 12:1477-1495. [PMID: 37577321 PMCID: PMC10413022 DOI: 10.21037/tlcr-23-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 07/04/2023] [Indexed: 08/15/2023]
Abstract
Background Lung adenocarcinoma (LUAD) is the most common subtype of lung cancer, representing 40% of all cases of this tumor. Despite immense improvements in understanding the molecular basis, diagnosis, and treatment of LUAD, its recurrence rate is still high. Methods RNA-seq data from The Cancer Genome Atlas (TCGA) LUAD cohort were download from Genomic Data Commons Portal. The GSE13213 dataset from Gene Expression Omnibus (GEO) was used for external validation. Differential prognostic lysosome-related genes (LRGs) were identified by overlapping survival-related genes obtained via univariate Cox regression analysis with differentially expressed genes (DEGs). The prognostic model was built using Kaplan-Meier curves and least absolute shrinkage and selection operator (LASSO) analyses. In addition, univariate and multivariate Cox analyses were employed to identify independent prognostic factors. The responses of patients to immune checkpoint inhibitors (ICIs) were further predicted. The pRRophetic package and rank-sum test were used to compute the half maximal inhibitory concentrations (IC50) of 56 chemotherapeutic drugs and their differential effects in the low- and high-risk groups. Moreover, quantitative real-time polymerase chain reaction, Western blot, and human protein atlas (HPA) database were used to verify the expression of the four prognostic biomarkers in LUAD. Results Of the nine candidate differential prognostic LRGs, GATA2, TFAP2A, LMBRD1, and KRT8 were selected as prognostic biomarkers. The prediction of the risk model was validated to be reliable. Cox independent prognostic analysis revealed that risk score and stage were independent prognostic factors in LUAD. Furthermore, the nomogram and calibration curves of the independent prognostic factors performed well. Differential analysis of ICIs revealed CD276, ICOS, PDCD1LG2, CD27, TNFRSF18, TNFSF9, ENTPD1, and NT5E to be expressed differently in the low- and high-risk groups. The IC50 values of 12 chemotherapeutic drugs, including epothilone.B, JNK.inhibitor.VIII, and AKT.inhibitor.VIII, significantly differed between the two risk groups. KRT8 and TFAP2A were highly expressed, while GATA2 and LMBRD1 were poorly expressed in LUAD cell lines. In addition, KRT8 and TFAP2A were highly expressed, while GATA2 and LMBRD1 were poorly expressed in tumor tissues. Conclusions Four key prognostic biomarkers-GATA2, TFAP2A, LMBRD1, and KRT8-were used to construct a significant prognostic model for LUAD patients.
Collapse
Affiliation(s)
- Houqiang Li
- Department of Thoracic Surgery, Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Research Institution of Translational Medicine in Cardiothoracic Diseases in Affiliated Hospital of Nantong University, Nantong, China
- Graduate School, Dalian Medical University, Dalian, China
| | - Xinyu Sha
- Department of Thoracic Surgery, Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Research Institution of Translational Medicine in Cardiothoracic Diseases in Affiliated Hospital of Nantong University, Nantong, China
- Graduate School, Dalian Medical University, Dalian, China
| | - Wenmiao Wang
- Department of Thoracic Surgery, Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Research Institution of Translational Medicine in Cardiothoracic Diseases in Affiliated Hospital of Nantong University, Nantong, China
- Graduate School, Dalian Medical University, Dalian, China
| | - Zhanghao Huang
- Department of Thoracic Surgery, Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Research Institution of Translational Medicine in Cardiothoracic Diseases in Affiliated Hospital of Nantong University, Nantong, China
- Medical College of Nantong University, Nantong, China
| | - Peng Zhang
- Department of Thoracic Surgery, Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Research Institution of Translational Medicine in Cardiothoracic Diseases in Affiliated Hospital of Nantong University, Nantong, China
- Graduate School, Dalian Medical University, Dalian, China
| | - Lei Liu
- Department of Thoracic Surgery, Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Research Institution of Translational Medicine in Cardiothoracic Diseases in Affiliated Hospital of Nantong University, Nantong, China
- Graduate School, Dalian Medical University, Dalian, China
| | - Silin Wang
- Department of Thoracic Surgery, Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Research Institution of Translational Medicine in Cardiothoracic Diseases in Affiliated Hospital of Nantong University, Nantong, China
- Graduate School, Dalian Medical University, Dalian, China
| | - Youlang Zhou
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Shuai He
- Department of Thoracic Surgery, Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Research Institution of Translational Medicine in Cardiothoracic Diseases in Affiliated Hospital of Nantong University, Nantong, China
| | - Jiahai Shi
- Department of Thoracic Surgery, Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Research Institution of Translational Medicine in Cardiothoracic Diseases in Affiliated Hospital of Nantong University, Nantong, China
- Graduate School, Dalian Medical University, Dalian, China
- School of Public Health, Nantong University, Nantong, China
| |
Collapse
|
7
|
Trąbska-Kluch B, Braun M, Orzechowska M, Paszek S, Zuchowska A, Sołek J, Kluska A, Fijuth J, Jesionek-Kupnicka D, Zawlik I. Potential Prognostic Value of GATA4 Depends on the p53 Expression in Primary Glioblastoma Patients. Genes (Basel) 2023; 14:1146. [PMID: 37372326 DOI: 10.3390/genes14061146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Primary glioblastoma is characterized by an extremely poor prognosis. The promoter methylation of GATA4 leads to the loss of its expression in many cancer types. The formation of high-grade astrocytomas can be promoted by the concurrent loss of TP53 and GATA4 in normal human astrocytes. Nevertheless, the impact of GATA4 alterations with linkage to TP53 changes in gliomagenesis is poorly understood. This study aimed to evaluate GATA4 protein expression, GATA4 promoter methylation, p53 expression, TP53 promoter methylation, and mutation status in patients with primary glioblastoma and to assess the possible prognostic impact of these alterations on overall survival. MATERIALS AND METHODS Thirty-one patients with primary glioblastoma were included. GATA4 and p53 expressions were determined immunohistochemically, and GATA4 and TP53 promoter methylations were analyzed via methylation-specific PCR. TP53 mutations were investigated via Sanger sequencing. RESULTS The prognostic value of GATA4 depends on p53 expression. Patients without GATA4 protein expression were more frequently negative for TP53 mutations and had better prognoses than the GATA4 positive patients. In patients positive for GATA4 protein expression, p53 expression was associated with the worst outcome. However, in patients positive for p53 expression, the loss of GATA4 protein expression seemed to be associated with improved prognosis. GATA4 promoter methylation was not associated with a lack of GATA4 protein expression. CONCLUSIONS Our data indicate that there is a possibility that GATA4 could function as a prognostic factor in glioblastoma patients, but in connection with p53 expression. A lack of GATA4 expression is not dependent on GATA4 promoter methylation. GATA4 alone has no influence on survival time in glioblastoma patients.
Collapse
Affiliation(s)
- Berenika Trąbska-Kluch
- Department of Teleradiotherapy, Copernicus Memorial Hospital, 93-513 Lodz, Poland
- Department of Radiotherapy, Chair of Oncology, Medical University of Lodz, 93-513 Lodz, Poland
| | - Marcin Braun
- Department of Pathology, Chair of Oncology, Medical University of Lodz, 93-513 Lodz, Poland
| | - Magdalena Orzechowska
- Department of Molecular Carcinogenesis, Medical University of Lodz, 93-513 Lodz, Poland
| | - Sylwia Paszek
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
- Department of General Genetics, Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
| | - Alina Zuchowska
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
- Department of General Genetics, Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
| | - Julia Sołek
- Department of Pathology, Chair of Oncology, Medical University of Lodz, 93-513 Lodz, Poland
| | - Adam Kluska
- Brachytherapy Department, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Jacek Fijuth
- Department of Teleradiotherapy, Copernicus Memorial Hospital, 93-513 Lodz, Poland
- Department of Radiotherapy, Chair of Oncology, Medical University of Lodz, 93-513 Lodz, Poland
| | | | - Izabela Zawlik
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
- Department of General Genetics, Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
| |
Collapse
|
8
|
Yang X, Mei C, Nie H, Zhou J, Ou C, He X. Expression profile and prognostic values of GATA family members in kidney renal clear cell carcinoma. Aging (Albany NY) 2023; 15:2170-2188. [PMID: 36961416 PMCID: PMC10085589 DOI: 10.18632/aging.204607] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/08/2023] [Indexed: 03/25/2023]
Abstract
To investigate the possible diagnostic and prognostic biomarkers of kidney renal clear cell carcinoma (KIRC), an integrated study of accumulated data was conducted to obtain more reliable information and more feasible measures. Using the Tumor Immune Estimation Resource (TIMER), University of Alabama at Birmingham Cancer Data Analysis Portal (UALCAN), Human Protein Atlas (HPA), Kaplan-Meier plotter database, Gene Expression Profiling Interactive Analysis (GEPIA2) database, cBioPortal, and Metascape, we analyzed the expression profiles and prognoses of six members of the GATA family in patients with KIRC. Compared to normal samples, KIRC samples showed significantly lower GATA2/3/6 mRNA and protein expression levels. KIRC's pathological grades, clinical stages, and lymph node metastases were closely related to GATA2 and GATA5 levels. Patients with KIRC and high GATA2 and GATA5 expression had better overall survival (OS) and recurrence-free survival (RFS), while those with higher expression of GATA3/4/6 had worse outcomes. The role and underlying mechanisms of the GATA family in cell cycle, cell proliferation, metabolic processes, and other aspects were evaluated based on Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses. Furthermore, we found that infiltrating immune cells were highly correlated with GATA expression profiles. These results showed that GATA family members may serve as prognostic biomarkers and therapeutic targets for KIRC.
Collapse
Affiliation(s)
- Xuejie Yang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Cheng Mei
- Department of Blood Transfusion, Xiangya Hospital, Clinical Transfusion Research Center, Central South University, Changsha 410008, Hunan, China
| | - Hui Nie
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Jianhua Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Xiaoyun He
- Departments of Ultrasound Imaging, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| |
Collapse
|
9
|
Feitosa MF, Wojczynski MK, Anema JA, Daw EW, Wang L, Santanasto AJ, Nygaard M, Province MA. Genetic pleiotropy between pulmonary function and age-related traits: The Long Life Family Study. J Gerontol A Biol Sci Med Sci 2022; 79:glac046. [PMID: 35180297 PMCID: PMC10873520 DOI: 10.1093/gerona/glac046] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Pulmonary function (PF) progressively declines with aging. Forced expiratory volume in the first second (FEV1) and forced vital capacity (FVC) are predictors of morbidity of pulmonary and cardiovascular diseases and all-cause mortality. In addition, reduced PF is associated with elevated chronic low-grade systemic inflammation, glucose metabolism, body fatness, and low muscle strength. It may suggest pleiotropic genetic effects between PF with these age-related factors. METHODS We evaluated whether FEV1 and FVC share common pleiotropic genetic effects factors with interleukin-6, high-sensitivity C-reactive protein, body mass index, muscle (grip) strength, plasma glucose, and glycosylated hemoglobin in 3,888 individuals (age range: 26-106). We employed sex-combined and sex-specific correlated meta-analyses to test whether combining genome-wide association p-values from two or more traits enhances the ability to detect variants sharing effects on these correlated traits. RESULTS We identified 32 loci for PF, including 29 novel pleiotropic loci associated with pulmonary function and (i) body fatness (CYP2U1/SGMS2), (ii) glucose metabolism (CBWD1/DOCK8 and MMUT/CENPQ), (iii) inflammatory markers (GLRA3/HPGD, TRIM9, CALN1, CTNNB1/ZNF621, GATA5/SLCO4A1/NTSR1, and NPVF/C7orf31/CYCS), and (iv) muscle strength (MAL2, AC008825.1/LINC02103, AL136418.1). CONCLUSIONS The identified genes/loci for PF and age-related traits suggest their underlying shared genetic effects, which can explain part of their phenotypic correlations. Integration of gene expression and genomic annotation data shows enrichment of our genetic variants in lung, blood, adipose, pancreas, and muscles, among others. Our findings highlight the critical roles of identified gene/locus in systemic inflammation, glucose metabolism, strength performance, PF, and pulmonary disease, which are involved in accelerated biological aging.
Collapse
Affiliation(s)
- Mary F Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Mary K Wojczynski
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jason A Anema
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - E Warwick Daw
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lihua Wang
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Adam J Santanasto
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Marianne Nygaard
- Epidemiology, Biostatistics, and Biodemography, Department of Public Health, University of Southern Denmark, Odense C, Denmark
| | - Michael A Province
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|