1
|
Wang L, Zhu Y, Zhang N, Xian Y, Tang Y, Ye J, Reza F, He G, Wen X, Jiang X. The multiple roles of interferon regulatory factor family in health and disease. Signal Transduct Target Ther 2024; 9:282. [PMID: 39384770 PMCID: PMC11486635 DOI: 10.1038/s41392-024-01980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/12/2024] [Accepted: 09/10/2024] [Indexed: 10/11/2024] Open
Abstract
Interferon Regulatory Factors (IRFs), a family of transcription factors, profoundly influence the immune system, impacting both physiological and pathological processes. This review explores the diverse functions of nine mammalian IRF members, each featuring conserved domains essential for interactions with other transcription factors and cofactors. These interactions allow IRFs to modulate a broad spectrum of physiological processes, encompassing host defense, immune response, and cell development. Conversely, their pivotal role in immune regulation implicates them in the pathophysiology of various diseases, such as infectious diseases, autoimmune disorders, metabolic diseases, and cancers. In this context, IRFs display a dichotomous nature, functioning as both tumor suppressors and promoters, contingent upon the specific disease milieu. Post-translational modifications of IRFs, including phosphorylation and ubiquitination, play a crucial role in modulating their function, stability, and activation. As prospective biomarkers and therapeutic targets, IRFs present promising opportunities for disease intervention. Further research is needed to elucidate the precise mechanisms governing IRF regulation, potentially pioneering innovative therapeutic strategies, particularly in cancer treatment, where the equilibrium of IRF activities is of paramount importance.
Collapse
Affiliation(s)
- Lian Wang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanghui Zhu
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yali Xian
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yu Tang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Ye
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fekrazad Reza
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
- International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Gu He
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiang Wen
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xian Jiang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Langbein LE, El Hajjar R, Kim WY, Yang H. The convergence of tumor suppressors on the type I interferon pathway in clear cell renal cell carcinoma and its therapeutic implications. Am J Physiol Cell Physiol 2022; 323:C1417-C1429. [PMID: 36154696 PMCID: PMC9662805 DOI: 10.1152/ajpcell.00255.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/29/2022] [Accepted: 09/17/2022] [Indexed: 01/31/2023]
Abstract
In clear cell renal cell carcinoma (ccRCC), the von Hippel-Lindau tumor suppressor gene/hypoxia inducible factor (VHL/HIF) axis lays the groundwork for tumorigenesis and is the target of many therapeutic agents. HIF activation alone, however, is largely insufficient for kidney tumor development, and secondary mutations in PBRM1, BAP1, SETD2, KDM5C, or other tumor suppressor genes are strong enablers of tumorigenesis. Interestingly, it has been discovered that VHL loss and subsequent HIF activation results in upregulation of a negative feedback loop mediated by ISGF3, a transcription factor activated by type I interferon (IFN). Secondary mutations in the aforementioned tumor suppressor genes all partially disable this negative feedback loop to facilitate tumor growth. The convergence of several cancer genes on this pathway suggests that it plays an important role in ccRCC development and maintenance. Tumors with secondary mutations that dampen the negative feedback loop may be exquisitely sensitive to its reactivation, and pharmacological activation of ISGF3 either alone or in combination with other therapies could be an effective method to treat patients with ccRCC. In this review, we examine the relevance of the type I IFN pathway to ccRCC, synthesize our current knowledge of the ccRCC tumor suppressors in its regulation, and explore how this may impact the future treatment of patients with ccRCC.
Collapse
Affiliation(s)
- Lauren E Langbein
- Department of Pathology, Anatomy, & Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Rayan El Hajjar
- Department of Pathology, Anatomy, & Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - William Y Kim
- Department of Pathology, Anatomy, & Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Haifeng Yang
- Department of Pathology, Anatomy, & Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
3
|
Zhou L, Fang H, Yin M, Long H, Weng G. Novel immune-related signature based on immune cells for predicting prognosis and immunotherapy response in clear cell renal cell carcinoma. J Clin Lab Anal 2022; 36:e24409. [PMID: 35441741 PMCID: PMC9169179 DOI: 10.1002/jcla.24409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is the most common malignant tumor of the kidney and is characterized by poor prognosis. We sought to build an immune-related prognostic signature and investigate its relationship with immunotherapy response in ccRCC. METHODS Immune-related genes were identified by ssGSEA and WGCNA. The prognostic signature was conducted via univariate, least absolute shrinkage and selection operator, and multivariable Cox regression analyses. Kaplan-Meier analysis, PCA, t-SNE, and ROC were used to evaluate the risk model. RESULTS A total of 119 immune-related genes associated with prognosis were screened out. Six immune-related genes (CSF1, CD5L, AIM2, TIMP3, IRF6, and HHLA2) were applied to construct a prognostic signature for KIRC. Kaplan-Meier analysis showed that patients in high-risk group had a poorer survival outcome than in low-risk group. The 1-, 3- and 5-year AUC of the prognostic signature was 0.754, 0.715, and 0.739, respectively. Univariate and multivariate Cox regression models demonstrated that the risk signature was an independent prognostic factor for KIRC survival. GSEA analysis suggested that the high-risk group was concentrated on immune-related pathways. The high-risk group with more regulatory T-cell infiltration showed a higher expression of immune negative regulation genes. The risk score had positively relationship with TIDE score and negatively with the response of immunotherapy. The IC50 values of axitinib, sunitinib, sorafenib, and temsirolimus were lower in the high-risk group. CONCLUSION Our study defined a robust signature that may be promising for predicting clinical outcomes and immunotherapy and targeted therapy response in ccRCC patients.
Collapse
Affiliation(s)
- Libin Zhou
- Department of UrologyThe Affiliated Lihuili HospitalNingbo UniversityNingboChina
- Department of UrologyNingbo Medical Centre Lihuili HospitalNingboChina
| | - Hualong Fang
- The First Affiliated Hospital of NanchangNanchangChina
| | - Min Yin
- Department of UrologyNingbo Medical Centre Lihuili HospitalNingboChina
| | - Huimin Long
- Department of UrologyNingbo Medical Centre Lihuili HospitalNingboChina
| | - Guobin Weng
- Department of UrologyThe Affiliated Yinzhou No 2 Hospital, Ningbo UniversityNingboChina
- Department of UrologyNingbo Yinzhou No 2 HospitalNingboChina
| |
Collapse
|
4
|
Huang JL, Chen SY, Lin CS. Targeting Cancer Stem Cells through Epigenetic Modulation of Interferon Response. J Pers Med 2022; 12:jpm12040556. [PMID: 35455671 PMCID: PMC9027081 DOI: 10.3390/jpm12040556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSCs) are a small subset of cancer cells and are thought to play a critical role in the initiation and maintenance of tumor mass. CSCs exhibit similar hallmarks to normal stem cells, such as self-renewal, differentiation, and homeostasis. In addition, CSCs are equipped with several features so as to evade anticancer mechanisms. Therefore, it is hard to eliminate CSCs by conventional anticancer therapeutics that are effective at clearing bulk cancer cells. Interferons are innate cytokines and are the key players in immune surveillance to respond to invaded pathogens. Interferons are also crucial for adaptive immunity for the killing of specific aliens including cancer cells. However, CSCs usually evolve to escape from interferon-mediated immune surveillance and to shape the niche as a “cold” tumor microenvironment (TME). These CSC characteristics are related to their unique epigenetic regulations that are different from those of normal and bulk cancer cells. In this review, we introduce the roles of epigenetic modifiers, focusing on LSD1, BMI1, G9a, and SETDB1, in contributing to CSC characteristics and discussing the interplay between CSCs and interferon response. We also discuss the emerging strategy for eradicating CSCs by targeting these epigenetic modifiers, which can elevate cytosolic nuclei acids, trigger interferon response, and reshape a “hot” TME for improving cancer immunotherapy. The key epigenetic and immune genes involved in this crosstalk can be used as biomarkers for precision oncology.
Collapse
Affiliation(s)
- Jau-Ling Huang
- Department of Bioscience Technology, College of Health Science, Chang Jung Christian University, Tainan 711, Taiwan;
| | - Si-Yun Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Chang-Shen Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Correspondence:
| |
Collapse
|
5
|
Liang W, Chen S, Yang G, Feng J, Ling Q, Wu B, Yan H, Cheng J. Overexpression of zinc-finger protein 677 inhibits proliferation and invasion by and induces apoptosis in clear cell renal cell carcinoma. Bioengineered 2022; 13:5292-5304. [PMID: 35164660 PMCID: PMC8973725 DOI: 10.1080/21655979.2022.2038891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/29/2022] [Accepted: 02/02/2022] [Indexed: 11/28/2022] Open
Abstract
Recent studies have demonstrated that zinc-finger protein 677 (ZNF677) acts as a tumor suppressor gene in cancer. However, the expression and function of ZNF677 in clear cell renal cell carcinoma (ccRCC) are still unclear. In this study, we used bioinformatics analysis and in vitro experiments to investigate the expression of ZNF677 in ccRCC tissues and the malignant biological behavior of ZNF677 in 786-0 cells. We demonstrated that ZNF677 is hypermethylated in ccRCC and is associated with clinicopathological features. The results of the functional assays indicate that ZNF677 inhibits tumor cell proliferation and invasion and induces apoptosis. Further prognostic analysis indicated that low expression of ZNF677 is associated with shorter overall survival. Additionally, ZNF677 overexpression suppressed the invasion and epithelial-mesenchymal transition of 786-0 cells by inactivating the PI3K/AKT signaling pathway. This is the first report to evaluate the influence of ZNF677 on ccRCC cells malignant biological behavior. The results indicate that high expression of ZNF677 could be considered as a favorable prognostic indicator for ccRCC.
Collapse
Affiliation(s)
- W Liang
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Sh Chen
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Gl Yang
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Jy Feng
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Q Ling
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - B Wu
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Hb Yan
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Jw Cheng
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| |
Collapse
|