1
|
Ilatovskaya DV, Ogola B, Faulkner JL, Mamenko M, Taylor EB, Dent E, Ryan MJ, Sullivan JC. Guidelines for sex-specific considerations to improve rigor in renal research and how we got there. Am J Physiol Renal Physiol 2025; 328:F204-F217. [PMID: 39705719 DOI: 10.1152/ajprenal.00136.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/22/2024] Open
Abstract
Biological sex significantly influences disease presentation, progression, and therapeutic outcomes in chronic kidney disease and acute kidney injury. Sex hormones, including estrogen and testosterone, modulate key renal functions, including renal blood flow, glomerular filtration, and electrolyte transport, thereby affecting disease trajectory in a sex-specific manner. It is critical for researchers to understand why and how to integrate sex as a biological variable in data collection, analysis, and reporting. Integrating a sex-based perspective in kidney research will lead to more personalized and efficacious treatment strategies, optimizing therapeutic interventions for each sex. If addressed properly, the incorporation of sex as a biological variable (SABV) in renal research not only enhances the mechanistic understanding of renal disease, but also paves the way for precision medicine, promising improved clinical outcomes, and tailored treatment protocols for all patients. This paper is designed to serve as a guideline for researchers interested in rigorously incorporating sex as a biological variable in their studies.
Collapse
Affiliation(s)
- Daria V Ilatovskaya
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Benard Ogola
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Jessica L Faulkner
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Mykola Mamenko
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Erin B Taylor
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Elena Dent
- The Graduate School, Augusta University, Augusta, Georgia, United States
| | - Michael J Ryan
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, United States
- Columbia VA Health Care System, Columbia, South Carolina, United States
| | - Jennifer C Sullivan
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
- The Graduate School, Augusta University, Augusta, Georgia, United States
| |
Collapse
|
2
|
Aharonoff A, Kim J, Washington A, Ercan S. SMC-mediated dosage compensation in C. elegans evolved in the presence of an ancestral nematode mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.595224. [PMID: 38826443 PMCID: PMC11142195 DOI: 10.1101/2024.05.21.595224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Mechanisms of X chromosome dosage compensation have been studied extensively in a few model species representing clades of shared sex chromosome ancestry. However, the diversity within each clade as a function of sex chromosome evolution is largely unknown. Here, we anchor ourselves to the nematode Caenorhabditis elegans, for which a well-studied mechanism of dosage compensation occurs through a specialized structural maintenance of chromosomes (SMC) complex, and explore the diversity of dosage compensation in the surrounding phylogeny of nematodes. Through phylogenetic analysis of the C. elegans dosage compensation complex and a survey of its epigenetic signatures, including X-specific topologically associating domains (TADs) and X-enrichment of H4K20me1, we found that the condensin-mediated mechanism evolved recently in the lineage leading to Caenorhabditis through an SMC-4 duplication. Intriguingly, an independent duplication of SMC-4 and the presence of X-specific TADs in Pristionchus pacificus suggest that condensin-mediated dosage compensation arose more than once. mRNA-seq analyses of gene expression in several nematode species indicate that dosage compensation itself is ancestral, as expected from the ancient XO sex determination system. Indicative of the ancestral mechanism, H4K20me1 is enriched on the X chromosomes in Oscheius tipulae, which does not contain X-specific TADs or SMC-4 paralogs. Together, our results indicate that the dosage compensation system in C. elegans is surprisingly new, and condensin may have been co-opted repeatedly in nematodes, suggesting that the process of evolving a chromosome-wide gene regulatory mechanism for dosage compensation is constrained. Significance statement X chromosome dosage compensation mechanisms evolved in response to Y chromosome degeneration during sex chromosome evolution. However, establishment of dosage compensation is not an endpoint. As sex chromosomes change, dosage compensation strategies may have also changed. In this study, we performed phylogenetic and epigenomic analyses surrounding Caenorhabditis elegans and found that the condensin-mediated dosage compensation mechanism in C. elegans is surprisingly new, and has evolved in the presence of an ancestral mechanism. Intriguingly, condensin-based dosage compensation may have evolved more than once in the nematode lineage, the other time in Pristionchus. Together, our work highlights a previously unappreciated diversity of dosage compensation mechanisms within a clade, and suggests constraints in evolving new mechanisms in the presence of an existing one.
Collapse
Affiliation(s)
- Avrami Aharonoff
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003
| | - Jun Kim
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003
| | - Aaliyah Washington
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003
| | - Sevinç Ercan
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003
| |
Collapse
|
3
|
Bravo‐Estupiñan DM, Aguilar‐Guerrero K, Quirós S, Acón M, Marín‐Müller C, Ibáñez‐Hernández M, Mora‐Rodríguez RA. Gene dosage compensation: Origins, criteria to identify compensated genes, and mechanisms including sensor loops as an emerging systems-level property in cancer. Cancer Med 2023; 12:22130-22155. [PMID: 37987212 PMCID: PMC10757140 DOI: 10.1002/cam4.6719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023] Open
Abstract
The gene dosage compensation hypothesis presents a mechanism through which the expression of certain genes is modulated to compensate for differences in the dose of genes when additional chromosomes are present. It is one of the means through which cancer cells actively cope with the potential damaging effects of aneuploidy, a hallmark of most cancers. Dosage compensation arises through several processes, including downregulation or overexpression of specific genes and the relocation of dosage-sensitive genes. In cancer, a majority of compensated genes are generally thought to be regulated at the translational or post-translational level, and include the basic components of a compensation loop, including sensors of gene dosage and modulators of gene expression. Post-translational regulation is mostly undertaken by a general degradation or aggregation of remaining protein subunits of macromolecular complexes. An increasingly important role has also been observed for transcriptional level regulation. This article reviews the process of targeted gene dosage compensation in cancer and other biological conditions, along with the mechanisms by which cells regulate specific genes to restore cellular homeostasis. These mechanisms represent potential targets for the inhibition of dosage compensation of specific genes in aneuploid cancers. This article critically examines the process of targeted gene dosage compensation in cancer and other biological contexts, alongside the criteria for identifying genes subject to dosage compensation and the intricate mechanisms by which cells orchestrate the regulation of specific genes to reinstate cellular homeostasis. Ultimately, our aim is to gain a comprehensive understanding of the intricate nature of a systems-level property. This property hinges upon the kinetic parameters of regulatory motifs, which we have termed "gene dosage sensor loops." These loops have the potential to operate at both the transcriptional and translational levels, thus emerging as promising candidates for the inhibition of dosage compensation in specific genes. Additionally, they represent novel and highly specific therapeutic targets in the context of aneuploid cancer.
Collapse
Affiliation(s)
- Diana M. Bravo‐Estupiñan
- CICICA, Centro de Investigación en Cirugía y Cáncer Research Center on Surgery and CancerUniversidad de Costa RicaSan JoséCosta Rica
- Programa de Doctorado en Ciencias, Sistema de Estudios de Posgrado (SEP)Universidad de Costa RicaSan JoséCosta Rica
- Laboratorio de Terapia Génica, Departamento de BioquímicaEscuela Nacional de Ciencias Biológicas del Instituto Politécnico NacionalCiudad de MéxicoMexico
- Speratum Biopharma, Inc.Centro Nacional de Innovación Biotecnológica Nacional (CENIBiot)San JoséCosta Rica
| | - Karol Aguilar‐Guerrero
- CICICA, Centro de Investigación en Cirugía y Cáncer Research Center on Surgery and CancerUniversidad de Costa RicaSan JoséCosta Rica
- Maestría académica en Microbiología, Programa de Posgrado en Microbiología, Parasitología, Química Clínica e InmunologíaUniversidad de Costa RicaSan JoséCosta Rica
| | - Steve Quirós
- CICICA, Centro de Investigación en Cirugía y Cáncer Research Center on Surgery and CancerUniversidad de Costa RicaSan JoséCosta Rica
- Laboratorio de Quimiosensibilidad tumoral (LQT), Centro de Investigación en enfermedades Tropicales (CIET), Facultad de MicrobiologíaUniversidad de Costa RicaSan JoséCosta Rica
| | - Man‐Sai Acón
- CICICA, Centro de Investigación en Cirugía y Cáncer Research Center on Surgery and CancerUniversidad de Costa RicaSan JoséCosta Rica
| | - Christian Marín‐Müller
- Speratum Biopharma, Inc.Centro Nacional de Innovación Biotecnológica Nacional (CENIBiot)San JoséCosta Rica
| | - Miguel Ibáñez‐Hernández
- Laboratorio de Terapia Génica, Departamento de BioquímicaEscuela Nacional de Ciencias Biológicas del Instituto Politécnico NacionalCiudad de MéxicoMexico
| | - Rodrigo A. Mora‐Rodríguez
- CICICA, Centro de Investigación en Cirugía y Cáncer Research Center on Surgery and CancerUniversidad de Costa RicaSan JoséCosta Rica
- Laboratorio de Quimiosensibilidad tumoral (LQT), Centro de Investigación en enfermedades Tropicales (CIET), Facultad de MicrobiologíaUniversidad de Costa RicaSan JoséCosta Rica
| |
Collapse
|
4
|
Gu J, Zhang J, Liu Q, Xu S. Neurological risks of COVID-19 in women: the complex immunology underpinning sex differences. Front Immunol 2023; 14:1281310. [PMID: 38035090 PMCID: PMC10685449 DOI: 10.3389/fimmu.2023.1281310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
The COVID-19 pandemic has uncovered many mysteries about SARS-CoV-2, including its potential to trigger abnormal autoimmune responses. Emerging evidence suggests women may face higher risks from COVID-induced autoimmunity manifesting as persistent neurological symptoms. Elucidating the mechanisms underlying this female susceptibility is now imperative. We synthesize key insights from existing studies on how COVID-19 infection can lead to immune tolerance loss, enabling autoreactive antibodies and lymphocyte production. These antibodies and lymphocytes infiltrate the central nervous system. Female sex hormones like estrogen and X-chromosome mediated effects likely contribute to dysregulated humoral immunity and cytokine profiles among women, increasing their predisposition. COVID-19 may also disrupt the delicate immunological balance of the female microbiome. These perturbations precipitate damage to neural damage through mechanisms like demyelination, neuroinflammation, and neurodegeneration - consistent with the observed neurological sequelae in women. An intentional focus on elucidating sex differences in COVID-19 pathogenesis is now needed to inform prognosis assessments and tailored interventions for female patients. From clinical monitoring to evaluating emerging immunomodulatory therapies, a nuanced women-centered approach considering the hormonal status and immunobiology will be vital to ensure equitable outcomes. Overall, deeper insights into the apparent female specificity of COVID-induced autoimmunity will accelerate the development of solutions mitigating associated neurological harm.
Collapse
Affiliation(s)
- Jienan Gu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiale Zhang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qianhui Liu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shijie Xu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Leung K, van de Zande L, Beukeboom LW. Effects of polyploidization and their evolutionary implications are revealed by heritable polyploidy in the haplodiploid wasp Nasonia vitripennis. PLoS One 2023; 18:e0288278. [PMID: 37917617 PMCID: PMC10621845 DOI: 10.1371/journal.pone.0288278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 06/23/2023] [Indexed: 11/04/2023] Open
Abstract
Recurrent polyploidization occurred in the evolutionary history of most Eukaryota. However, how neopolyploid detriment (sterility, gigantism, gene dosage imbalances) has been overcome and even been bridged to evolutionary advantage (gene network diversification, mass radiation, range expansion) is largely unknown, particularly for animals. We used the parasitoid wasp Nasonia vitripennis, a rare insect system with heritable polyploidy, to begin addressing this knowledge gap. In Hymenoptera the sexes have different ploidies (haploid males, diploid females) and neopolyploids (diploid males, triploid females) occur for various species. Although such polyploids are usually sterile, those of N. vitripennis are reproductively capable and can even establish stable polyploid lines. To assess the effects of polyploidization, we compared a long-established polyploid line, the Whiting polyploid line (WPL) and a newly generated transformer knockdown line (tKDL) for fitness traits, absolute gene expression, and cell size and number. WPL polyploids have high male fitness and low female fecundity, while tKDL polyploids have poor male mate competition ability and high fertility. WPL has larger cells and cell number reduction, but the tKDL does not differ in this respect. Expression analyses of two housekeeping genes indicated that gene dosage is linked to sex irrespective of ploidy. Our study suggests that polyploid phenotypic variation may explain why some polyploid lineages thrive and others die out; a commonly proposed but difficult-to-test hypothesis. This documentation of diploid males (tKDL) with impaired competitive mating ability; triploid females with high fitness variation; and hymenopteran sexual dosage compensation (despite the lack of sex chromosomes) all challenges general assumptions on hymenopteran biology. We conclude that polyploidization is dependent on the duplicated genome characteristics and that genomes of different lines are unequally suited to survive diploidization. These results demonstrate the utility of N. vitripennis for delineating mechanisms of animal polyploid evolution, analogous to more advanced polyploid plant models.
Collapse
Affiliation(s)
- Kelley Leung
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Louis van de Zande
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Leo W. Beukeboom
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
6
|
Lauria Sneideman MP, Meller VH. Master regulator of a mosquito X chromosome discovered. Nature 2023; 623:34-35. [PMID: 37770657 DOI: 10.1038/d41586-023-02972-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
|
7
|
Morao AK, Kim J, Obaji D, Sun S, Ercan S. Topoisomerases I and II facilitate condensin DC translocation to organize and repress X chromosomes in C. elegans. Mol Cell 2022; 82:4202-4217.e5. [PMID: 36302374 PMCID: PMC9837612 DOI: 10.1016/j.molcel.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/24/2022] [Accepted: 10/03/2022] [Indexed: 11/18/2022]
Abstract
Condensins are evolutionarily conserved molecular motors that translocate along DNA and form loops. To address how DNA topology affects condensin translocation, we applied auxin-inducible degradation of topoisomerases I and II and analyzed the binding and function of an interphase condensin that mediates X chromosome dosage compensation in C. elegans. TOP-2 depletion reduced long-range spreading of condensin-DC (dosage compensation) from its recruitment sites and shortened 3D DNA contacts measured by Hi-C. TOP-1 depletion did not affect long-range spreading but resulted in condensin-DC accumulation within expressed gene bodies. Both TOP-1 and TOP-2 depletion resulted in X chromosome derepression, indicating that condensin-DC translocation at both scales is required for its function. Together, the distinct effects of TOP-1 and TOP-2 suggest two distinct modes of condensin-DC association with chromatin: long-range DNA loop extrusion that requires decatenation/unknotting of DNA and short-range translocation across genes that requires resolution of transcription-induced supercoiling.
Collapse
Affiliation(s)
- Ana Karina Morao
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA.
| | - Jun Kim
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Daniel Obaji
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Siyu Sun
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Sevinç Ercan
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA.
| |
Collapse
|
8
|
Goad J, Rudolph J, Zandigohar M, Tae M, Dai Y, Wei JJ, Bulun SE, Chakravarti D, Rajkovic A. Single-cell sequencing reveals novel cellular heterogeneity in uterine leiomyomas. Hum Reprod 2022; 37:2334-2349. [PMID: 36001050 PMCID: PMC9802286 DOI: 10.1093/humrep/deac183] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/29/2022] [Indexed: 01/07/2023] Open
Abstract
STUDY QUESTION What are the cellular composition and single-cell transcriptomic differences between myometrium and leiomyomas as defined by single-cell RNA sequencing? SUMMARY ANSWER We discovered cellular heterogeneity in smooth muscle cells (SMCs), fibroblast and endothelial cell populations in both myometrium and leiomyoma tissues. WHAT IS KNOWN ALREADY Previous studies have shown the presence of SMCs, fibroblasts, endothelial cells and immune cells in myometrium and leiomyomas. However, there is no information on the cellular heterogeneity in these tissues and the transcriptomic differences at the single-cell level between these tissues. STUDY DESIGN, SIZE, DURATION We collected five leiomyoma and five myometrium samples from a total of eight patients undergoing hysterectomy. We then performed single-cell RNA sequencing to generate a cell atlas for both tissues. We utilized our single-cell sequencing data to define cell types, compare cell types by tissue type (leiomyoma versus myometrium) and determine the transcriptional changes at a single-cell resolution between leiomyomas and myometrium. Additionally, we performed MED12-variant analysis at the single-cell level to determine the genotype heterogeneity within leiomyomas. PARTICIPANTS/MATERIALS, SETTING, METHODS We collected five MED12-variant positive leiomyomas and five myometrium samples from a total of eight patients. We then performed single-cell RNA sequencing on freshly isolated single-cell preparations. Histopathological assessment confirmed the identity of the samples. Sanger sequencing was performed to confirm the presence of the MED12 variant in leiomyomas. MAIN RESULTS AND ROLE OF CHANCE Our data revealed previously unknown heterogeneity in the SMC, fibroblast cell and endothelial cell populations of myometrium and leiomyomas. We discovered the presence of two different lymphatic endothelial cell populations specific to uterine leiomyomas. We showed that both myometrium and MED12-variant leiomyomas are relatively similar in cellular composition but differ in cellular transcriptomic profiles. We found that fibroblasts influence the leiomyoma microenvironment through their interactions with endothelial cells, immune cells and SMCs. Variant analysis at the single-cell level revealed the presence of both MED12 variants as well as the wild-type MED12 allele in SMCs of leiomyomatous tissue. These results indicate genotype heterogeneity of cellular composition within leiomyomas. LARGE SCALE DATA The datasets are available in the NCBI Gene Expression Omnibus (GEO) using GSE162122. LIMITATIONS, REASONS FOR CAUTION Our study focused on MED12-variant positive leiomyomas for single-cell RNA sequencing analyses. Leiomyomas carrying other genetic rearrangements may differ in their cellular composition and transcriptomic profiles. WIDER IMPLICATIONS FOR THE FINDINGS Our study provides a cellular atlas for myometrium and MED12-variant positive leiomyomas as defined by single-cell RNA sequencing. Our analysis provides significant insight into the differences between myometrium and leiomyomas at the single-cell level and reveals hitherto unknown genetic heterogeneity in multiple cell types within human leiomyomas. Our results will be important for future studies into the origin and growth of human leiomyomas. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by funding from the National Institute of Child Health and Human Development (HD098580 and HD088629). The authors declare no competing interests.
Collapse
Affiliation(s)
- Jyoti Goad
- Correspondence address. Department of Pathology, HSW-518, 513 Parnassus Ave, San Francisco, CA 94143, USA. Tel: +415-502-4961; E-mail: (A.R.); Tel: +415-514-4687, E-mail: (J.G.)
| | - Joshua Rudolph
- Department of Medicine, Lung Biology Center, University of California, San Francisco, CA, USA
| | - Mehrdad Zandigohar
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Matthew Tae
- Department of Pathology, University of California, San Francisco, CA, USA
| | - Yang Dai
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Jian-Jun Wei
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Serdar E Bulun
- Division of Reproductive Sciences in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Debabrata Chakravarti
- Division of Reproductive Sciences in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Aleksandar Rajkovic
- Correspondence address. Department of Pathology, HSW-518, 513 Parnassus Ave, San Francisco, CA 94143, USA. Tel: +415-502-4961; E-mail: (A.R.); Tel: +415-514-4687, E-mail: (J.G.)
| |
Collapse
|
9
|
Ragipani B, Albritton SE, Morao AK, Mesquita D, Kramer M, Ercan S. Increased gene dosage and mRNA expression from chromosomal duplications in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2022; 12:jkac151. [PMID: 35731207 PMCID: PMC9339279 DOI: 10.1093/g3journal/jkac151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/09/2022] [Indexed: 11/14/2022]
Abstract
Isolation of copy number variations and chromosomal duplications at high frequency in the laboratory suggested that Caenorhabditis elegans tolerates increased gene dosage. Here, we addressed if a general dosage compensation mechanism acts at the level of mRNA expression in C. elegans. We characterized gene dosage and mRNA expression in 3 chromosomal duplications and a fosmid integration strain using DNA-seq and mRNA-seq. Our results show that on average, increased gene dosage leads to increased mRNA expression, pointing to a lack of genome-wide dosage compensation. Different genes within the same chromosomal duplication show variable levels of mRNA increase, suggesting feedback regulation of individual genes. Somatic dosage compensation and germline repression reduce the level of mRNA increase from X chromosomal duplications. Together, our results show a lack of genome-wide dosage compensation mechanism acting at the mRNA level in C. elegans and highlight the role of epigenetic and individual gene regulation contributing to the varied consequences of increased gene dosage.
Collapse
Affiliation(s)
- Bhavana Ragipani
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Sarah Elizabeth Albritton
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Ana Karina Morao
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Diogo Mesquita
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Maxwell Kramer
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Sevinç Ercan
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| |
Collapse
|
10
|
Abstract
X chromosome inactivation (XCI) is the process of silencing one of the X chromosomes in cells of the female mammal which ensures dosage compensation between the sexes. Although theoretically random in somatic tissues, the choice of which X chromosome is chosen to be inactivated can be biased in mice by genetic element(s) associated with the so-called X-controlling element (Xce). Although the Xce was first described and genetically localized nearly 40 y ago, its mode of action remains elusive. In the approach presented here, we identify a single long noncoding RNA (lncRNA) within the Xce locus, Lppnx, which may be the driving factor in the choice of which X chromosome will be inactivated in the developing female mouse embryo. Comparing weak and strong Xce alleles we show that Lppnx modulates the expression of Xist lncRNA, one of the key factors in XCI, by controlling the occupancy of pluripotency factors at Intron1 of Xist. This effect is counteracted by enhanced binding of Rex1 in DxPas34, another key element in XCI regulating the activity of Tsix lncRNA, the main antagonist of Xist, in the strong but not in the weak Xce allele. These results suggest that the different susceptibility for XCI observed in weak and strong Xce alleles results from differential transcription factor binding of Xist Intron 1 and DxPas34, and that Lppnx represents a decisive factor in explaining the action of the Xce.
Collapse
|
11
|
Muyle A, Marais GAB, Bačovský V, Hobza R, Lenormand T. Dosage compensation evolution in plants: theories, controversies and mechanisms. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210222. [PMID: 35306896 PMCID: PMC8935305 DOI: 10.1098/rstb.2021.0222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In a minority of flowering plants, separate sexes are genetically determined by sex chromosomes. The Y chromosome has a non-recombining region that degenerates, causing a reduced expression of Y genes. In some species, the lower Y expression is accompanied by dosage compensation (DC), a mechanism that re-equalizes male and female expression and/or brings XY male expression back to its ancestral level. Here, we review work on DC in plants, which started as early as the late 1960s with cytological approaches. The use of transcriptomics fired a controversy as to whether DC existed in plants. Further work revealed that various plants exhibit partial DC, including a few species with young and homomorphic sex chromosomes. We are starting to understand the mechanisms responsible for DC in some plants, but in most species, we lack the data to differentiate between global and gene-by-gene DC. Also, it is unknown why some species evolve many dosage compensated genes while others do not. Finally, the forces that drive DC evolution remain mysterious, both in plants and animals. We review the multiple evolutionary theories that have been proposed to explain DC patterns in eukaryotes with XY or ZW sex chromosomes. This article is part of the theme issue 'Sex determination and sex chromosome evolution in land plants'.
Collapse
Affiliation(s)
- Aline Muyle
- Laboratoire 'Biométrie et Biologie Evolutive', CNRS/Université Lyon 1, Lyon, France
| | - Gabriel A B Marais
- Laboratoire 'Biométrie et Biologie Evolutive', CNRS/Université Lyon 1, Lyon, France.,CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002 Porto, Portugal.,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Václav Bačovský
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, Brno, Czech Republic
| | - Roman Hobza
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, Brno, Czech Republic
| | - Thomas Lenormand
- CEFE, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
12
|
Dosage compensation in Bombyx mori is achieved by partial repression of both Z chromosomes in males. Proc Natl Acad Sci U S A 2022; 119:e2113374119. [PMID: 35239439 PMCID: PMC8915793 DOI: 10.1073/pnas.2113374119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Genes on sex chromosomes (i.e. human chX) are regulated differently in males and females to balance gene expression levels between sexes (XY vs. XX). This sex-specific regulation is called dosage compensation (DC). DC is achieved by altering the shape and compaction of sex chromosomes specifically in one sex. In this study, we use Oligopaints to examine DC in silkworms. This study visualizes this phenomenon in a species with ZW sex chromosomes, which evolved independently of XY. Our data support a long-standing model for how DC mechanisms evolved across species, and we show potential similarity between DC in silkworms and nematodes, suggesting that this type of DC may have emerged multiple independent times throughout evolution. Interphase chromatin is organized precisely to facilitate accurate gene expression. The structure–function relationship of chromatin is epitomized in sex chromosome dosage compensation (DC), where sex-linked gene expression is balanced between males and females via sex-specific alterations to three-dimensional chromatin structure. Studies in ZW-bearing species suggest that DC is absent or incomplete in most lineages except butterflies and moths, where male (ZZ) Z chromosome (chZ) expression is reduced by half to equal females (ZW). However, whether one chZ is inactivated (as in mammals) or both are partially repressed (as in Caenorhabditis elegans) is unclear. Using Oligopaints in the silkworm, Bombyx mori, we visualize autosomes and chZ in somatic cells from both sexes. We find that B. mori chromosomes are highly compact relative to Drosophila. We show that in B. mori males, both chZs are similar in size and shape and are more compact than autosomes or the female chZ after DC establishment, suggesting both male chZs are partially and equally downregulated. We also find that in the early stages of DC in females, chZ chromatin becomes more accessible and Z-linked expression increases. Concomitant with these changes, the female chZ repositions toward the nuclear center, revealing nonsequencing-based support for Ohno’s hypothesis. These studies visualizing interphase genome organization and chZ structure in Lepidoptera uncover intriguing similarities between DC in B. mori and C. elegans, despite these lineages harboring evolutionarily distinct sex chromosomes (ZW/XY), suggesting a possible role for holocentricity in DC mechanisms.
Collapse
|
13
|
Heskett MB, Spellman PT, Thayer MJ. Differential Allelic Expression among Long Non-Coding RNAs. Noncoding RNA 2021; 7:ncrna7040066. [PMID: 34698262 PMCID: PMC8544735 DOI: 10.3390/ncrna7040066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/11/2021] [Accepted: 10/20/2021] [Indexed: 12/23/2022] Open
Abstract
Long non-coding RNAs (lncRNA) comprise a diverse group of non-protein-coding RNAs >200 bp in length that are involved in various normal cellular processes and disease states, and can affect coding gene expression through mechanisms in cis or in trans. Since the discovery of the first functional lncRNAs transcribed by RNA Polymerase II, H19 and Xist, many others have been identified and noted for their unusual transcriptional pattern, whereby expression from one chromosome homolog is strongly favored over the other, also known as mono-allelic or differential allelic expression. lncRNAs with differential allelic expression have been observed to play critical roles in developmental gene regulation, chromosome structure, and disease. Here, we will focus on known examples of differential allelic expression of lncRNAs and highlight recent research describing functional lncRNAs expressed from both imprinted and random mono-allelic expression domains.
Collapse
Affiliation(s)
- Michael B. Heskett
- Department of Genetics, Oregon Health & Science University, Portland, OR 97239, USA; (M.B.H.); (P.T.S.)
| | - Paul T. Spellman
- Department of Genetics, Oregon Health & Science University, Portland, OR 97239, USA; (M.B.H.); (P.T.S.)
| | - Mathew J. Thayer
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
- Correspondence:
| |
Collapse
|
14
|
Belyi A, Argyridou E, Parsch J. The Influence of Chromosomal Environment on X-Linked Gene Expression in Drosophila melanogaster. Genome Biol Evol 2020; 12:2391-2402. [PMID: 33104185 PMCID: PMC7719225 DOI: 10.1093/gbe/evaa227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2020] [Indexed: 12/14/2022] Open
Abstract
Sex chromosomes often differ from autosomes with respect to their gene expression and regulation. In Drosophila melanogaster, X-linked genes are dosage compensated by having their expression upregulated in the male soma, a process mediated by the X-chromosome-specific binding of the dosage compensation complex (DCC). Previous studies of X-linked gene expression found a negative correlation between a gene’s male-to-female expression ratio and its distance to the nearest DCC binding site in somatic tissues, including head and brain, which suggests that dosage compensation influences sex-biased gene expression. A limitation of the previous studies, however, was that they focused on endogenous X-linked genes and, thus, could not disentangle the effects of chromosomal position from those of gene-specific regulation. To overcome this limitation, we examined the expression of an exogenous reporter gene inserted at many locations spanning the X chromosome. We observed a negative correlation between the male-to-female expression ratio of the reporter gene and its distance to the nearest DCC binding site in somatic tissues, but not in gonads. A reporter gene’s location relative to a DCC binding site had greater influence on its expression than the local regulatory elements of neighboring endogenous genes, suggesting that intra-chromosomal variation in the strength of dosage compensation is a major determinant of sex-biased gene expression. Average levels of sex-biased expression did not differ between head and brain, but there was greater positional effect variation in the brain, which may explain the observed excess of endogenous sex-biased genes located on the X chromosome in this tissue.
Collapse
Affiliation(s)
- Aleksei Belyi
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Planegg-Martinsried, Germany
| | - Eliza Argyridou
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Planegg-Martinsried, Germany
| | - John Parsch
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Planegg-Martinsried, Germany
| |
Collapse
|
15
|
Fruchard C, Badouin H, Latrasse D, Devani RS, Muyle A, Rhoné B, Renner SS, Banerjee AK, Bendahmane A, Marais GAB. Evidence for Dosage Compensation in Coccinia grandis, a Plant with a Highly Heteromorphic XY System. Genes (Basel) 2020; 11:E787. [PMID: 32668777 PMCID: PMC7397054 DOI: 10.3390/genes11070787] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/01/2020] [Accepted: 07/08/2020] [Indexed: 01/17/2023] Open
Abstract
About 15,000 angiosperms are dioecious, but the mechanisms of sex determination in plants remain poorly understood. In particular, how Y chromosomes evolve and degenerate, and whether dosage compensation evolves as a response, are matters of debate. Here, we focus on Coccinia grandis, a dioecious cucurbit with the highest level of X/Y heteromorphy recorded so far. We identified sex-linked genes using RNA sequences from a cross and a model-based method termed SEX-DETector. Parents and F1 individuals were genotyped, and the transmission patterns of SNPs were then analyzed. In the >1300 sex-linked genes studied, maximum X-Y divergence was 0.13-0.17, and substantial Y degeneration is implied by an average Y/X expression ratio of 0.63 and an inferred gene loss on the Y of ~40%. We also found reduced Y gene expression being compensated by elevated expression of corresponding genes on the X and an excess of sex-biased genes on the sex chromosomes. Molecular evolution of sex-linked genes in C. grandis is thus comparable to that in Silene latifolia, another dioecious plant with a strongly heteromorphic XY system, and cucurbits are the fourth plant family in which dosage compensation is described, suggesting it might be common in plants.
Collapse
Affiliation(s)
- Cécile Fruchard
- Laboratoire de Biométrie et Biologie Evolutive (LBBE), UMR5558, Université Lyon 1, 69622 Villeurbanne, France; (C.F.); (H.B.); (B.R.)
| | - Hélène Badouin
- Laboratoire de Biométrie et Biologie Evolutive (LBBE), UMR5558, Université Lyon 1, 69622 Villeurbanne, France; (C.F.); (H.B.); (B.R.)
| | - David Latrasse
- Institute of Plant Sciences Paris Saclay (IPS2), University of Paris Saclay, 91405 Orsay, France; (D.L.); (R.S.D.); (A.B.)
| | - Ravi S. Devani
- Institute of Plant Sciences Paris Saclay (IPS2), University of Paris Saclay, 91405 Orsay, France; (D.L.); (R.S.D.); (A.B.)
- Biology Division, Indian Institute of Science Education and Research (IISER), Pune 411008, Maharashtra, India;
| | - Aline Muyle
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA 92697, USA;
| | - Bénédicte Rhoné
- Laboratoire de Biométrie et Biologie Evolutive (LBBE), UMR5558, Université Lyon 1, 69622 Villeurbanne, France; (C.F.); (H.B.); (B.R.)
- Institut de Recherche pour le Développement (IRD), Université Montpellier, DIADE, F-34394 Montpellier, France
| | - Susanne S. Renner
- Systematic Botany and Mycology, University of Munich (LMU), Menzinger Str. 67, 80638 Munich, Germany;
| | - Anjan K. Banerjee
- Biology Division, Indian Institute of Science Education and Research (IISER), Pune 411008, Maharashtra, India;
| | - Abdelhafid Bendahmane
- Institute of Plant Sciences Paris Saclay (IPS2), University of Paris Saclay, 91405 Orsay, France; (D.L.); (R.S.D.); (A.B.)
| | - Gabriel A. B. Marais
- Laboratoire de Biométrie et Biologie Evolutive (LBBE), UMR5558, Université Lyon 1, 69622 Villeurbanne, France; (C.F.); (H.B.); (B.R.)
| |
Collapse
|
16
|
Lenormand T, Fyon F, Sun E, Roze D. Sex Chromosome Degeneration by Regulatory Evolution. Curr Biol 2020; 30:3001-3006.e5. [PMID: 32559446 DOI: 10.1016/j.cub.2020.05.052] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/07/2020] [Accepted: 05/14/2020] [Indexed: 12/31/2022]
Abstract
In many species, the Y (or W) sex chromosome is degenerate. Current theory proposes that this degeneration follows the arrest of recombination and results from the accumulation of deleterious mutations due to selective interference-the inefficacy of natural selection on non-recombining genomic regions. This theory requires very few assumptions, but it does not robustly predict fast erosion of the Y (or W) in large populations or the stepwise degeneration of several small non-recombining strata. We propose a new mechanism for Y/W erosion that works over faster timescales, in large populations, and for small non-recombining regions (down to a single sex-linked gene). The mechanism is based on the instability and divergence of cis-regulatory sequences in non-recombining genome regions, which become selectively haploidized to mask deleterious mutations on coding sequences. This haploidization is asymmetric, because cis-regulators on the X cannot be silenced (otherwise there would be no expression in females). This process causes rapid Y/W degeneration and simultaneous evolution of dosage compensation, provided that autosomal trans-regulatory sequences with sex-limited effects are available to compensate for cis-regulatory divergence. Although this "degeneration by regulatory evolution" does not require selective interference, both processes may act in concert to further accelerate Y degeneration.
Collapse
Affiliation(s)
- Thomas Lenormand
- CEFE, Univ Montpellier, CNRS, Univ Paul Valéry Montpellier 3, EPHE, IRD, Montpellier 34293, France; Radcliffe Institute, Harvard University, Cambridge, MA 02138, USA.
| | - Frederic Fyon
- CEFE, Univ Montpellier, CNRS, Univ Paul Valéry Montpellier 3, EPHE, IRD, Montpellier 34293, France
| | - Eric Sun
- Radcliffe Institute, Harvard University, Cambridge, MA 02138, USA
| | - Denis Roze
- CNRS, UMI 3614, Roscoff 29680, France; Sorbonne Université, Station Biologique de Roscoff, France
| |
Collapse
|
17
|
Wang Y, Buyse J, Courousse N, Tesseraud S, Métayer-Coustard S, Berri C, Schallier S, Everaert N, Collin A. Effects of sex and fasting/refeeding on hepatic AMPK signaling in chickens (Gallus gallus). Comp Biochem Physiol A Mol Integr Physiol 2019; 240:110606. [PMID: 31676410 DOI: 10.1016/j.cbpa.2019.110606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/10/2019] [Accepted: 10/18/2019] [Indexed: 11/16/2022]
Abstract
The alpha-1 isoform of chicken AMPK situates on the Z-chromosome, in contrast, the other isoforms in birds and the mammalian AMPKα1 are located on the autosomes. The present study aimed to investigate the role of hepatic AMPK signaling in adaptation to nutritional status and the potential sex-specific response in chickens. Hepatic genes and proteins were compared between the two sexes immediately after hatching. From 20d of age, chicks from each sex received feed treatments: Control was fed ad libitum; Fasted was starved for 24 h; Refed was fed for 4 h after a 24 h fasting. As a result, hepatic AMPKα1 mRNA level in males was significantly higher at both ages compared to females, due to the presence of Z-chromosomes. However, this did not make this kinase "male-bias" as it was eventually compensated at a translational level, which was not reported in previous studies. The protein levels and activation of AMPKα were even lower in newly-hatched male compared to female chicks, accompanied with a higher FAS and SREBP-1 gene expressions. Accordingly, hepatic G6PC2 mRNA levels in males were significantly lower associated with lower plasma glucose levels after hatching. Fasting activated hepatic AMPK, which in turn inhibited gene expression of GS, FAS and SREBP-1, and stimulated the downstream G6PC2 in both sexes. These changes recovered after refeeding. In conclusion, AMPK plays a role in adaptation to nutritional environment for both sexes. The Z-linked AMPK did not exert a sex-specific signaling, due to a "translational compensation" of AMPKα1.
Collapse
Affiliation(s)
- Yufeng Wang
- Laboratory of Livestock Physiology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30, 3001 Leuven, Belgium
| | - Johan Buyse
- Laboratory of Livestock Physiology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30, 3001 Leuven, Belgium.
| | | | | | | | - Cécile Berri
- BOA, INRA, Université de Tours, 37380 Nouzilly, France
| | - Seline Schallier
- Laboratory of Livestock Physiology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30, 3001 Leuven, Belgium
| | - Nadia Everaert
- Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, Passage des Déportés 2, 5030 Gembloux, Belgium
| | - Anne Collin
- BOA, INRA, Université de Tours, 37380 Nouzilly, France
| |
Collapse
|
18
|
Krasovec M, Kazama Y, Ishii K, Abe T, Filatov DA. Immediate Dosage Compensation Is Triggered by the Deletion of Y-Linked Genes in Silene latifolia. Curr Biol 2019; 29:2214-2221.e4. [PMID: 31231053 PMCID: PMC6616318 DOI: 10.1016/j.cub.2019.05.060] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/27/2019] [Accepted: 05/24/2019] [Indexed: 11/28/2022]
Abstract
The loss of functional genes from non-recombining sex-specific chromosomes [1, 2], such as the Y chromosomes in mammals [3] or W chromosomes in birds [4], should result in an imbalance of gene products for sex-linked genes [5]. Different chromosome-wide systems that rebalance gene expression are known to operate in organisms with relatively old sex chromosomes [6]; e.g., Drosophila overexpress X-linked genes in males [7], while mammals shut down one of the X chromosomes in females [8]. It is not known how long it takes for a chromosome-wide dosage compensation system to evolve. To shed light on the early evolution of dosage compensation, we constructed a high-density Y-deletion map and used deletion mutants to manipulate gene dose and analyze gene expression in white campion (Silene latifolia), which evolved dioecy and sex chromosomes only 11 million years ago [9]. We demonstrate that immediate dosage compensation can be triggered by deletions in a large portion of the p arm of the Y chromosome. Our results indicate that dosage compensation in S. latifolia does not have to evolve gene by gene because a system to upregulate gene expression is already operating on part of the X chromosome, which likely represents an intermediate step in the evolution of a chromosome-wide dosage compensation system in this species.
Collapse
Affiliation(s)
- Marc Krasovec
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| | - Yusuke Kazama
- RIKEN Nishina Center for Accelerator-Based Sciences, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Kotaro Ishii
- RIKEN Nishina Center for Accelerator-Based Sciences, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Tomoko Abe
- RIKEN Nishina Center for Accelerator-Based Sciences, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Dmitry A Filatov
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK.
| |
Collapse
|
19
|
Picard MAL, Vicoso B, Roquis D, Bulla I, Augusto RC, Arancibia N, Grunau C, Boissier J, Cosseau C. Dosage Compensation throughout the Schistosoma mansoni Lifecycle: Specific Chromatin Landscape of the Z Chromosome. Genome Biol Evol 2019; 11:1909-1922. [PMID: 31273378 PMCID: PMC6628874 DOI: 10.1093/gbe/evz133] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2019] [Indexed: 12/12/2022] Open
Abstract
Differentiated sex chromosomes are accompanied by a difference in gene dose between X/Z-specific and autosomal genes. At the transcriptomic level, these sex-linked genes can lead to expression imbalance, or gene dosage can be compensated by epigenetic mechanisms and results into expression level equalization. Schistosoma mansoni has been previously described as a ZW species (i.e., female heterogamety, in opposition to XY male heterogametic species) with a partial dosage compensation, but underlying mechanisms are still unexplored. Here, we combine transcriptomic (RNA-Seq) and epigenetic data (ChIP-Seq against H3K4me3, H3K27me3, and H4K20me1 histone marks) in free larval cercariae and intravertebrate parasitic stages. For the first time, we describe differences in dosage compensation status in ZW females, depending on the parasitic status: free cercariae display global dosage compensation, whereas intravertebrate stages show a partial dosage compensation. We also highlight regional differences of gene expression along the Z chromosome in cercariae, but not in the intravertebrate stages. Finally, we feature a consistent permissive chromatin landscape of the Z chromosome in both sexes and stages. We argue that dosage compensation in schistosomes is characterized by chromatin remodeling mechanisms in the Z-specific region.
Collapse
Affiliation(s)
- Marion A L Picard
- Université de Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Université de Montpellier, Perpignan, France
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Beatriz Vicoso
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - David Roquis
- Université de Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Université de Montpellier, Perpignan, France
| | - Ingo Bulla
- Université de Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Université de Montpellier, Perpignan, France
| | - Ronaldo C Augusto
- Université de Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Université de Montpellier, Perpignan, France
| | - Nathalie Arancibia
- Université de Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Université de Montpellier, Perpignan, France
| | - Christoph Grunau
- Université de Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Université de Montpellier, Perpignan, France
| | - Jérôme Boissier
- Université de Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Université de Montpellier, Perpignan, France
| | - Céline Cosseau
- Université de Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Université de Montpellier, Perpignan, France
| |
Collapse
|
20
|
Jordan W, Rieder LE, Larschan E. Diverse Genome Topologies Characterize Dosage Compensation across Species. Trends Genet 2019; 35:308-315. [PMID: 30808531 DOI: 10.1016/j.tig.2019.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 01/19/2023]
Abstract
Dosage compensation is the process by which transcript levels of the X chromosome are equalized with those of autosomes. Although diverse mechanisms of dosage compensation have evolved across species, these mechanisms all involve distinguishing the X chromosome from autosomes. Because one chromosome is singled out from other chromosomes for precise regulation, dosage compensation serves as an important model for understanding how specific cis-elements are identified within the highly compacted 3D genome to co-regulate thousands of genes. Recently, multiple genomic approaches have provided key insights into the mechanisms of dosage compensation, extending what we have learned from classical genetic studies. In the future, newer genomic approaches that require little starting material show great promise to provide an understanding of the heterogeneity of dosage compensation between cells and how it functions in nonmodel organisms.
Collapse
Affiliation(s)
- William Jordan
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Leila E Rieder
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA; Department of Biology, Emory University, Atlanta, GA, USA
| | - Erica Larschan
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA.
| |
Collapse
|
21
|
Duan J(E, Shi W, Jue NK, Jiang Z, Kuo L, O’Neill R, Wolf E, Dong H, Zheng X, Chen J, Tian X(C. Dosage Compensation of the X Chromosomes in Bovine Germline, Early Embryos, and Somatic Tissues. Genome Biol Evol 2019; 11:242-252. [PMID: 30566637 PMCID: PMC6354180 DOI: 10.1093/gbe/evy270] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2018] [Indexed: 12/15/2022] Open
Abstract
Dosage compensation of the mammalian X chromosome (X) was proposed by Susumu Ohno as a mechanism wherein the inactivation of one X in females would lead to doubling the expression of the other. This would resolve the dosage imbalance between eutherian females (XX) versus male (XY) and between a single active X versus autosome pairs (A). Expression ratio of X- and A-linked genes has been relatively well studied in humans and mice, despite controversial results over the existence of upregulation of X-linked genes. Here we report the first comprehensive test of Ohno's hypothesis in bovine preattachment embryos, germline, and somatic tissues. Overall an incomplete dosage compensation (0.5 < X:A < 1) of expressed genes and an excess X dosage compensation (X:A > 1) of ubiquitously expressed "dosage-sensitive" genes were seen. No significant differences in X:A ratios were observed between bovine female and male somatic tissues, further supporting Ohno's hypothesis. Interestingly, preimplantation embryos manifested a unique pattern of X dosage compensation dynamics. Specifically, X dosage decreased after fertilization, indicating that the sperm brings in an inactive X to the matured oocyte. Subsequently, the activation of the bovine embryonic genome enhanced expression of X-linked genes and increased the X dosage. As a result, an excess compensation was exhibited from the 8-cell stage to the compact morula stage. The X dosage peaked at the 16-cell stage and stabilized after the blastocyst stage. Together, our findings confirm Ohno's hypothesis of X dosage compensation in the bovine and extend it by showing incomplete and over-compensation for expressed and "dosage-sensitive" genes, respectively.
Collapse
Affiliation(s)
| | - Wei Shi
- Department of Statistics, University of Connecticut, Storrs, CT
| | - Nathaniel K Jue
- School of Natural Sciences, California State University, Monterey Bay, CA
| | - Zongliang Jiang
- School of Animal Science, Louisiana State University, Agricultural Center, Baton Rouge, LA
| | - Lynn Kuo
- Department of Statistics, University of Connecticut, Storrs, CT
| | - Rachel O’Neill
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT
| | - Eckhard Wolf
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität Muünchen, Germany
| | - Hong Dong
- Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, Xinjiang, P.R. China
| | - Xinbao Zheng
- Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, Xinjiang, P.R. China
| | - Jingbo Chen
- Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, Xinjiang, P.R. China
| | | |
Collapse
|
22
|
Lee H, Oliver B. Non-canonical Drosophila X chromosome dosage compensation and repressive topologically associated domains. Epigenetics Chromatin 2018; 11:62. [PMID: 30355339 PMCID: PMC6199721 DOI: 10.1186/s13072-018-0232-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/15/2018] [Indexed: 12/20/2022] Open
Abstract
Background In animals with XY sex chromosomes, X-linked genes from a single X chromosome in males are imbalanced relative to autosomal genes. To minimize the impact of genic imbalance in male Drosophila, there is a dosage compensation complex (MSL) that equilibrates X-linked gene expression with the autosomes. There are other potential contributions to dosage compensation. Hemizygous autosomal genes located in repressive chromatin domains are often derepressed. If this homolog-dependent repression occurs on the X, which has no pairing partner, then derepression could contribute to male dosage compensation. Results We asked whether different chromatin states or topological associations correlate with X chromosome dosage compensation, especially in regions with little MSL occupancy. Our analyses demonstrated that male X chromosome genes that are located in repressive chromatin states are depleted of MSL occupancy; however, they show dosage compensation. The genes in these repressive regions were also less sensitive to knockdown of MSL components. Conclusions Our results suggest that this non-canonical dosage compensation is due to the same transacting derepression that occurs on autosomes. This mechanism would facilitate immediate compensation during the evolution of sex chromosomes from autosomes. This mechanism is similar to that of C. elegans, where enhanced recruitment of X chromosomes to the nuclear lamina dampens X chromosome expression as part of the dosage compensation response in XX individuals. Electronic supplementary material The online version of this article (10.1186/s13072-018-0232-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hangnoh Lee
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Kidney and Digestive Diseases, National Institutes of Health, Bethesda, MD, USA. .,Section on Cell Cycle Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| | - Brian Oliver
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Kidney and Digestive Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
23
|
Muyle A, Zemp N, Fruchard C, Cegan R, Vrana J, Deschamps C, Tavares R, Hobza R, Picard F, Widmer A, Marais GAB. Genomic imprinting mediates dosage compensation in a young plant XY system. NATURE PLANTS 2018; 4:677-680. [PMID: 30104649 DOI: 10.1038/s41477-018-0221-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/16/2018] [Indexed: 05/06/2023]
Abstract
Sex chromosomes have repeatedly evolved from a pair of autosomes. Consequently, X and Y chromosomes initially have similar gene content, but ongoing Y degeneration leads to reduced expression and eventual loss of Y genes1. The resulting imbalance in gene expression between Y genes and the rest of the genome is expected to reduce male fitness, especially when protein networks have components from both autosomes and sex chromosomes. A diverse set of dosage compensating mechanisms that alleviates these negative effects has been described in animals2-4. However, the early steps in the evolution of dosage compensation remain unknown, and dosage compensation is poorly understood in plants5. Here, we describe a dosage compensation mechanism in the evolutionarily young XY sex determination system of the plant Silene latifolia. Genomic imprinting results in higher expression from the maternal X chromosome in both males and females. This compensates for reduced Y expression in males, but results in X overexpression in females and may be detrimental. It could represent a transient early stage in the evolution of dosage compensation. Our finding has striking resemblance to the first stage proposed by Ohno6 for the evolution of X inactivation in mammals.
Collapse
Affiliation(s)
- Aline Muyle
- Laboratoire "Biométrie et Biologie Evolutive", CNRS/Université Lyon 1, Lyon, France.
| | - Niklaus Zemp
- Genetic Diversity Centre (GDC), ETH Zurich, Zurich, Switzerland
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Cécile Fruchard
- Laboratoire "Biométrie et Biologie Evolutive", CNRS/Université Lyon 1, Lyon, France
| | - Radim Cegan
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Jan Vrana
- Institute of Experimental Botany, Center of the Hana Region for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | | | - Raquel Tavares
- Laboratoire "Biométrie et Biologie Evolutive", CNRS/Université Lyon 1, Lyon, France
| | - Roman Hobza
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
- Institute of Experimental Botany, Center of the Hana Region for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Franck Picard
- Laboratoire "Biométrie et Biologie Evolutive", CNRS/Université Lyon 1, Lyon, France
| | - Alex Widmer
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Gabriel A B Marais
- Laboratoire "Biométrie et Biologie Evolutive", CNRS/Université Lyon 1, Lyon, France
| |
Collapse
|
24
|
Brahmachari V, Kohli S, Gulati P. In praise of mealybugs. J Genet 2018; 97:379-389. [PMID: 29932057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The fascinating chromosomal cycle leading to facultative heterochromatization in the mealybugs has been a challenging system for mechanistic understanding of the phenomenon of genomic imprinting and epigenetics. The elegant cytological dissection of the various processes reported in the literature is equally fascinating for the researchers of current molecular age. Presently, a two way approach is being pursued; continued efforts of utilizing elegant cytology, in combination with the molecular probes to decipher molecular correlates on one hand and on the other, the de novo biochemical/molecular analysis for the identification of the molecular players using genomic tools. The hope is to uncover novel players in genomic imprinting and epigenetic regulation in the mealybug system which shows differential regulation of the entire genome, with 50% of its genome being transcriptionally inactivated in a parental-origin-specific and sex specific manner. In addition to being a model for epigenetic regulation, the mealybugs are being utilized for the analysis of radiation resistance as well as metabolic interactions between the microbiome and the host. The overview presented here is an attempt to bring out some of the work carried out in these directions. We also discuss the areas that remain poorly explored in this system, such as the role/involvement of noncoding RNA in male-specific inactivation and the molecular dissection of heterochromatin, the cytological manifestation of the inactive state of genes and chromosome.
Collapse
Affiliation(s)
- Vani Brahmachari
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110 007, India.
| | | | | |
Collapse
|
25
|
Gu L, Walters JR. Evolution of Sex Chromosome Dosage Compensation in Animals: A Beautiful Theory, Undermined by Facts and Bedeviled by Details. Genome Biol Evol 2018; 9:2461-2476. [PMID: 28961969 PMCID: PMC5737844 DOI: 10.1093/gbe/evx154] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2017] [Indexed: 12/17/2022] Open
Abstract
Many animals with genetic sex determination harbor heteromorphic sex chromosomes, where the heterogametic sex has half the gene dose of the homogametic sex. This imbalance, if reflected in the abundance of transcripts or proteins, has the potential to deleteriously disrupt interactions between X-linked and autosomal loci in the heterogametic sex. Classical theory predicts that molecular mechanisms will evolve to provide dosage compensation that recovers expression levels comparable to ancestral expression prior to sex chromosome divergence. Such dosage compensating mechanisms may also, secondarily, result in balanced sex-linked gene expression between males and females. However, numerous recent studies addressing sex chromosome dosage compensation (SCDC) in a diversity of animals have yielded a surprising array of patterns concerning dosage compensation in the heterogametic sex, as well as dosage balance between sexes. These results substantially contradict longstanding theory, catalyzing both novel perspectives and new approaches in dosage compensation research. In this review, we summarize the theory, analytical approaches, and recent results concerning evolutionary patterns of SCDC in animals. We also discuss methodological challenges and discrepancies encountered in this research, which often underlie conflicting results. Finally, we discuss what outstanding questions and opportunities exist for future research on SCDC.
Collapse
Affiliation(s)
- Liuqi Gu
- Department of Ecology & Evolution, University of Kansas
| | | |
Collapse
|
26
|
Rajpathak SN, Deobagkar DD. Aneuploidy: an important model system to understand salient aspects of functional genomics. Brief Funct Genomics 2018; 17:181-190. [PMID: 29228117 DOI: 10.1093/bfgp/elx041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Maintaining a balance in gene dosage and protein activity is essential to sustain normal cellular functions. Males and females have a wide range of genetic as well as epigenetic differences, where X-linked gene dosage is an essential regulatory factor. Basic understanding of gene dosage maintenance has emerged from the studies carried out using mouse models with FCG (four core genotype) and chromosomal aneuploidy as well as from mono-chromosomal hybrid cells. In mammals, aneuploidy often leads to embryonic lethality particularly in early development with major developmental and structural abnormalities. Thus, in-depth analysis of the causes and consequences of gene dosage alterations is needed to unravel its effects on basic cellular and developmental functions as well as in understanding its medical implications. Cells isolated from individuals with naturally occurring chromosomal aneuploidy can be considered as true representatives, as these cells have stable chromosomal alterations/gene dosage imbalance, which have occurred by modulation of the basic molecular machinery. Therefore, innovative use of these natural aneuploidy cells/organisms with recent molecular and high-throughput techniques will provide an understanding of the basic mechanisms involved in gene dosage balance and the related consequences for functional genomics.
Collapse
|
27
|
|
28
|
Samata M, Akhtar A. Dosage Compensation of the X Chromosome: A Complex Epigenetic Assignment Involving Chromatin Regulators and Long Noncoding RNAs. Annu Rev Biochem 2018; 87:323-350. [PMID: 29668306 DOI: 10.1146/annurev-biochem-062917-011816] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
X chromosome regulation represents a prime example of an epigenetic phenomenon where coordinated regulation of a whole chromosome is required. In flies, this is achieved by transcriptional upregulation of X chromosomal genes in males to equalize the gene dosage differences in females. Chromatin-bound proteins and long noncoding RNAs (lncRNAs) constituting a ribonucleoprotein complex known as the male-specific lethal (MSL) complex or the dosage compensation complex mediate this process. MSL complex members decorate the male X chromosome, and their absence leads to male lethality. The male X chromosome is also enriched with histone H4 lysine 16 acetylation (H4K16ac), indicating that the chromatin compaction status of the X chromosome also plays an important role in transcriptional activation. How the X chromosome is specifically targeted and how dosage compensation is mechanistically achieved are central questions for the field. Here, we review recent advances, which reveal a complex interplay among lncRNAs, the chromatin landscape, transcription, and chromosome conformation that fine-tune X chromosome gene expression.
Collapse
Affiliation(s)
- Maria Samata
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg im Breisgau, Germany; .,Faculty of Biology, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Asifa Akhtar
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg im Breisgau, Germany;
| |
Collapse
|
29
|
Geens M, Chuva De Sousa Lopes SM. X chromosome inactivation in human pluripotent stem cells as a model for human development: back to the drawing board? Hum Reprod Update 2018; 23:520-532. [PMID: 28582519 DOI: 10.1093/humupd/dmx015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 05/17/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Human pluripotent stem cells (hPSC), both embryonic and induced (hESC and hiPSC), are regarded as a valuable in vitro model for early human development. In order to fulfil this promise, it is important that these cells mimic as closely as possible the in vivo molecular events, both at the genetic and epigenetic level. One of the most important epigenetic events during early human development is X chromosome inactivation (XCI), the transcriptional silencing of one of the two X chromosomes in female cells. XCI is important for proper development and aberrant XCI has been linked to several pathologies. Recently, novel data obtained using high throughput single-cell technology during human preimplantation development have suggested that the XCI mechanism is substantially different from XCI in mouse. It has also been suggested that hPSC show higher complexity in XCI than the mouse. Here we compare the available recent data to understand whether XCI during human preimplantation can be properly recapitulated using hPSC. OBJECTIVE AND RATIONALE We will summarize what is known on the timing and mechanisms of XCI during human preimplantation development. We will compare this to the XCI patterns that are observed during hPSC derivation, culture and differentiation, and comment on the cause of the aberrant XCI patterns observed in hPSC. Finally, we will discuss the implications of the aberrant XCI patterns on the applicability of hPSC as an in vitro model for human development and as cell source for regenerative medicine. SEARCH METHODS Combinations of the following keywords were applied as search criteria in the PubMed database: X chromosome inactivation, preimplantation development, embryonic stem cells, induced pluripotent stem cells, primordial germ cells, differentiation. OUTCOMES Recent single-cell RNASeq data have shed new light on the XCI process during human preimplantation development. These indicate a gradual inactivation on both XX chromosomes, starting from Day 4 of development and followed by a random choice to inactivate one of them, instead of the mechanism in mice where imprinted XCI is followed by random XCI. We have put these new findings in perspective using previous data obtained in human (and mouse) embryos. In addition, there is an ongoing discussion whether or not hPSC lines show X chromosome reactivation upon derivation, mimicking the earliest embryonic cells, and the XCI states observed during culture of hPSC are highly variable. Recent studies have shown that hPSC rapidly progress to highly aberrant XCI patterns and that this process is probably driven by suboptimal culture conditions. Importantly, these aberrant XCI states seem to be inherited by the differentiated hPSC-progeny. WIDER IMPLICATIONS The aberrant XCI states (and epigenetic instability) observed in hPSC throw a shadow on their applicability as an in vitro model for development and disease modelling. Moreover, as the aberrant XCI states observed in hPSC seem to shift to a more malignant phenotype, this may also have important consequences for the safety aspect of using hPSC in the clinic.
Collapse
Affiliation(s)
- Mieke Geens
- Research Group Reproduction and Genetics, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Brussels, Belgium
| | - Susana M Chuva De Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands.,Department of Reproductive Medicine, Ghent-Fertility and Stem Cell Team (G-FaST), Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| |
Collapse
|
30
|
Muyle A, Shearn R, Marais GA. The Evolution of Sex Chromosomes and Dosage Compensation in Plants. Genome Biol Evol 2017; 9:627-645. [PMID: 28391324 PMCID: PMC5629387 DOI: 10.1093/gbe/evw282] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2017] [Indexed: 12/17/2022] Open
Abstract
Plant sex chromosomes can be vastly different from those of the few historical animal model organisms from which most of our understanding of sex chromosome evolution is derived. Recently, we have seen several advancements from studies on green algae, brown algae, and land plants that are providing a broader understanding of the variable ways in which sex chromosomes can evolve in distant eukaryotic groups. Plant sex-determining genes are being identified and, as expected, are completely different from those in animals. Species with varying levels of differentiation between the X and Y have been found in plants, and these are hypothesized to be representing different stages of sex chromosome evolution. However, we are also finding that sex chromosomes can remain morphologically unchanged over extended periods of time. Where degeneration of the Y occurs, it appears to proceed similarly in plants and animals. Dosage compensation (a phenomenon that compensates for the consequent loss of expression from the Y) has now been documented in a plant system, its mechanism, however, remains unknown. Research has also begun on the role of sex chromosomes in sexual conflict resolution, and it appears that sex-biased genes evolve similarly in plants and animals, although the functions of these genes remain poorly studied. Because the difficulty in obtaining sex chromosome sequences is increasingly being overcome by methodological developments, there is great potential for further discovery within the field of plant sex chromosome evolution.
Collapse
Affiliation(s)
- Aline Muyle
- Laboratoire de Biométrie et Biologie Evolutive (UMR 5558), CNRS/Université Lyon 1, Villeurbanne, France
| | - Rylan Shearn
- Laboratoire de Biométrie et Biologie Evolutive (UMR 5558), CNRS/Université Lyon 1, Villeurbanne, France
| | - Gabriel Ab Marais
- Laboratoire de Biométrie et Biologie Evolutive (UMR 5558), CNRS/Université Lyon 1, Villeurbanne, France
| |
Collapse
|
31
|
Albritton SE, Ercan S. Caenorhabditis elegans Dosage Compensation: Insights into Condensin-Mediated Gene Regulation. Trends Genet 2017; 34:41-53. [PMID: 29037439 DOI: 10.1016/j.tig.2017.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/19/2017] [Accepted: 09/25/2017] [Indexed: 01/05/2023]
Abstract
Recent work demonstrating the role of chromosome organization in transcriptional regulation has sparked substantial interest in the molecular mechanisms that control chromosome structure. Condensin, an evolutionarily conserved multisubunit protein complex, is essential for chromosome condensation during cell division and functions in regulating gene expression during interphase. In Caenorhabditis elegans, a specialized condensin forms the core of the dosage compensation complex (DCC), which specifically binds to and represses transcription from the hermaphrodite X chromosomes. DCC serves as a clear paradigm for addressing how condensins target large chromosomal domains and how they function to regulate chromosome structure and transcription. Here, we discuss recent research on C. elegans DCC in the context of canonical condensin mechanisms as have been studied in various organisms.
Collapse
Affiliation(s)
- Sarah Elizabeth Albritton
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Sevinç Ercan
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA.
| |
Collapse
|
32
|
Tower J. Sex-Specific Gene Expression and Life Span Regulation. Trends Endocrinol Metab 2017; 28:735-747. [PMID: 28780002 PMCID: PMC5667568 DOI: 10.1016/j.tem.2017.07.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 07/09/2017] [Accepted: 07/10/2017] [Indexed: 11/18/2022]
Abstract
Aging-related diseases show a marked sex bias. For example, women live longer than men yet have more Alzheimer's disease and osteoporosis, whereas men have more cancer and Parkinson's disease. Understanding the role of sex will be important in designing interventions and in understanding basic aging mechanisms. Aging also shows sex differences in model organisms. Dietary restriction (DR), reduced insulin/IGF1-like signaling (IIS), and reduced TOR signaling each increase life span preferentially in females in both flies and mice. Maternal transmission of mitochondria to offspring may lead to greater control over mitochondrial functions in females, including greater life span and a larger response to diet. Consistent with this idea, males show greater loss of mitochondrial gene expression with age.
Collapse
Affiliation(s)
- John Tower
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
33
|
Ghosh S, Klein RS. Sex Drives Dimorphic Immune Responses to Viral Infections. THE JOURNAL OF IMMUNOLOGY 2017; 198:1782-1790. [PMID: 28223406 DOI: 10.4049/jimmunol.1601166] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/24/2016] [Indexed: 02/07/2023]
Abstract
New attention to sexual dimorphism in normal mammalian physiology and disease has uncovered a previously unappreciated breadth of mechanisms by which females and males differentially exhibit quantitative phenotypes. Thus, in addition to the established modifying effects of hormones, which prenatally and postpubertally pattern cells and tissues in a sexually dimorphic fashion, sex differences are caused by extragonadal and dosage effects of genes encoded on sex chromosomes. Sex differences in immune responses, especially during autoimmunity, have been studied predominantly within the context of sex hormone effects. More recently, immune response genes have been localized to sex chromosomes themselves or found to be regulated by sex chromosome genes. Thus, understanding how sex impacts immunity requires the elucidation of complex interactions among sex hormones, sex chromosomes, and immune response genes. In this Brief Review, we discuss current knowledge and new insights into these intricate relationships in the context of viral infections.
Collapse
Affiliation(s)
- Soumitra Ghosh
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Robyn S Klein
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110; .,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110; and.,Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
34
|
Richard G, Legeai F, Prunier-Leterme N, Bretaudeau A, Tagu D, Jaquiéry J, Le Trionnaire G. Dosage compensation and sex-specific epigenetic landscape of the X chromosome in the pea aphid. Epigenetics Chromatin 2017. [PMID: 28638443 PMCID: PMC5471693 DOI: 10.1186/s13072-017-0137-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Background Heterogametic species display a differential number of sex chromosomes resulting in imbalanced transcription levels for these chromosomes between males and females. To correct this disequilibrium, dosage compensation mechanisms involving gene expression and chromatin accessibility regulations have emerged throughout evolution. In insects, these mechanisms have been extensively characterized only in Drosophila but not in insects of agronomical importance. Aphids are indeed major pests of a wide range of crops. Their remarkable ability to switch from asexual to sexual reproduction during their life cycle largely explains the economic losses they can cause. As heterogametic insects, male aphids are X0, while females (asexual and sexual) are XX. Results Here, we analyzed transcriptomic and open chromatin data obtained from whole male and female individuals to evaluate the putative existence of a dosage compensation mechanism involving differential chromatin accessibility of the pea aphid’s X chromosome. Transcriptomic analyses first showed X/AA and XX/AA expression ratios for expressed genes close to 1 in males and females, respectively, suggesting dosage compensation in the pea aphid. Analyses of open chromatin data obtained by Formaldehyde-Assisted Isolation of Regulatory Elements (FAIRE-seq) revealed a X chromosome chromatin accessibility globally and significantly higher in males than in females, while autosomes’ chromatin accessibility is similar between sexes. Moreover, chromatin environment of X-linked genes displaying similar expression levels in males and females—and thus likely to be compensated—is significantly more accessible in males. Conclusions Our results suggest the existence of an underlying epigenetic mechanism enhancing the X chromosome chromatin accessibility in males to allow X-linked gene dose correction between sexes in the pea aphid, similar to Drosophila. Our study gives new evidence into the comprehension of dosage compensation in link with chromatin biology in insects and newly in a major crop pest, taking benefits from both transcriptomic and open chromatin data. Electronic supplementary material The online version of this article (doi:10.1186/s13072-017-0137-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gautier Richard
- EGI, UMR 1349, INRA, Institut de Génétique, Environnement et Protection des Plantes (IGEPP), Domaine de la Motte, BP 35327, Le Rheu, France
| | - Fabrice Legeai
- BIPAA, UMR 1349, INRA, Institut de Génétique, Environnement et Protection des Plantes (IGEPP), Campus Beaulieu, Rennes, France.,Genscale, INRIA, IRISA, Campus Beaulieu, Rennes, France
| | - Nathalie Prunier-Leterme
- EGI, UMR 1349, INRA, Institut de Génétique, Environnement et Protection des Plantes (IGEPP), Domaine de la Motte, BP 35327, Le Rheu, France
| | - Anthony Bretaudeau
- BIPAA, UMR 1349, INRA, Institut de Génétique, Environnement et Protection des Plantes (IGEPP), Campus Beaulieu, Rennes, France.,Genouest, INRIA, IRISA, Campus Beaulieu, Rennes, France
| | - Denis Tagu
- EGI, UMR 1349, INRA, Institut de Génétique, Environnement et Protection des Plantes (IGEPP), Domaine de la Motte, BP 35327, Le Rheu, France
| | - Julie Jaquiéry
- CNRS, UMR 6553, EcoBio, University of Rennes 1, 35042 Rennes, France
| | - Gaël Le Trionnaire
- EGI, UMR 1349, INRA, Institut de Génétique, Environnement et Protection des Plantes (IGEPP), Domaine de la Motte, BP 35327, Le Rheu, France
| |
Collapse
|
35
|
Albritton SE, Kranz AL, Winterkorn LH, Street LA, Ercan S. Cooperation between a hierarchical set of recruitment sites targets the X chromosome for dosage compensation. eLife 2017; 6. [PMID: 28562241 PMCID: PMC5451215 DOI: 10.7554/elife.23645] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 05/02/2017] [Indexed: 12/17/2022] Open
Abstract
In many organisms, it remains unclear how X chromosomes are specified for dosage compensation, since DNA sequence motifs shown to be important for dosage compensation complex (DCC) recruitment are themselves not X-specific. Here, we addressed this problem in C. elegans. We found that the DCC recruiter, SDC-2, is required to maintain open chromatin at a small number of primary DCC recruitment sites, whose sequence and genomic context are X-specific. Along the X, primary recruitment sites are interspersed with secondary sites, whose function is X-dependent. A secondary site can ectopically recruit the DCC when additional recruitment sites are inserted either in tandem or at a distance (>30 kb). Deletion of a recruitment site on the X results in reduced DCC binding across several megabases surrounded by topologically associating domain (TAD) boundaries. Our work elucidates that hierarchy and long-distance cooperativity between gene-regulatory elements target a single chromosome for regulation. DOI:http://dx.doi.org/10.7554/eLife.23645.001 The DNA inside living cells is organized in structures called chromosomes. In many animals, females have two X chromosomes, whereas males have only one. To ensure that females do not end up with a double dose of the proteins encoded by the genes on the X chromosome, animals use a process called dosage compensation to correct this imbalance. The mechanisms underlying this process vary between species, but they typically involve a regulatory complex that binds to the X chromosomes of one sex to modify gene expression. Caenorhabditis elegans, for example, is a species of nematode worm in which individuals with two X chromosomes are hermaphrodites and those with one X chromosome are males. In C. elegans, a regulatory complex, called the dosage compensation complex, attaches to both X chromosomes of a hermaphrodite, and reduces the expression of the genes on each by half to match the level seen in the males. Previous research has shown that short DNA sequences, known as motifs, recruit the dosage compensation complex to the X chromosomes. However, these sequences are also found on the other chromosomes and, until now, it was not known why the complex was only recruited to the X chromosomes. Albritton et al. now show the X chromosomes have a ‘hierarchical’ recruitment system. A few sites on the X chromosomes contain clusters of a specific DNA motif, which initiate the process and attract the dosage compensation complex more strongly than other sites. These ‘strong’ recruitment sites are placed across the length of the X chromosomes and cooperate with several ‘weaker’ ones located in between. This way, multiple recruitment sites can cooperate over a long distance, while non-sex chromosomes, which have only one or two stronger recruitment sites, do not have thisadvantage. Hierarchy and cooperativity may be general features of gene expression, in which proteins are targeted to chromosomes without the need for having specific motifs at every recruitment site. The way DNA sequences are distributed across the genome may give us clues about their role. Thus, knowing how genomes are structured will help us identify disrupted areas in diseases such as cancer. DOI:http://dx.doi.org/10.7554/eLife.23645.002
Collapse
Affiliation(s)
- Sarah Elizabeth Albritton
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, United States
| | - Anna-Lena Kranz
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, United States
| | - Lara Heermans Winterkorn
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, United States
| | - Lena Annika Street
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, United States
| | - Sevinc Ercan
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, United States
| |
Collapse
|
36
|
Affiliation(s)
- Sonja Grath
- Department of Biology II, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg, Germany; ,
| | - John Parsch
- Department of Biology II, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg, Germany; ,
| |
Collapse
|
37
|
Ka S, Ahn H, Seo M, Kim H, Kim JN, Lee HJ. Status of dosage compensation of X chromosome in bovine genome. Genetica 2016; 144:435-44. [PMID: 27376899 DOI: 10.1007/s10709-016-9912-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 06/27/2016] [Indexed: 01/18/2023]
Abstract
Dosage compensation system with X chromosome upregulation and inactivation have evolved to overcome the genetic imbalance between sex chromosomes in both male and female of mammals. Although recent development of chromosome-wide technologies has allowed us to test X upregulation, discrete data processing and analysis methods draw disparate conclusions. A series of expression studies revealed status of dosage compensation in some species belonging to monotremes, marsupials, rodents and primates. However, X upregulation in the Artiodactyla order including cattle have not been studied yet. In this study, we surveyed the genome-wide transcriptional upregulation in X chromosome in cattle RNA-seq data using different gene filtration methods. Overall examination of RNA-seq data revealed that X chromosome in the pituitary gland expressed more genes than in other peripheral tissues, which was consistent with the previous results observed in human and mouse. When analyzed with globally expressed genes, a median X:A expression ratio was 0.94. The ratio of 1-to-1 ortholog genes between chicken and mammals, however, showed considerable reduction to 0.68. These results indicate that status of dosage compensation for cattle is not deviated from those found in rodents and primate, and this is consistent with the evolutionary history of cattle.
Collapse
Affiliation(s)
- Sojeong Ka
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyeonju Ahn
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Minseok Seo
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, Republic of Korea
- C&K Genomics Inc., Seoul National University Research Park, Seoul, 08826, Republic of Korea
| | - Heebal Kim
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jin Nam Kim
- C&K Genomics Inc., Seoul National University Research Park, Seoul, 08826, Republic of Korea.
| | - Hyun-Jeong Lee
- Animal Nutritional Physiology Team, National Institute of Animal Science, Jeonju, Jeollabuk-Do, 55365, Republic of Korea.
| |
Collapse
|
38
|
Untangling the Contributions of Sex-Specific Gene Regulation and X-Chromosome Dosage to Sex-Biased Gene Expression in Caenorhabditis elegans. Genetics 2016; 204:355-69. [PMID: 27356611 DOI: 10.1534/genetics.116.190298] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/27/2016] [Indexed: 01/31/2023] Open
Abstract
Dosage compensation mechanisms equalize the level of X chromosome expression between sexes. Yet the X chromosome is often enriched for genes exhibiting sex-biased, i.e., imbalanced expression. The relationship between X chromosome dosage compensation and sex-biased gene expression remains largely unexplored. Most studies determine sex-biased gene expression without distinguishing between contributions from X chromosome copy number (dose) and the animal's sex. Here, we uncoupled X chromosome dose from sex-specific gene regulation in Caenorhabditis elegans to determine the effect of each on X expression. In early embryogenesis, when dosage compensation is not yet fully active, X chromosome dose drives the hermaphrodite-biased expression of many X-linked genes, including several genes that were shown to be responsible for hermaphrodite fate. A similar effect is seen in the C. elegans germline, where X chromosome dose contributes to higher hermaphrodite X expression, suggesting that lack of dosage compensation in the germline may have a role in supporting higher expression of X chromosomal genes with female-biased functions in the gonad. In the soma, dosage compensation effectively balances X expression between the sexes. As a result, somatic sex-biased expression is almost entirely due to sex-specific gene regulation. These results suggest that lack of dosage compensation in different tissues and developmental stages allow X chromosome copy number to contribute to sex-biased gene expression and function.
Collapse
|
39
|
Zimmer F, Harrison PW, Dessimoz C, Mank JE. Compensation of Dosage-Sensitive Genes on the Chicken Z Chromosome. Genome Biol Evol 2016; 8:1233-42. [PMID: 27044516 PMCID: PMC4860703 DOI: 10.1093/gbe/evw075] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2016] [Indexed: 12/15/2022] Open
Abstract
In many diploid species, sex determination is linked to a pair of sex chromosomes that evolved from a pair of autosomes. In these organisms, the degeneration of the sex-limited Y or W chromosome causes a reduction in gene dose in the heterogametic sex for X- or Z-linked genes. Variations in gene dose are detrimental for large chromosomal regions when they span dosage-sensitive genes, and many organisms were thought to evolve complete mechanisms of dosage compensation to mitigate this. However, the recent realization that a wide variety of organisms lack complete mechanisms of sex chromosome dosage compensation has presented a perplexing question: How do organisms with incomplete dosage compensation avoid deleterious effects of gene dose differences between the sexes? Here we use expression data from the chicken (Gallus gallus) to show that ohnologs, duplicated genes known to be dosage-sensitive, are preferentially dosage-compensated on the chicken Z chromosome. Our results indicate that even in the absence of a complete and chromosome wide dosage compensation mechanism, dosage-sensitive genes are effectively dosage compensated on the Z chromosome.
Collapse
Affiliation(s)
- Fabian Zimmer
- Department of Genetics Evolution and Environment, University College London, London, United Kingdom
| | - Peter W Harrison
- Department of Genetics Evolution and Environment, University College London, London, United Kingdom
| | - Christophe Dessimoz
- Department of Genetics Evolution and Environment, University College London, London, United Kingdom Department of Ecology and Evolution & Center for Integrative Genomics, University of Lausanne, Biophore 1015, Lausanne, Switzerland Swiss Institute of Bioinformatics, Biophore, 1015 Lausanne, Switzerland
| | - Judith E Mank
- Department of Genetics Evolution and Environment, University College London, London, United Kingdom
| |
Collapse
|
40
|
Disteche CM. Dosage compensation of the sex chromosomes and autosomes. Semin Cell Dev Biol 2016; 56:9-18. [PMID: 27112542 DOI: 10.1016/j.semcdb.2016.04.013] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 04/15/2016] [Accepted: 04/19/2016] [Indexed: 12/16/2022]
Abstract
Males are XY and females are XX in most mammalian species. Other species such as birds have a different sex chromosome make-up: ZZ in males and ZW in females. In both types of organisms one of the sex chromosomes, Y or W, has degenerated due to lack of recombination with its respective homolog X or Z. Since autosomes are present in two copies in diploid organisms the heterogametic sex has become a natural "aneuploid" with haploinsufficiency for X- or Z-linked genes. Specific mechanisms have evolved to restore a balance between critical gene products throughout the genome and between males and females. Some of these mechanisms were co-opted from and/or added to compensatory processes that alleviate autosomal aneuploidy. Surprisingly, several modes of dosage compensation have evolved. In this review we will consider the evidence for dosage compensation and the molecular mechanisms implicated.
Collapse
Affiliation(s)
- Christine M Disteche
- Department of Pathology, School of Medicine, University of Washington, 1959 NE Pacific St. Seattle, WA 98115, USA; Department of Medicine, School of Medicine, University of Washington, 1959 NE Pacific St. Seattle, WA 98115, USA.
| |
Collapse
|
41
|
Pinter SF. A Tale of Two Cities: How Xist and its partners localize to and silence the bicompartmental X. Semin Cell Dev Biol 2016; 56:19-34. [PMID: 27072488 DOI: 10.1016/j.semcdb.2016.03.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 03/30/2016] [Accepted: 03/30/2016] [Indexed: 10/22/2022]
Abstract
Sex chromosomal dosage compensation in mammals takes the form of X chromosome inactivation (XCI), driven by the non-coding RNA Xist. In contrast to dosage compensation systems of flies and worms, mammalian XCI has to restrict its function to the Xist-producing X chromosome, while leaving autosomes and active X untouched. The mechanisms behind the long-range yet cis-specific localization and silencing activities of Xist have long been enigmatic, but genomics, proteomics, super-resolution microscopy, and innovative genetic approaches have produced significant new insights in recent years. In this review, I summarize and integrate these findings with a particular focus on the redundant yet mutually reinforcing pathways that enable long-term transcriptional repression throughout the soma. This includes an exploration of concurrent epigenetic changes acting in parallel within two distinct compartments of the inactive X. I also examine how Polycomb repressive complexes 1 and 2 and macroH2A may bridge XCI establishment and maintenance. XCI is a remarkable phenomenon that operates across multiple scales, combining changes in nuclear architecture, chromosome topology, chromatin compaction, and nucleosome/nucleotide-level epigenetic cues. Learning how these pathways act in concert likely holds the answer to the riddle posed by Cattanach's and other autosomal translocations: What makes the X especially receptive to XCI?
Collapse
Affiliation(s)
- Stefan F Pinter
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, 263 Farmington Ave, Farmington, CT 06030-6403, USA.
| |
Collapse
|
42
|
Developmental Dynamics of X-Chromosome Dosage Compensation by the DCC and H4K20me1 in C. elegans. PLoS Genet 2015; 11:e1005698. [PMID: 26641248 PMCID: PMC4671695 DOI: 10.1371/journal.pgen.1005698] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 11/03/2015] [Indexed: 11/19/2022] Open
Abstract
In Caenorhabditis elegans, the dosage compensation complex (DCC) specifically binds to and represses transcription from both X chromosomes in hermaphrodites. The DCC is composed of an X-specific condensin complex that interacts with several proteins. During embryogenesis, DCC starts localizing to the X chromosomes around the 40-cell stage, and is followed by X-enrichment of H4K20me1 between 100-cell to comma stage. Here, we analyzed dosage compensation of the X chromosome between sexes, and the roles of dpy-27 (condensin subunit), dpy-21 (non-condensin DCC member), set-1 (H4K20 monomethylase) and set-4 (H4K20 di-/tri-methylase) in X chromosome repression using mRNA-seq and ChIP-seq analyses across several developmental time points. We found that the DCC starts repressing the X chromosomes by the 40-cell stage, but X-linked transcript levels remain significantly higher in hermaphrodites compared to males through the comma stage of embryogenesis. Dpy-27 and dpy-21 are required for X chromosome repression throughout development, but particularly in early embryos dpy-27 and dpy-21 mutations produced distinct expression changes, suggesting a DCC independent role for dpy-21. We previously hypothesized that the DCC increases H4K20me1 by reducing set-4 activity on the X chromosomes. Accordingly, in the set-4 mutant, H4K20me1 increased more from the autosomes compared to the X, equalizing H4K20me1 level between X and autosomes. H4K20me1 increase on the autosomes led to a slight repression, resulting in a relative effect of X derepression. H4K20me1 depletion in the set-1 mutant showed greater X derepression compared to equalization of H4K20me1 levels between X and autosomes in the set-4 mutant, indicating that H4K20me1 level is important, but X to autosomal balance of H4K20me1 contributes slightly to X-repression. Thus H4K20me1 is not only a downstream effector of the DCC [corrected].In summary, X chromosome dosage compensation starts in early embryos as the DCC localizes to the X, and is strengthened in later embryogenesis by H4K20me1.
Collapse
|
43
|
Sharma R, Meister P. Linking dosage compensation and X chromosome nuclear organization in C. elegans. Nucleus 2015; 6:266-72. [PMID: 26055265 DOI: 10.1080/19491034.2015.1059546] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Animal sex is determined by the number of X chromosomes in many species, creating unequal gene dosage (aneuploidy) between sexes. Dosage Compensation mechanisms equalize this dosage difference by regulating X-linked gene expression. In the nematode C. elegans the current model suggests that DC is achieved by a 2-fold transcriptional downregulation in hermaphrodites mediated by the Dosage Compensation Complex (DCC), which restricts access to RNA Polymerase II by an unknown mechanism. Taking a nuclear organization point of view, we showed that the male X chromosome resides in the pore proximal subnuclear compartment whereas the DCC bound to the X, inhibits this spatial organization in the hermaphrodites. Here we discuss our results and propose a model that reassigns the role of DCC from repression of genes to inhibition of activation.
Collapse
Affiliation(s)
- Rahul Sharma
- a Cell Fate and Nuclear Organization ; Institute of Cell Biology ; University of Bern ; Bern , Switzerland
| | | |
Collapse
|
44
|
Vensko SP, Stone EA. Recent progress and open questions in Drosophila dosage compensation. Fly (Austin) 2015; 9:29-35. [PMID: 26213294 PMCID: PMC4594421 DOI: 10.1080/19336934.2015.1074786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/22/2015] [Accepted: 07/13/2015] [Indexed: 10/23/2022] Open
Abstract
Sexual dimorphism is observed in many traits across diverse taxa, and often it is quite extreme. Within a species, individuals of opposing sex can appear strikingly different, reflecting differences at the molecular level that may be similarly striking. Among the most extreme cases of such molecular sexual dimorphism is the quantity of sex chromosomes that each sex possesses. Hemizygous sex chromosomes are common to many species, and various mechanisms have evolved to regulate transcriptional activity to ensure appropriate sex chromosome-to-autosome gene expression stoichiometry. Among the most thoroughly investigated of these mechanisms is Drosophila melanogaster's male-specific lethal (MSL) complex-mediated dosage compensation. In Drosophila, the male X chromosome transcription is upregulated approximately two-fold in somatic tissues to counterbalance the effects of sex chromosome hemizygosity on transcript abundance. Despite dramatic advances in our understanding of the Drosophila dosage compensation, many questions remain unanswered, and our understanding of its molecular underpinnings remains incomplete. In this review, we synthesize recent progress in the field as a means to highlight open questions, including how the MSL complex targets the X chromosome, how dosage compensation has shaped evolution of X-linked genes, and the degree to which MSL complex-mediated dosage compensation varies in activity across somatic tissues.
Collapse
Affiliation(s)
- Steven P Vensko
- Department of Biological Sciences; North Carolina State University; Raleigh, NC USA
| | - Eric A Stone
- Department of Biological Sciences; North Carolina State University; Raleigh, NC USA
| |
Collapse
|