1
|
Pogu SV, Yadav DN, Sankaranarayanan SA, Rengan AK. Barium Sulfate Nanocomposites for Bioimaging and Chemo-photothermal Therapy of Physiologically Aggravated Lung Adenocarcinoma Cells. ACS APPLIED BIO MATERIALS 2024; 7:6213-6228. [PMID: 39135378 DOI: 10.1021/acsabm.4c00796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Cancer is a complex disease that displays physiomorphological transformation in different surrounding microenvironments. Therefore, the single treatment modalities are relatively less effective, and their efficiency varies with tumor cell physiology, leading to the development of tumor resistance. Combinatorial therapeutic approaches, such as chemo-photothermal therapy, are promising for efficiently mitigating tumor progression irrespective of cancer physiology. Nanotechnology has played a significant role in this regard. Therefore, the present study reports the synthesis of poly(acrylic acid)-tetraethylene glycol (PAA-TEG)-coated BaSO4 nanoparticles (NPs) with enhanced solubility, dispersibility, and X-ray attenuation. Next, nanocomposites (NCs) are synthesized by loading BaSO4 NPs with the therapeutic drug triiodobenzoic acid (Tiba) and the photosensitizer IR780 using a lipid coating. These fabricated NCs are analyzed for dual-modal imaging (fluorescence and X-ray-based imaging) properties and chemo-phototherapeutic ability against two-dimensional (2D) and three-dimensional (3D) cultures of A549 cells. Furthermore, A549 cells are morphologically and physiologically aggravated into potent malignant cells using tobacco leaf extract (TE), and the variation in the therapeutic effect of NCs compared to cisplatin is determined. The synthesized NCs display enhanced encapsulation and excellent synergistic anticancer activity through the generation of reactive oxygen species (ROS), mitochondrial damage, and genotoxicity. Also, the NCs are more potent in inhibiting cancer cell growth than cisplatin, and their impact is unaltered in the presence or absence of TE pretreatment of A549 cells. The present study holds significant potential for various theranostic applications, which are highly desired for laparoscopic image-guided lung cancer therapy.
Collapse
Affiliation(s)
- Sunil Venkanna Pogu
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502284, India
| | - Dokkari Nagalaxmi Yadav
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502284, India
| | | | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502284, India
| |
Collapse
|
2
|
Malekzadeh R, Mortezazadeh T, Abdulsahib WK, Babaye Abdollahi B, Hamblin MR, Mansoori B, Alsaikhan F, Zeng B. Nanoarchitecture-based photothermal ablation of cancer: A systematic review. ENVIRONMENTAL RESEARCH 2023; 236:116526. [PMID: 37487920 DOI: 10.1016/j.envres.2023.116526] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/17/2023] [Accepted: 06/28/2023] [Indexed: 07/26/2023]
Abstract
Photothermal therapy (PTT) is an emerging non-invasive method used in cancer treatment. In PTT, near-infrared laser light is absorbed by a chromophore and converted into heat within the tumor tissue. PTT for cancer usually combines a variety of interactive plasmonic nanomaterials with laser irradiation. PTT enjoys PT agents with high conversion efficiency to convert light into heat to destroy malignant tissue. In this review, published studies concerned with the use of nanoparticles (NPs) in PTT were collected by a systematic and comprehensive search of PubMed, Cochrane, Embase, and Scopus databases. Gold, silver and iron NPs were the most frequent choice in PTT. The use of surface modified NPs allowed selective delivery and led to a precise controlled increase in the local temperature. The presence of NPs during PTT can increase the reactive generation of oxygen species, damage the DNA and mitochondria, leading to cancer cell death mainly via apoptosis. Many studies recently used core-shell metal NPs, and the effects of the polymer coating or ligands targeted to specific cellular receptors in order to increase PTT efficiency were often reported. The effective parameters (NP type, size, concentration, coated polymers or attached ligands, exposure conditions, cell line or type, and cell death mechanisms) were investigated individually. With the advances in chemical synthesis technology, NPs with different shapes, sizes, and coatings can be prepared with desirable properties, to achieve multimodal cancer treatment with precision and specificity.
Collapse
Affiliation(s)
- Reza Malekzadeh
- Department of Medical Physics, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Medical Radiation Science Research Team, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Mortezazadeh
- Department of Medical Physics, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Waleed K Abdulsahib
- Department of Pharmacology and Toxicology, College of Pharmacy, Al Farahidi University, Baghdad, Iraq
| | - Behnaz Babaye Abdollahi
- Department of Medical Physics, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Behzad Mansoori
- The Wistar Institute, Cellular and Molecular Oncogenesis Program, Philadelphia, PA, USA.
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Bo Zeng
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-sen University, 510080, Guangzhou, China.
| |
Collapse
|
3
|
Bortot B, Mangogna A, Di Lorenzo G, Stabile G, Ricci G, Biffi S. Image-guided cancer surgery: a narrative review on imaging modalities and emerging nanotechnology strategies. J Nanobiotechnology 2023; 21:155. [PMID: 37202750 DOI: 10.1186/s12951-023-01926-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023] Open
Abstract
Surgical resection is the cornerstone of solid tumour treatment. Current techniques for evaluating margin statuses, such as frozen section, imprint cytology, and intraoperative ultrasound, are helpful. However, an intraoperative assessment of tumour margins that is accurate and safe is clinically necessary. Positive surgical margins (PSM) have a well-documented negative effect on treatment outcomes and survival. As a result, surgical tumour imaging methods are now a practical method for reducing PSM rates and improving the efficiency of debulking surgery. Because of their unique characteristics, nanoparticles can function as contrast agents in image-guided surgery. While most image-guided surgical applications utilizing nanotechnology are now in the preclinical stage, some are beginning to reach the clinical phase. Here, we list the various imaging techniques used in image-guided surgery, such as optical imaging, ultrasound, computed tomography, magnetic resonance imaging, nuclear medicine imaging, and the most current developments in the potential of nanotechnology to detect surgical malignancies. In the coming years, we will see the evolution of nanoparticles tailored to specific tumour types and the introduction of surgical equipment to improve resection accuracy. Although the promise of nanotechnology for producing exogenous molecular contrast agents has been clearly demonstrated, much work remains to be done to put it into practice.
Collapse
Affiliation(s)
- Barbara Bortot
- Obstetrics and Gynecology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Alessandro Mangogna
- Obstetrics and Gynecology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Giovanni Di Lorenzo
- Obstetrics and Gynecology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Guglielmo Stabile
- Obstetrics and Gynecology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Giuseppe Ricci
- Obstetrics and Gynecology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Stefania Biffi
- Obstetrics and Gynecology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy.
| |
Collapse
|
4
|
Zuo C, Zou Y, Gao G, Sun L, Yu B, Guo Y, Wang X, Han M. Photothermal combined with intratumoral injection of annonaceous acetogenin nanoparticles for breast cancer therapy. Colloids Surf B Biointerfaces 2022; 213:112426. [PMID: 35219964 DOI: 10.1016/j.colsurfb.2022.112426] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/13/2022] [Accepted: 02/21/2022] [Indexed: 11/30/2022]
Abstract
ACGs (annonaceous acetogenins) possess excellent antitumor activity, but their serious accompanying toxicity has prevented their application in the clinic. To address this problem, we therefore constructed an intratumoral drug delivery system integrating chemotherapy and photothermal therapy. The PEGylation of polydopamine nanoparticles (PDA-PEG NPs) possessed an excellent biocompatibility with size of 70.96 ± 2.55 nm, thus can be used as good photothermal materials in the body. Moreover, PDA-PEG NPs can kill half of cancer cells under NIR (near-infrared) laser irradiation, and the survival rate of 4T1 cells is only 1% when ACG NPs and PDA-PEG NPs are combined. In vivo distribution studies showed that the 0.1 mg/kg ACGs NPs + PDA-PEG NPs + NIR group had the highest tumor inhibition rate, which was significantly superior to that of the 0.1 mg/kg ACGs NPs intratumoral injection group (82.65% vs. 59.08%). Altogether, the combination of PDA-PEG NPs + NIR with chemotherapy drugs may provide a feasible and effective strategy for the treatment of superficial tumors.
Collapse
Affiliation(s)
- Cuiling Zuo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China
| | - Yuan Zou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China
| | - Guangyu Gao
- Research Center of Pharmaceutical Engineering Technology, Harbin University of Commerce, Harbin, Heilongjiang Province 150076, PR China
| | - Lina Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China
| | - Bo Yu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China
| | - Yifei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China
| | - Xiangtao Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China.
| | - Meihua Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China.
| |
Collapse
|
5
|
Iwamuro M, Urata H, Tanaka T, Okada H. Application of electron microscopy in gastroenterology. World J Gastrointest Pathophysiol 2022; 13:41-49. [PMID: 35433095 PMCID: PMC8976235 DOI: 10.4291/wjgp.v13.i2.41] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 10/26/2021] [Accepted: 01/20/2022] [Indexed: 02/06/2023] Open
Abstract
Electron microscopy has long been used in research in the fields of life sciences and materials sciences. Transmission and scanning electron microscopy and energy-dispersive X-ray spectroscopy (EDX) analyses have also been performed in the field of gastroenterology. Electron microscopy and EDX enable (1) Observation of ultrastructural differences in esophageal epithelial cells in patients with gastroesophageal reflux and eosinophilic esophagitis; (2) Detection of lanthanum deposition in the stomach and duodenum; (3) Ultrastructural and elemental analyses of enteroliths and bezoars; (4) Detection and characterization of microorganisms in the gastrointestinal tract; (5) Diagnosis of gastrointestinal tumors with neuroendocrine differentiation; and (6) Analysis of gold nanoparticles potentially used in endoscopic photodynamic therapy. This review aims to foster a better understanding of electron microscopy applications by reviewing relevant clinical studies, basic research findings, and the state of current research carried out in gastroenterology science.
Collapse
Affiliation(s)
- Masaya Iwamuro
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Haruo Urata
- Central Research Laboratory, Okayama University Medical School, Okayama 700-8558, Japan
| | - Takehiro Tanaka
- Department of Pathology, Okayama University Hospital, Okayama 700-8558, Japan
| | - Hiroyuki Okada
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8558, Japan
| |
Collapse
|
6
|
Abstract
Cancer nanotheranostics aims at providing alternative approaches to traditional cancer diagnostics and therapies. In this context, plasmonic nanostructures especially gold nanostructures are intensely explored due to their tunable shape, size and surface plasmon resonance (SPR), better photothermal therapy (PTT) and photodynamic therapy (PDT) ability, effective contrast enhancing ability in Magnetic Resonance imaging (MRI) and Computed Tomography (CT) scan. Despite rapid breakthroughs in gold nanostructures based theranostics of cancer, the translation of gold nanostructures from bench side to human applications is still questionable. The major obstacles that have been facing by nanotheranostics are specific targeting, poor resolution and photoinstability during PTT etc. In this regard, various encouraging studies have been carried out recently to overcome few of these obstacles. Use of gold nanocomposites also overcomes the limitations of gold nanostructure probes and emerged as good nanotheranostic probe. Hence, the present article discusses the advances in gold nanostructures based cancer theranostics and mainly emphasizes on the importance of gold nanocomposites which have been designed to decipher the past questions and limitations of in vivo gold nanotheranostics.
Collapse
Affiliation(s)
- Bankuru Navyatha
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Allahabad, UP, India
| | - Seema Nara
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Allahabad, UP, India
| |
Collapse
|
7
|
Wang L, Zhang D, Li J, Li F, Wei R, Jiang G, Xu H, Wang X, Zhou Y, Xi L. A novel ICG-labeled cyclic TMTP1 peptide dimer for sensitive tumor imaging and enhanced photothermal therapy in vivo. Eur J Med Chem 2021; 227:113935. [PMID: 34731764 DOI: 10.1016/j.ejmech.2021.113935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 12/26/2022]
Abstract
TMTP1 is a polypeptide independently screened in our laboratory, which can target tumors in situ and metastases. In previous work, we have successfully developed a near-infrared (NIR) probe TMTP1-PEG4-ICG for tumor imaging. However, the limited ability to target tumor micrometastases hinders its further clinical application. Multimerization of peptides has been extensively demonstrated as an effective strategy to increase receptor binding affinity due to "multivalent effect" or "apparent cooperative affinity". In this study, a novel TMTP1 homodimer-directed NIR probe (TMTP1-PEG4)2-ICG was successfully constructed and synthesized. The cyclic TMTP1 peptides were bridged by two PEG4 linkers and then labeled with ICG-NHS for tumor imaging and photothermal therapy. In vivo biodistribution were assessed in normal BALB/c mice, and tumor targeting abilities of (TMTP1-PEG4)2-ICG and its monomer were evaluated and compared in 4T1-bearing subcutaneous tumor and lymph node metastasis model mice. Biodistribution analysis in vivo revealed that (TMTP1-PEG4)2-ICG was cleared mainly in both liver and kidney dependent way. Comparing with free ICG dye or TMTP1-PEG4-ICG probe, this improved (TMTP1-PEG4)2-ICG dimer showed more sensitive tumor imaging and could clearly identify tumors at a minimum volume of 10 mm3. Additionally, when compared to its monomer, lymph node (LN) metastases could also be apparently visualized and easily distinguished from normal LN by the novel dimer at 24 h post-injection. The blocking study revealed that the tumor accumulation of this probe was specifically medicated by receptor-ligand interaction. Furthermore, with the increase in stability and tumor targeting ability of ICG in vivo, the probe could also be an attractive photothermal agent to significantly inhibit tumor growth under 808 nm NIR laser irradiation. In conclusion, our work revealed that the novel (TMTP1-PEG4)2-ICG dimer could be a promising theranostic agent for sensitive tumor imaging and imaging-guided photothermal therapy, indicating its broad prospects for further clinical transformation.
Collapse
Affiliation(s)
- Ling Wang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Danya Zhang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Jie Li
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Fei Li
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Rui Wei
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Guiying Jiang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Hanjie Xu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xueqian Wang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Ying Zhou
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Ling Xi
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
8
|
Sano K, Miki M, Tanaka T, Munemura M, Munekane M, Yamasaki T, Mukai T. Electrostatically self-assembled gold nanorods with chondroitin sulfate for targeted photothermal therapy for melanoma. Photodiagnosis Photodyn Ther 2021; 35:102402. [PMID: 34144259 DOI: 10.1016/j.pdpdt.2021.102402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND The application of gold nanorods (GNRs) in photothermal therapy is a promising avenue for cancer treatment. The aim of this study was to develop a GNR-based targeted photothermal therapy for melanoma. METHODS We utilized the electrostatic interaction between cationic GNRs and an anionic polymer chondroitin sulfate A (CSA), which has an affinity for binding to melanoma cells, to construct an anionic binary GNR-CSA complex (GNR-CS) at an optimal theoretical charge ratio of the trimethylammonium groups of GNR: carboxyl and sulfate groups of CSA = 1:2.5. The cytotoxicity to normal cells and erythrocyte agglutination activity of GNR-CS were evaluated. After the cellular uptake of GNR-CS by melanoma cells (B16-F10) was investigated, the photothermal performance of GNR-CS against B16-F10 cells was evaluated in vitro. RESULTS The particle size and zeta potential of GNR-CS were approximately 35 nm and -20 mV, respectively. GNR-CS showed little cytotoxicity to normal cells and low erythrocyte agglutination activity, indicating good biocompatibility. Compared with negatively-charged GNR, GNR-CS was highly taken up by B16-F10 cells even if it was negatively charged. Cellular uptake was significantly suppressed upon treatment with excess CSA, suggesting the involvement of a CSA-specific uptake pathway. Furthermore, irradiation of the GNR-CS solution with near-infrared (NIR) light increased its temperature in light-intensity and GNR-concentration dependent manners. GNR-CS exhibited significant and GNR-dose dependent cytotoxicity in melanoma cells in combination with NIR light irradiation. CONCLUSION GNRs coated with CSA have the potential as a medicine in targeted photothermal therapy for melanoma.
Collapse
Affiliation(s)
- Kohei Sano
- Laboratory of Biophysical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe 658-8558 Japan.
| | - Mayumi Miki
- Laboratory of Biophysical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe 658-8558 Japan
| | - Toshie Tanaka
- Laboratory of Biophysical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe 658-8558 Japan
| | - Mamia Munemura
- Laboratory of Biophysical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe 658-8558 Japan
| | - Masayuki Munekane
- Laboratory of Biophysical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe 658-8558 Japan
| | - Toshihide Yamasaki
- Laboratory of Biophysical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe 658-8558 Japan
| | - Takahiro Mukai
- Laboratory of Biophysical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe 658-8558 Japan.
| |
Collapse
|
9
|
Gupta N, Malviya R. Understanding and advancement in gold nanoparticle targeted photothermal therapy of cancer. Biochim Biophys Acta Rev Cancer 2021; 1875:188532. [PMID: 33667572 DOI: 10.1016/j.bbcan.2021.188532] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/12/2022]
Abstract
The present communication summarizes the importance, understanding and advancement in the photothermal therapy of cancer using gold nanoparticles. Photothermal therapy was used earlier as a single line therapy, but using a combination of photothermal therapy with other therapies like immunotherapy, chemotherapy, photodynamic therapy; efficient therapy management can be achieved. As it was discussed in many studies that gold nanoparticles are treated as idyllic photothermal transducers due to their structural dimensions, which enables them to strongly absorb near infrared light. Gold nanoparticles which are mediated for photothermal therapy can warn cancer cells to chemotherapy, regulate genes and immunotherapy by enhancing the cell permeability and intracellular delivery. The necrosis process and apoptosis depend on the power of laser and temperature within the cancerous tissues which are reached during irradiation. Cells death mechanism is also important because the cells which died through the process of necrosis can endorse secondary tumor growth while the cells which died through apoptosis may provoke the immune response to inhibit the development of secondary tumor growth. To decrease the in vivo barriers, gold nanostructures are again modified with targeting ligand and bio-responsive linker. The manuscript summarizes that the use of gold nanoparticles is capable of inhibiting the growth of cancerous cells by using photothermal therapy which has lesser adverse effects compared to other line therapies.
Collapse
Affiliation(s)
- Nandan Gupta
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India.
| |
Collapse
|
10
|
Nicolson F, Ali A, Kircher MF, Pal S. DNA Nanostructures and DNA-Functionalized Nanoparticles for Cancer Theranostics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001669. [PMID: 33304747 PMCID: PMC7709992 DOI: 10.1002/advs.202001669] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/27/2020] [Indexed: 05/12/2023]
Abstract
In the last two decades, DNA has attracted significant attention toward the development of materials at the nanoscale for emerging applications due to the unparalleled versatility and programmability of DNA building blocks. DNA-based artificial nanomaterials can be broadly classified into two categories: DNA nanostructures (DNA-NSs) and DNA-functionalized nanoparticles (DNA-NPs). More importantly, their use in nanotheranostics, a field that combines diagnostics with therapy via drug or gene delivery in an all-in-one platform, has been applied extensively in recent years to provide personalized cancer treatments. Conveniently, the ease of attachment of both imaging and therapeutic moieties to DNA-NSs or DNA-NPs enables high biostability, biocompatibility, and drug loading capabilities, and as a consequence, has markedly catalyzed the rapid growth of this field. This review aims to provide an overview of the recent progress of DNA-NSs and DNA-NPs as theranostic agents, the use of DNA-NSs and DNA-NPs as gene and drug delivery platforms, and a perspective on their clinical translation in the realm of oncology.
Collapse
Affiliation(s)
- Fay Nicolson
- Department of ImagingDana‐Farber Cancer Institute & Harvard Medical SchoolBostonMA02215USA
- Center for Molecular Imaging and NanotechnologyMemorial Sloan Kettering Cancer CenterNew YorkNY10065USA
| | - Akbar Ali
- Department of ChemistryIndian Institute of Technology‐ BhilaiRaipurChhattisgarh492015India
| | - Moritz F. Kircher
- Department of ImagingDana‐Farber Cancer Institute & Harvard Medical SchoolBostonMA02215USA
- Center for Molecular Imaging and NanotechnologyMemorial Sloan Kettering Cancer CenterNew YorkNY10065USA
- Department of RadiologyBrigham and Women's Hospital & Harvard Medical SchoolBostonMA02215USA
| | - Suchetan Pal
- Department of ChemistryIndian Institute of Technology‐ BhilaiRaipurChhattisgarh492015India
| |
Collapse
|
11
|
Nicolson F, Andreiuk B, Andreou C, Hsu HT, Rudder S, Kircher MF. Non-invasive In Vivo Imaging of Cancer Using Surface-Enhanced Spatially Offset Raman Spectroscopy (SESORS). Am J Cancer Res 2019; 9:5899-5913. [PMID: 31534527 PMCID: PMC6735365 DOI: 10.7150/thno.36321] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 07/10/2019] [Indexed: 12/15/2022] Open
Abstract
Rationale: The goal of imaging tumors at depth with high sensitivity and specificity represents a significant challenge in the field of biomedical optical imaging. 'Surface enhanced Raman scattering' (SERS) nanoparticles (NPs) have been employed as image contrast agents and can be used to specifically target cells in vivo. By tracking their unique "fingerprint" spectra, it becomes possible to determine their precise location. However, while the detection of SERS NPs is very sensitive and specific, conventional Raman spectroscopy imaging devices are limited in their inability to probe through tissue depths of more than a few millimetres, due to scattering and absorption of photons by biological tissues. Here, we combine the use of "Spatially Offset Raman spectroscopy" (SORS) with that of "surface-enhanced resonance Raman spectroscopy" (SERRS) in a technique known as "surface enhanced spatially offset resonance Raman spectroscopy" (SESO(R)RS) to image deep-seated glioblastoma multiforme (GBM) tumors in vivo in mice through the intact skull. Methods: A SORS imaging system was built in-house. Proof of concept SORS imaging was achieved using a PTFE-skull-tissue phantom. Imaging of GBMs in the RCAS-PDGF/N-tva transgenic mouse model was achieved through the use of gold nanostars functionalized with a resonant Raman reporter to create SERRS nanostars. These were then encapsulated in a thin silica shell and functionalized with a cyclic-RGDyK peptide to yield integrin-targeting SERRS nanostars. Non-invasive in vivo SORS image acquisition of the integrin-targeted nanostars was then performed in living mice under general anesthesia. Conventional non-SORS imaging was used as a direct comparison. Results: Using a low power density laser, GBMs were imaged via SESORRS in mice (n = 5) and confirmed using MRI and histopathology. The results demonstrate that via utilization of the SORS approach, it is possible to acquire clear and distinct Raman spectra from deep-seated GBMs in mice in vivo through the skull. SESORRS images generated using classical least squares outlined the tumors with high precision as confirmed via MRI and histology. Unlike SESORRS, conventional Raman imaging of the same areas did not provide a clear delineation of the tumor. Conclusion: To the best of our knowledge this is the first report of in vivo SESO(R)RS imaging. In a relevant brain tumor mouse model we demonstrate that this technique can overcome the limitations of conventional Raman imaging with regards to penetration depth. This work therefore represents a significant step forward in the potential clinical translation of SERRS nanoparticles for high precision cancer imaging.
Collapse
|