1
|
Guo L, Zhou Y, Ding J, Xiong J, Zhu L, Amuti S, Zhang C, Du Z, Zhang X, Dong B, Alifu N. A near-infrared triggered multi-functional indocyanine green nanocomposite with NO gas release function inducing improved photothermal therapy. J Colloid Interface Sci 2025; 679:307-323. [PMID: 39454262 DOI: 10.1016/j.jcis.2024.10.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024]
Abstract
The integration of photothermal and near-infrared (NIR) imaging capabilities of indocyanine green (ICG) small molecules has attracted considerable attention in tumor diagnosis and treatment. However, the abnormal upregulation of cellular heat shock proteins (HSPs) induced by photothermal therapy (PTT) enhances cellular heat resistance, thereby severely affecting the efficacy of PTT. In this study, to address the impact of HSPs on the efficacy of PTT while obtaining high-quality NIR fluorescence imaging in the NIR region, we designed a targeted peptide@ICG nanofluorescent probe encapsulated in liposomes. The introduced cRGD targeting peptide not only possesses tumor-targeting capabilities but also features LA as the last amino acid in the targeting peptide, which can generate nitric oxide (NO) under reactive oxygen species (ROS) triggering. It can happen under 808 nm single-light source NIR light, and the guanidine group in the peptide decomposes and combines with singlet oxygen molecules to generate NO gas molecules, thereby exerting an elevated photothermal effect by inhibiting the expression of HSP70. In addition, the nanoprobes enable deep imaging and treatment of glioma in situ and can be combined with a laser speckle contrast imaging (LSCI) system for multimodal imaging. This composite probe demonstrates synergistic tumor therapeutic effects of photodynamic therapy (PDT), PTT, and gas therapy, offering a promising strategy for cancer treatment.
Collapse
Affiliation(s)
- Le Guo
- Institute of Public Health, Xinjiang Medical University, Urumqi 830011, China
| | - Yi Zhou
- Institute of Public Health, Xinjiang Medical University, Urumqi 830011, China; Department of Biomedical Engineering, Zhongshan Medical College, ZhongShan University, Guangzhou 510000, China
| | - Jiayi Ding
- Institute of Public Health, Xinjiang Medical University, Urumqi 830011, China
| | - Jiabao Xiong
- Second Clinical Medical College, Xinjiang Medical University, Urumqi 830011, China
| | - Lijun Zhu
- Second Clinical Medical College, Xinjiang Medical University, Urumqi 830011, China
| | - Siyiti Amuti
- College of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830011, China
| | - Chi Zhang
- Institute of Public Health, Xinjiang Medical University, Urumqi 830011, China
| | - Zhong Du
- Second Clinical Medical College, Xinjiang Medical University, Urumqi 830011, China
| | - Xueliang Zhang
- State Key Laboratory of Pathogenesis Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology Xinjiang Medical University, Urumqi 830011, China.
| | - Biao Dong
- State Key Laboratory of Pathogenesis Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology Xinjiang Medical University, Urumqi 830011, China; State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China.
| | - Nuernisha Alifu
- Institute of Public Health, Xinjiang Medical University, Urumqi 830011, China; Second Clinical Medical College, Xinjiang Medical University, Urumqi 830011, China; State Key Laboratory of Pathogenesis Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology Xinjiang Medical University, Urumqi 830011, China.
| |
Collapse
|
2
|
Lankoff AM, Czerwińska M, Kruszewski M. Advances in Nanotheranostic Systems for Concurrent Cancer Imaging and Therapy: An Overview of the Last 5 Years. Molecules 2024; 29:5985. [PMID: 39770074 PMCID: PMC11677634 DOI: 10.3390/molecules29245985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/16/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
The rapid development of nanotechnology during the last two decades has created new opportunities to design and generate more advanced nanotheranostics with diversified capabilities for diagnosis, drug delivery, and treatment response monitoring in a single platform. To date, several approaches have been employed in order to develop nanotheranostics. The purpose of this review is to briefly discuss the key components of nanotheranostic systems, to present the conventional and upcoming imaging and therapeutic modalities that employ nanotheranostic systems, and to evaluate recent progress in the field of cancer nanotheranostic systems in the past five years (2020-2024). Special attention is focused on the design of cancer nanotheranostic systems, their composition, specificity, potential for multimodal imaging and therapy, and in vitro and in vivo characterization.
Collapse
Affiliation(s)
- Anna Małgorzata Lankoff
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland;
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Uniwersytecka 15, 25-406 Kielce, Poland
| | - Malwina Czerwińska
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), 159c Nowoursynowska Str, 02-776 Warsaw, Poland;
| | - Marcin Kruszewski
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland;
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland
| |
Collapse
|
3
|
Yang M, Zhou J, Lu L, Deng D, Huang J, Tang Z, Shi X, Lo P, Lovell JF, Zheng Y, Jin H. Tumor cell membrane-based vaccines: A potential boost for cancer immunotherapy. EXPLORATION (BEIJING, CHINA) 2024; 4:20230171. [PMID: 39713208 PMCID: PMC11655317 DOI: 10.1002/exp.20230171] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/08/2024] [Indexed: 12/24/2024]
Abstract
Because therapeutic cancer vaccines can, in theory, eliminate tumor cells specifically with relatively low toxicity, they have long been considered for application in repressing cancer progression. Traditional cancer vaccines containing a single or a few discrete tumor epitopes have failed in the clinic, possibly due to challenges in epitope selection, target downregulation, cancer cell heterogeneity, tumor microenvironment immunosuppression, or a lack of vaccine immunogenicity. Whole cancer cell or cancer membrane vaccines, which provide a rich source of antigens, are emerging as viable alternatives. Autologous and allogenic cellular cancer vaccines have been evaluated as clinical treatments. Tumor cell membranes (TCMs) are an intriguing antigen source, as they provide membrane-accessible targets and, at the same time, serve as integrated carriers of vaccine adjuvants and other therapeutic agents. This review provides a summary of the properties and technologies for TCM cancer vaccines. Characteristics, categories, mechanisms, and preparation methods are discussed, as are the demonstrable additional benefits derived from combining TCM vaccines with chemotherapy, sonodynamic therapy, phototherapy, and oncolytic viruses. Further research in chemistry, biomedicine, cancer immunology, and bioinformatics to address current drawbacks could facilitate the clinical adoption of TCM vaccines.
Collapse
Affiliation(s)
- Muyang Yang
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jie Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Liseng Lu
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Deqiang Deng
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jing Huang
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Zijian Tang
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Xiujuan Shi
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Pui‐Chi Lo
- Department of Biomedical SciencesCity University of Hong KongKowloonHong KongChina
| | - Jonathan F. Lovell
- Department of Biomedical EngineeringUniversity at BuffaloState University of New YorkBuffaloNew YorkUSA
| | - Yongfa Zheng
- Department of OncologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Honglin Jin
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
4
|
Sun Y, Wang M, Wang M, Liu C, Shi Y, Liu L. The combined plasma membrane coating and cluster bombing strategy for improved tumor-targeting gene delivery of silicon nanoclusters. Colloids Surf B Biointerfaces 2023; 231:113578. [PMID: 37804597 DOI: 10.1016/j.colsurfb.2023.113578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/18/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023]
Abstract
With the promising biosafety and favorable cell imaging efficiency, silicon quantum dots (SiQDs) was broadly exploited as non-viral gene carriers in recent years. However, the low transfection efficiency and weak targeting ability hindered its further clinical applications. In this study, the combined plasma membrane coating and cluster bombing strategy was adopted to enhance the gene delivery potential of silicon quantum dots nanoclusters (SiNC). Initially, SiNC was generated via 3, 3'-Dithiodipropionic acid (DipA) crosslinking of SiQDs, then the obtained nanoclusters were coated by distinct plasma membrane. Interestingly, cell membrane coated SiNC (CM-SiNC) underwent particle size change, the typical character of "cluster bombing", when exposed to high GSH concentration, which was observed in the tumor microenvironment. Meanwhile, CM-SiNC can be efficiently uptaken by HEK 293T and HeLa cells, therefore transferring DNA into those cells. More importantly, among the particles coated by HeLa (HeLa-M), Red Blood (RBC-M) or RAW267.4 (RAW-M) cell membrane, HeLa cell membrane coating exhibited better cellular uptake and transfection efficiency in HeLa cells, which suggested the encouraging tumor targeting ability. In sum, these data suggested that cluster bombing of SiNC could be beneficial for physical stability and biodistribution, the additional plasma membrane coating further endowed SiNC the efficient gene delivery and tumor targeting ability. Therefore, CM-SiNC had the potential as a gene delivery vector and its application should be further addressed in vivo.
Collapse
Affiliation(s)
- Yanlin Sun
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Mengying Wang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Mingjie Wang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Chaobing Liu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yong Shi
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Liang Liu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
5
|
Zhang S, Liang Z, Tang K, Li X, Zhang X, Mo Z, Wu J, Huang S, Liu J, Zhuang Z, Qi L, Chen W. In vivo co-registered hybrid-contrast imaging by successive photoacoustic tomography and magnetic resonance imaging. PHOTOACOUSTICS 2023; 31:100506. [PMID: 37397508 PMCID: PMC10313508 DOI: 10.1016/j.pacs.2023.100506] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/15/2023] [Accepted: 05/06/2023] [Indexed: 07/04/2023]
Abstract
Magnetic resonance imaging (MRI) and photoacoustic tomography (PAT) offer two distinct image contrasts. To integrate these two modalities, we present a comprehensive hardware-software solution for the successive acquisition and co-registration of PAT and MRI images in in vivo animal studies. Based on commercial PAT and MRI scanners, our solution includes a 3D-printed dual-modality imaging bed, a 3-D spatial image co-registration algorithm with dual-modality markers, and a robust modality switching protocol for in vivo imaging studies. Using the proposed solution, we successfully demonstrated co-registered hybrid-contrast PAT-MRI imaging that simultaneously displays multi-scale anatomical, functional and molecular characteristics on healthy and cancerous living mice. Week-long longitudinal dual-modality imaging of tumor development reveals information on size, border, vascular pattern, blood oxygenation, and molecular probe metabolism of the tumor micro-environment at the same time. The proposed methodology holds promise for a wide range of pre-clinical research applications that benefit from the PAT-MRI dual-modality image contrast.
Collapse
Affiliation(s)
- Shuangyang Zhang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhichao Liang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, Guangdong, China
| | - Kaiyi Tang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xipan Li
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoming Zhang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, Guangdong, China
| | - Zongxin Mo
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, Guangdong, China
| | - Jian Wu
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, Guangdong, China
| | - Shixian Huang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiaming Liu
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhijian Zhuang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, Guangdong, China
| | - Li Qi
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, Guangdong, China
| | - Wufan Chen
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Rezaei S, de Araújo Júnior RF, da Silva ILG, Schomann T, Eich C, Cruz LJ. Erythrocyte-cancer hybrid membrane-coated reduction-sensitive nanoparticles for enhancing chemotherapy efficacy in breast cancer. BIOMATERIALS ADVANCES 2023; 151:213456. [PMID: 37196459 DOI: 10.1016/j.bioadv.2023.213456] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/07/2023] [Accepted: 04/30/2023] [Indexed: 05/19/2023]
Abstract
Cell-membrane-coated biomimetic nanoparticles (NPs) have attracted great attention due to their prolonged circulation time, immune escape mechanisms and homotypic targeting properties. Biomimetic nanosystems from different types of cell -membranes (CMs) can perform increasingly complex tasks in dynamic biological environments thanks to specific proteins and other properties inherited from the source cells. Herein, we coated doxorubicin (DOX)-loaded reduction-sensitive chitosan (CS) NPs with 4T1 cancer cell -membranes (CCMs), red blood cell -membranes (RBCMs) and hybrid erythrocyte-cancer membranes (RBC-4T1CMs) to enhance the delivery of DOX to breast cancer cells. The physicochemical properties (size, zeta potential and morphology) of the resulting RBC@DOX/CS-NPs, 4T1@DOX/CS-NPs and RBC-4T1@DOX/CS-NPs, as well as their cytotoxic effect and cellular NP uptake in vitro were thoroughly characterized. The anti-cancer therapeutic efficacy of the NPs was evaluated using the orthotopic 4T1 breast cancer model in vivo. The experimental results showed that DOX/CS-NPs had a DOX-loading capacity of 71.76 ± 0.87 %, and that coating of DOX/CS-NPs with 4T1CM significantly increased the NP uptake and cytotoxic effect in breast cancer cells. Interestingly, by optimizing the ratio of RBCMs:4T1CMs, it was possible to increase the homotypic targeting properties towards breast cancer cells. Moreover, in vivo tumor studies showed that compared to control DOX/CS-NPs and free DOX, both 4T1@DOX/CS-NPs and RBC@DOX/CS-NPs significantly inhibited tumor growth and metastasis. However, the effect of 4T1@DOX/CS-NPs was more prominent. Moreover, CM-coating reduced the uptake of NPs by macrophages and led to rapid clearance from the liver and lungs in vivo, compared to control NPs. Our results suggest that specific self-recognition to source cells resulting in homotypic targeting increased the uptake and the cytotoxic capacity of 4T1@DOX/CS-NPs by breast cancer cells in vitro and in vivo. In conclusion, tumor-disguised CM-coated DOX/CS-NPs exhibited tumor homotypic targeting and anti-cancer properties, and were superior over targeting with RBC-CM or RBC-4T1 hybrid membranes, suggesting that the presence of 4T1-CM is critical for treatment outcome.
Collapse
Affiliation(s)
- Somayeh Rezaei
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands.
| | - Raimundo Fernandes de Araújo Júnior
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; Postgraduate Program in Health Science, Federal University of Rio Grande do Norte (UFRN), Natal 59064-720, Brazil; Cancer and Inflammation Research Laboratory (LAICI), Postgraduate Program in Functional and Structural Biology, Department of Morphology, Federal University of Rio Grande do Norte (UFRN), Natal 59064-720, Brazil.
| | - Isadora Luisa Gomes da Silva
- Cancer and Inflammation Research Laboratory (LAICI), Postgraduate Program in Functional and Structural Biology, Department of Morphology, Federal University of Rio Grande do Norte (UFRN), Natal 59064-720, Brazil
| | - Timo Schomann
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; Department of Vascular Surgery, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Christina Eich
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands.
| | - Luis J Cruz
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands.
| |
Collapse
|
7
|
Sisakhtnezhad S, Rahimi M, Mohammadi S. Biomedical applications of MnO 2 nanomaterials as nanozyme-based theranostics. Biomed Pharmacother 2023; 163:114833. [PMID: 37150035 DOI: 10.1016/j.biopha.2023.114833] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/09/2023] Open
Abstract
Manganese dioxide (MnO2) nanoenzymes/nanozymes (MnO2-NEs) are 1-100 nm nanomaterials that mimic catalytic, oxidative, peroxidase, and superoxide dismutase activities. The oxidative-like activity of MnO2-NEs makes them suitable for developing effective and low-cost colorimetric detection assays of biomolecules. Interestingly, MnO2-NEs also demonstrate scavenging properties against reactive oxygen species (ROS) in various pathological conditions. In addition, due to the decomposition of MnO2-NEs in the tumor microenvironment (TME) and the production of Mn2+, they can act as a contrast agent for improving clinical imaging diagnostics. MnO2-NEs also can use as an in situ oxygen production system in TME, thereby overcoming hypoxic conditions and their consequences in the progression of cancer. Furthermore, MnO2-NEs as a shell and coating make the nanosystems smart and, therefore, in combination with other nanomaterials, the MnO2-NEs can be used as an intelligent nanocarrier for delivering drugs, photosensitizers, and sonosensitizers in vivo. Moreover, these capabilities make MnO2-NEs a promising candidate for the detection and treatment of different human diseases such as cancer, metabolic, infectious, and inflammatory pathological conditions. MnO2-NEs also have ROS-scavenging and anti-bacterial properties against Gram-positive and Gram-negative bacterial strains, which make them suitable for wound healing applications. Given the importance of nanomaterials and their potential applications in biomedicine, this review aimed to discuss the biochemical properties and the theranostic roles of MnO2-NEs and recent advances in their use in colorimetric detection assays of biomolecules, diagnostic imaging, drug delivery, and combinatorial therapy applications. Finally, the challenges of MnO2-NEs applications in biomedicine will be discussed.
Collapse
Affiliation(s)
| | - Matin Rahimi
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Soheila Mohammadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
8
|
Chen BQ, Zhao Y, Zhang Y, Pan YJ, Xia HY, Kankala RK, Wang SB, Liu G, Chen AZ. Immune-regulating camouflaged nanoplatforms: A promising strategy to improve cancer nano-immunotherapy. Bioact Mater 2023; 21:1-19. [PMID: 36017071 PMCID: PMC9382433 DOI: 10.1016/j.bioactmat.2022.07.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/11/2022] [Accepted: 07/24/2022] [Indexed: 02/06/2023] Open
Abstract
Although nano-immunotherapy has advanced dramatically in recent times, there remain two significant hurdles related to immune systems in cancer treatment, such as (namely) inevitable immune elimination of nanoplatforms and severely immunosuppressive microenvironment with low immunogenicity, hampering the performance of nanomedicines. To address these issues, several immune-regulating camouflaged nanocomposites have emerged as prevailing strategies due to their unique characteristics and specific functionalities. In this review, we emphasize the composition, performances, and mechanisms of various immune-regulating camouflaged nanoplatforms, including polymer-coated, cell membrane-camouflaged, and exosome-based nanoplatforms to evade the immune clearance of nanoplatforms or upregulate the immune function against the tumor. Further, we discuss the applications of these immune-regulating camouflaged nanoplatforms in directly boosting cancer immunotherapy and some immunogenic cell death-inducing immunotherapeutic modalities, such as chemotherapy, photothermal therapy, and reactive oxygen species-mediated immunotherapies, highlighting the current progress and recent advancements. Finally, we conclude the article with interesting perspectives, suggesting future tendencies of these innovative camouflaged constructs towards their translation pipeline.
Collapse
Affiliation(s)
- Biao-Qi Chen
- Institute of Biomaterials and Tissue Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, PR China
| | - Yi Zhao
- Institute of Biomaterials and Tissue Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, PR China
| | - Yang Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Yu-Jing Pan
- Institute of Biomaterials and Tissue Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, PR China
| | - Hong-Ying Xia
- Institute of Biomaterials and Tissue Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, PR China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, PR China
| | - Shi-Bin Wang
- Institute of Biomaterials and Tissue Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, PR China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, PR China
| |
Collapse
|
9
|
Lee Y, Kim M, Ha J, Lee M. Brain-targeted exosome-mimetic cell membrane nanovesicles with therapeutic oligonucleotides elicit anti-tumor effects in glioblastoma animal models. Bioeng Transl Med 2023; 8:e10426. [PMID: 36925699 PMCID: PMC10013800 DOI: 10.1002/btm2.10426] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/19/2022] [Accepted: 10/03/2022] [Indexed: 11/11/2022] Open
Abstract
The brain-targeted delivery of therapeutic oligonucleotides has been investigated as a new treatment modality for various brain diseases, such as brain tumors. However, delivery efficiency into the brain has been limited due to the blood-brain barrier. In this research, brain-targeted exosome-mimetic cell membrane nanovesicles (CMNVs) were designed to enhance the delivery of therapeutic oligonucleotides into the brain. First, CMNVs were produced by extrusion with isolated C6 cell membrane fragments. Then, CMNVs were decorated with cholesterol-linked T7 peptides as a targeting ligand by hydrophobic interaction, producing T7-CMNV. T7-CMNV was in aqueous solution maintained its nanoparticle size for over 21 days. The targeting and delivery effects of T7-CMNVs were evaluated in an orthotopic glioblastoma animal model. 2'-O-metyl and cholesterol-TEG modified anti-microRNA-21 oligonucleotides (AMO21c) were loaded into T7-CMNVs, and biodistribution experiments indicated that T7-CMNVs delivered AMO21c more efficiently into the brain than CMNVs, scrambled T7-CMNVs, lipofectamine, and naked AMO21c after systemic administration. In addition, AMO21c down-regulated miRNA-21 (miR-21) levels in glioblastoma tissue most efficiently in the T7-CMNVs group. This enhanced suppression of miR-21 resulted in the up-regulation of PDCD4 and PTEN. Eventually, brain tumor size was reduced in the T7-CMNVs group more efficiently than in the other control groups. With stability, low toxicity, and targeting efficiency, T7-CMNVs may be useful to the development of oligonucleotide therapy for brain tumors.
Collapse
Affiliation(s)
- Youngki Lee
- Department of BioengineeringCollege of Engineering, Hanyang UniversitySeoulKorea
| | - Minkyung Kim
- Department of BioengineeringCollege of Engineering, Hanyang UniversitySeoulKorea
| | - Junkyu Ha
- Department of BioengineeringCollege of Engineering, Hanyang UniversitySeoulKorea
| | - Minhyung Lee
- Department of BioengineeringCollege of Engineering, Hanyang UniversitySeoulKorea
| |
Collapse
|
10
|
Wu Q, Chen L, Huang X, Lin J, Gao J, Yang G, Wu Y, Wang C, Kang X, Yao Y, Wang Y, Xue M, Luan X, Chen X, Zhang Z, Sun S. A biomimetic nanoplatform for customized photothermal therapy of HNSCC evaluated on patient-derived xenograft models. Int J Oral Sci 2023; 15:9. [PMID: 36765028 PMCID: PMC9918549 DOI: 10.1038/s41368-022-00211-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/09/2022] [Accepted: 11/21/2022] [Indexed: 02/12/2023] Open
Abstract
Cancer cell membrane (CCM) derived nanotechnology functionalizes nanoparticles (NPs) to recognize homologous cells, exhibiting translational potential in accurate tumor therapy. However, these nanoplatforms are majorly generated from fixed cell lines and are typically evaluated in cell line-derived subcutaneous-xenografts (CDX), ignoring the tumor heterogeneity and differentiation from inter- and intra- individuals and microenvironments between heterotopic- and orthotopic-tumors, limiting the therapeutic efficiency of such nanoplatforms. Herein, various biomimetic nanoplatforms (CCM-modified gold@Carbon, i.e., Au@C-CCM) were fabricated by coating CCMs of head and neck squamous cell carcinoma (HNSCC) cell lines and patient-derived cells on the surface of Au@C NP. The generated Au@C-CCMs were evaluated on corresponding CDX, tongue orthotopic xenograft (TOX), immune-competent primary and distant tumor models, and patient-derived xenograft (PDX) models. The Au@C-CCM generates a photothermal conversion efficiency up to 44.2% for primary HNSCC therapy and induced immunotherapy to inhibit metastasis via photothermal therapy-induced immunogenic cell death. The homologous CCM endowed the nanoplatforms with optimal targeting properties for the highest therapeutic efficiency, far above those with mismatched CCMs, resulting in distinct tumor ablation and tumor growth inhibition in all four models. This work reinforces the feasibility of biomimetic NPs combining modular designed CMs and functional cores for customized treatment of HNSCC, can be further extended to other malignant tumors therapy.
Collapse
Affiliation(s)
- Qi Wu
- grid.412523.30000 0004 0386 9086Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai, China
| | - Lan Chen
- grid.412523.30000 0004 0386 9086Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xiaojuan Huang
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai, China.
| | - Jiayi Lin
- grid.412540.60000 0001 2372 7462Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiamin Gao
- grid.412523.30000 0004 0386 9086Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai, China
| | - Guizhu Yang
- grid.412523.30000 0004 0386 9086Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yaping Wu
- grid.412523.30000 0004 0386 9086Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai, China
| | - Chong Wang
- grid.412523.30000 0004 0386 9086Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xindan Kang
- grid.412523.30000 0004 0386 9086Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yanli Yao
- grid.412523.30000 0004 0386 9086Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yujue Wang
- grid.412523.30000 0004 0386 9086Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai, China
| | - Mengzhu Xue
- grid.412523.30000 0004 0386 9086Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xin Luan
- grid.412540.60000 0001 2372 7462Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Chen
- grid.43169.390000 0001 0599 1243School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi’an Jiao Tong University, Xi’an, Shaanxi China
| | - Zhiyuan Zhang
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai, China.
| | - Shuyang Sun
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai, China.
| |
Collapse
|
11
|
Wu Z, Zhang H, Yan J, Wei Y, Su J. Engineered biomembrane-derived nanoparticles for nanoscale theranostics. Theranostics 2023; 13:20-39. [PMID: 36593970 PMCID: PMC9800735 DOI: 10.7150/thno.76894] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/01/2022] [Indexed: 12/02/2022] Open
Abstract
Currently, biological membrane-derived nanoparticles (NPs) have shown enormous potential as drug delivery vehicles due to their outstanding biomimetic properties. To make these NPs more adaptive to complex biological systems, some methods have been developed to modify biomembranes and endow them with more functions while preserving their inherent natures. In this review, we introduce five common approaches used for biomembrane decoration: membrane hybridization, the postinsertion method, chemical methods, metabolism engineering and gene engineering. These methods can functionalize a series of biomembranes derived from red blood cells, white blood cells, tumor cells, platelets, exosomes and so on. Biomembrane engineering could markedly facilitate the targeted drug delivery, treatment and diagnosis of cancer, inflammation, immunological diseases, bone diseases and Alzheimer's disease. It is anticipated that these membrane modification techniques will advance biomembrane-derived NPs into broader applications in the future.
Collapse
Affiliation(s)
- Ziqing Wu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.,Institute of Medicine, Shanghai University, Shanghai 200444, China.,Musculoskeletal Organoid Research Center, Shanghai University, Shanghai 200444, China
| | - Hao Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Jing Yan
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.,Institute of Medicine, Shanghai University, Shanghai 200444, China.,Musculoskeletal Organoid Research Center, Shanghai University, Shanghai 200444, China
| | - Yan Wei
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.,Musculoskeletal Organoid Research Center, Shanghai University, Shanghai 200444, China.,✉ Corresponding authors: Jiacan Su, Institute of Translational Medicine, Shanghai University, Shanghai 200444, China. E-mail: ; Yan Wei, Institute of Translational Medicine, Shanghai University, Shanghai 200444, China. E-mail:
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.,Musculoskeletal Organoid Research Center, Shanghai University, Shanghai 200444, China.,Department of Trauma Orthopedics, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.,✉ Corresponding authors: Jiacan Su, Institute of Translational Medicine, Shanghai University, Shanghai 200444, China. E-mail: ; Yan Wei, Institute of Translational Medicine, Shanghai University, Shanghai 200444, China. E-mail:
| |
Collapse
|
12
|
Ding L, Liang M, Li C, Ji X, Zhang J, Xie W, Reis RL, Li FR, Gu S, Wang Y. Design Strategies of Tumor-Targeted Delivery Systems Based on 2D Nanomaterials. SMALL METHODS 2022; 6:e2200853. [PMID: 36161304 DOI: 10.1002/smtd.202200853] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/11/2022] [Indexed: 06/16/2023]
Abstract
Conventional chemotherapy and radiotherapy are nonselective and nonspecific for cell killing, causing serious side effects and threatening the lives of patients. It is of great significance to develop more accurate tumor-targeting therapeutic strategies. Nanotechnology is in a leading position to provide new treatment options for cancer, and it has great potential for selective targeted therapy and controlled drug release. 2D nanomaterials (2D NMs) have broad application prospects in the field of tumor-targeted delivery systems due to their special structure-based functions and excellent optical, electrical, and thermal properties. This review emphasizes the design strategies of tumor-targeted delivery systems based on 2D NMs from three aspects: passive targeting, active targeting, and tumor-microenvironment targeting, in order to promote the rational application of 2D NMs in clinical practice.
Collapse
Affiliation(s)
- Lin Ding
- School of Pharmaceutical Sciences and The First Affiliated Hospital, Hainan Medical University, Haikou, 570228, P. R. China
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, 518055, China
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen, Guangdong, 518055, China
- Guangdong Engineering Technology Research Centerof Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen, 518020, China
| | - Minli Liang
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, 518055, China
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen, Guangdong, 518055, China
- Guangdong Engineering Technology Research Centerof Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen, 518020, China
| | - Chenchen Li
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Xinting Ji
- School of Pharmaceutical Sciences and The First Affiliated Hospital, Hainan Medical University, Haikou, 570228, P. R. China
| | - Junfeng Zhang
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Weifen Xie
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Rui L Reis
- 3B's Research Group, I3Bs-Research Institute on Biomaterials Biodegradables and Biomimetics, University of Minho, Guimarães, 4805-017, Portugal
| | - Fu-Rong Li
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, 518055, China
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen, Guangdong, 518055, China
- Guangdong Engineering Technology Research Centerof Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen, 518020, China
| | - Shuo Gu
- School of Pharmaceutical Sciences and The First Affiliated Hospital, Hainan Medical University, Haikou, 570228, P. R. China
| | - Yanli Wang
- School of Pharmaceutical Sciences and The First Affiliated Hospital, Hainan Medical University, Haikou, 570228, P. R. China
| |
Collapse
|
13
|
Qian Z, Tan R, Zhang X, Leng Y, Chen Z. MnO2 Nanosheet-Based colorimetric sensor Array: Toward identification of organophosphorus pesticides. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Thangudu S, Huang EY, Su CH. Safe magnetic resonance imaging on biocompatible nanoformulations. Biomater Sci 2022; 10:5032-5053. [PMID: 35858468 DOI: 10.1039/d2bm00692h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Magnetic resonance imaging (MRI) holds promise for the early clinical diagnosis of various diseases, but most clinical MR techniques require the use of a contrast medium. Several nanomaterial (NM) mediated contrast agents (CAs) are widely used as T1- and T2-based MR contrast agents for clinical and non-clinical applications. Unfortunately, most NM-based CAs are toxic or non-biocompatible, restricting their practical/clinical applications. Therefore, the development of nontoxic and biocompatible CAs for clinical MRI diagnosis is highly desired. To this end, several biocompatible and biomimetic strategies have been developed to offer long blood circulation time, significant biocompatibility, in vivo biodistribution and high contrast ability for efficient imaging. However, detailed review reports on biocompatible NMs, specifically for MR imaging have not yet been summarized. Thus, in the present review we summarize various surface coating strategies (such as polymers, proteins, cell membranes, etc.) to achieve biocompatible NPs, providing a detailed discussion of advances and future prospects for safe MRI imaging.
Collapse
Affiliation(s)
- Suresh Thangudu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan.
| | - Eng-Yen Huang
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chia-Hao Su
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan. .,Center for General Education, Chang Gung University, Taoyuan, 333, Taiwan.,Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| |
Collapse
|
15
|
Wang X, Ye Z, Lin S, Wei L, Xiao L. Nanozyme-Triggered Cascade Reactions from Cup-Shaped Nanomotors Promote Active Cellular Targeting. Research (Wash D C) 2022; 2022:9831012. [PMID: 35935135 PMCID: PMC9275069 DOI: 10.34133/2022/9831012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/04/2022] [Indexed: 11/06/2022] Open
Abstract
Self-propelled nanomotors have shown enormous potential in biomedical applications. Herein, we report on a nanozyme-powered cup-shaped nanomotor for active cellular targeting and synergistic photodynamic/thermal therapy under near-infrared (NIR) laser irradiation. The nanomotor is constructed by the asymmetric decoration of platinum nanoparticles (PtNPs) at the bottom of gold nanocups (GNCs). PtNPs with robust peroxidase- (POD-) like activity are employed not only as propelling elements for nanomotors but also as continuous O2 generators to promote photodynamic therapy via catalyzing endogenous H2O2 decomposition. Owing to the Janus structure, asymmetric propulsion force is generated to trigger the short-ranged directional diffusion, facilitating broader diffusion areas and more efficient cellular searching and uptake. This cascade strategy combines key capabilities, i.e., endogenous substrate-based self-propulsion, active cellular targeting, and enhanced dual-modal therapy, in one multifunctional nanomotor, which is crucial in advancing self-propelled nanomotors towards eventual therapeutic agents.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhongju Ye
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Shen Lin
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Lin Wei
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Key Laboratory of Phytochemical R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410082, China
| | - Lehui Xiao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
16
|
Chatterjee S, Liang F. Current Perspective in Cancer Theranostics Based on Gold Nanoparticles. Anticancer Agents Med Chem 2022; 22:2354-2357. [PMID: 35196973 DOI: 10.2174/1871520622666220222141609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 11/22/2022]
Abstract
The growth of nanotechnology has revolutionized the diagnosis and treatment of diseases, with high precision and effectiveness. Nanoparticles (NPs) represent a major point of attention in the scientific field, with an increasing number of studies revealing promising results. The unique physicochemical properties, biocompatibility, and highly developed chemical properties of gold nanoparticles (AuNPs) have promoted breakthroughs in the cancer community, focusing on the therapeutic and diagnostic applications of cancer diagnosis and treatment. This perspective aims to summarize the latest research on multifunctional AuNPs as therapeutic diagnostic agents in cancer diagnosis and treatment. Several nanostructured hybrid AuNPs have been reviewed and their applications in imaging, targeting, therapy, and delivery have been discussed.
Collapse
Affiliation(s)
- Sobhan Chatterjee
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Feng Liang
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| |
Collapse
|
17
|
Qiu N, Yang X, Zhang Y, Zhang J, Ji J, Zhang Y, Kong X, Xi Y, Liu D, Ye L, Zhai G. A molybdenum oxide-based degradable nanosheet for combined chemo-photothermal therapy to improve tumor immunosuppression and suppress distant tumors and lung metastases. J Nanobiotechnology 2021; 19:428. [PMID: 34923976 PMCID: PMC8684628 DOI: 10.1186/s12951-021-01162-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/23/2021] [Indexed: 01/12/2023] Open
Abstract
Molybdenum oxide (MoOx) nanosheets have drawn increasing attention for minimally invasive cancer treatments but still face great challenges, including complex modifications and the lack of efficient accumulation in tumor. In this work, a novel multifunctional degradable FA-BSA-PEG/MoOx nanosheet was fabricated (LA-PEG and FA-BSA dual modified MoOx): the synergistic effect of PEG and BSA endows the nanosheet with excellent stability and compatibility; the FA, a targeting ligand, facilitates the accumulation of nanosheets in the tumor. In addition, DTX, a model drug for breast cancer treatment, was loaded (76.49%, 1.5 times the carrier weight) in the nanosheets for in vitro and in vivo antitumor evaluation. The results revealed that the FA-BSA-PEG/MoOx@DTX nanosheets combined photothermal and chemotherapy could not only inhibit the primary tumor growth but also suppress the distant tumor growth (inhibition rate: 51.7%) and lung metastasis (inhibition rate: 93.6%), which is far more effective compared to the commercial Taxotere®. Exploration of the molecular mechanism showed that in vivo immune response induced an increase in positive immune responders, suppressed negative immune suppressors, and established an inflammatory tumor immune environment, which co-contributes towards effective suppression of tumor and lung metastasis. Our experiments demonstrated that this novel multifunctional nanosheet is a promising platform for combined chemo-photothermal therapy. ![]()
Collapse
Affiliation(s)
- Na Qiu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 WenhuaXilu, Jinan, 250012, People's Republic of China
| | - Xiaoye Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 WenhuaXilu, Jinan, 250012, People's Republic of China
| | - Yanan Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 WenhuaXilu, Jinan, 250012, People's Republic of China
| | - Jicheng Zhang
- Department of Chemistry and Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Jianbo Ji
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 WenhuaXilu, Jinan, 250012, People's Republic of China
| | - Yu Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 WenhuaXilu, Jinan, 250012, People's Republic of China
| | - Xinru Kong
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 WenhuaXilu, Jinan, 250012, People's Republic of China
| | - Yanwei Xi
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 WenhuaXilu, Jinan, 250012, People's Republic of China
| | - Dongzhu Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 WenhuaXilu, Jinan, 250012, People's Republic of China
| | - Lei Ye
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 WenhuaXilu, Jinan, 250012, People's Republic of China.
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 WenhuaXilu, Jinan, 250012, People's Republic of China.
| |
Collapse
|
18
|
Shrestha B, Wang L, Brey EM, Uribe GR, Tang L. Smart Nanoparticles for Chemo-Based Combinational Therapy. Pharmaceutics 2021; 13:853. [PMID: 34201333 PMCID: PMC8227511 DOI: 10.3390/pharmaceutics13060853] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 12/27/2022] Open
Abstract
Cancer is a heterogeneous and complex disease. Traditional cancer therapy is associated with low therapeutic index, acquired resistance, and various adverse effects. With the increasing understanding of cancer biology and technology advancements, more strategies have been exploited to optimize the therapeutic outcomes. The rapid development and application of nanomedicine have motivated this progress. Combinational regimen, for instance, has become an indispensable approach for effective cancer treatment, including the combination of chemotherapeutic agents, chemo-energy, chemo-gene, chemo-small molecules, and chemo-immunology. Additionally, smart nanoplatforms that respond to external stimuli (such as light, temperature, ultrasound, and magnetic field), and/or to internal stimuli (such as changes in pH, enzymes, hypoxia, and redox) have been extensively investigated to improve precision therapy. Smart nanoplatforms for combinational therapy have demonstrated the potential to be the next generation cancer treatment regimen. This review aims to highlight the recent advances in smart combinational therapy.
Collapse
Affiliation(s)
| | | | | | - Gabriela Romero Uribe
- Department of Biomedical and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (B.S.); (L.W.); (E.M.B.)
| | - Liang Tang
- Department of Biomedical and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (B.S.); (L.W.); (E.M.B.)
| |
Collapse
|