1
|
Wadgaonkar AS, Deshpande SV, Rahate NP, Rahate PV. The Miraculous Diagnostic Role of Indocyanine Green in a Diabetic Foot Ulcer: A Rare Case Report. Cureus 2024; 16:e55525. [PMID: 38576658 PMCID: PMC10993092 DOI: 10.7759/cureus.55525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/04/2024] [Indexed: 04/06/2024] Open
Abstract
Diabetes is a chronic metabolic disorder characterized by elevated levels of glucose in the blood. This causes small nerve polyneuropathy resulting in diabetic foot ulcers. A diabetic foot ulcer is an open sore or wound that develops as a result of chronic diabetes. Indocyanine green angiography (ICGA) near-infrared (NIR) can provide real-time visualization of blood flow within the microvasculature of the underlying organ. Here, we discuss a 63-year-old patient who came with a diabetic foot ulcer over his right great toe. His blood glucose level was 208 mg/dl. He drinks alcohol occasionally and smokes regularly. The tissue perfusion of his right foot was checked using the indocyanine green dye, after which orthopedic surgeons were consulted, and the gangrenous part was amputated.
Collapse
Affiliation(s)
- Apurv S Wadgaonkar
- Orthopedics and Traumatology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sanjay V Deshpande
- Orthopedics and Traumatology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Nachiket P Rahate
- Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | | |
Collapse
|
2
|
Guo Y, Hu J, Wang P, Yang H, Liang S, Chen D, Xu K, Huang Y, Wang Q, Liu X, Zhu H. In Vivo NIR-II Fluorescence Lifetime Imaging of Whole-Body Vascular Using High Quantum Yield Lanthanide-Doped Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300392. [PMID: 37127883 DOI: 10.1002/smll.202300392] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/14/2023] [Indexed: 05/03/2023]
Abstract
Second near infrared (NIR-II, 1000-1700 nm) fluorescence lifetime imaging is a powerful tool for biosensing, anti-counterfeiting, and multiplex imaging. However, the low photoluminescence quantum yield (PLQY) of fluorescence probes in NIR-II region limits its data collecting efficiency and accuracy, especially in multiplex molecular imaging in vivo. To solve this problem, lanthanide-doped nanoparticles (NPs) β-NaErF4 : 2%Ce@NaYbF4 @NaYF4 with high PLQY and tunable PL lifetime through multi-ion doping and core-shell structural design, are presented. The obtained internal PLQY can reach up to 50.1% in cyclohexane and 9.2% in water under excitation at 980 nm. Inspired by the above results, a fast NIR-II fluorescence lifetime imaging of whole-body vascular in mice is successfully performed by using the homebuilt fluorescence lifetime imaging system, which reveals a murine abdominal capillary network with low background. A further demonstration of fluorescence lifetime multiplex imaging is carried out in molecular imaging of atherosclerosis cells and different organs in vivo through NPs conjugating with specific peptides and different injection modalities, respectively. These results demonstrate that the high PLQY NPs combined with the homebuilt fluorescence lifetime imaging system can realize a fast and high signal-to-noise fluorescence lifetime imaging; thus, opening a road for multiplex molecular imaging of atherosclerosis.
Collapse
Affiliation(s)
- Yongwei Guo
- College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Research Center of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Jie Hu
- College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Research Center of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Peiyuan Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Research Center of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, 361021, China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, China
| | - Hongyi Yang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Research Center of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Sisi Liang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Research Center of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Dejian Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Research Center of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Kunyuan Xu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Research Center of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Yingping Huang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Research Center of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, 361021, China
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Qinglai Wang
- College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Research Center of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Xiaolong Liu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Research Center of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, 361021, China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, China
| | - Haomiao Zhu
- College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Research Center of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, 361021, China
| |
Collapse
|
3
|
Li B, Zhao M, Lin J, Huang P, Chen X. Management of fluorescent organic/inorganic nanohybrids for biomedical applications in the NIR-II region. Chem Soc Rev 2022; 51:7692-7714. [PMID: 35861173 DOI: 10.1039/d2cs00131d] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biomedical fluorescence imaging in the second near-infrared (NIR-II, 100-1700 nm) window provides great potential for visualizing physiological and pathological processes, owing to the reduced tissue absorption, scattering, and autofluorescence. Various types of NIR-II probes have been reported in the past decade. Among them, NIR-II organic/inorganic nanohybrids have attracted widespread attention due to their unique properties by integrating the advantages of both organic and inorganic species. Versatile organic/inorganic nanohybrids provide the possibility of realizing a combination of functions, controllable size, and multiple optical features. This tutorial review summarizes the reported organic and inorganic species in nanohybrids, and their biomedical applications in NIR-II fluorescence and lifetime imaging. Finally, the challenges and outlook of organic/inorganic nanohybrids in biomedical applications are discussed.
Collapse
Affiliation(s)
- Benhao Li
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China. .,Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore. .,Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.,Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Mengyao Zhao
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore. .,Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.,Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China.
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China.
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore. .,Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.,Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
4
|
Wang S, Lin Y, Zhang C, Zhu T, Tian X, Li D, Ma W, Zhang Q, Wu J, Tian Y. Fine Tuning of Multiphoton AIE Emission Behavior, Organelle Targeting, and Fluorescence Lifetime Imaging of Terpyridine Derivatives by Alkyl Chain Engineering. Anal Chem 2022; 94:4335-4342. [PMID: 35235305 DOI: 10.1021/acs.analchem.1c05052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this work, a series of multiphoton terpyridine agents (ZA, ZA-Mex, and ZA-Hex) for fluorescence lifetime imaging microscopy (FLIM) are designed and synthesized. The results from photophysical property research reveal that ZA-Hex, as an N-hexylated terpyridine salt, has stronger three-photon aggregation-induced emission (AIE) properties compared to ZA-Mex due to enhanced intramolecular charge transfer (ICT) performance. All three terpyridine derivatives possess suitable fluorescence intensities and stable fluorescence lifetimes under different pH conditions (pH = 4.0-8.0), thereby performing multiphoton fluorescence lifetime imaging. For biological imaging applications, it is found that ZA shows good lipid droplet (LD) turn-on fluorescence performance, and ZA-Hex could easily accumulate in mitochondria with high specificity. This is the first report of terpyridine salts as three-photon AIE probes used for multiphoton FLIM imaging.
Collapse
Affiliation(s)
- Shujing Wang
- Department of Chemistry, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230039, P. R. China
| | - Ying Lin
- School of Life Science, Anhui University, Hefei 230601, P. R. China
| | - Chengkai Zhang
- Department of Chemistry, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230039, P. R. China
| | - Tong Zhu
- School of Life Science, Anhui University, Hefei 230601, P. R. China
| | - Xiaohe Tian
- Huaxi MR Research Centre (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu 610041, P. R. China
| | - Dandan Li
- Institutes of Physics Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Wen Ma
- Department of Chemistry, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230039, P. R. China
| | - Qiong Zhang
- Department of Chemistry, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230039, P. R. China.,State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, P. R. China
| | - Jieying Wu
- Department of Chemistry, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230039, P. R. China.,State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, P. R. China
| | - Yupeng Tian
- Department of Chemistry, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230039, P. R. China.,State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|