1
|
Luo Q, Zhang S, Yang F, Feng R, Xu Q, Chen X, Yang S. Role of ADP ribosylation factor guanylate kinase 1 in the malignant biological behavior of gastric cancer. Heliyon 2024; 10:e33255. [PMID: 39021998 PMCID: PMC11253526 DOI: 10.1016/j.heliyon.2024.e33255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/29/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
Aim This study aims to investigate the influence of ASAP1 (ADP ribosylation factor guanylate kinase 1) on the malignant behavior of gastric cancer (GC) cells and to elucidate the potential molecular mechanisms involved in cancer development and progression. Methods We assessed the impact of ASAP1 overexpression and knockdown on GC cell malignancy using CCK8, colony formation, flow cytometry (Annexin V/propidium iodide), Transwell migration, invasion, and scratch assays. Western blot analysis was used to assess the effects of ASAP1 on angiogenesis, matrix metalloproteinases (MMPs), apoptotic proteins, epithelial-mesenchymal transition (EMT)-related proteins, as well as AKT and p-AKT. The influence of ASAP1 knockdown was also evaluated in nude mice bearing BGC823 cell-derived tumors. Results Our findings revealed that ASAP1 was significantly overexpressed in GC cells, enhancing their proliferation, invasion, and migration, while reducing apoptosis. Conversely, ASAP1 knockdown reversed these effects, markedly increasing the expression of cleaved-caspase 3 (Casp3), PARP, and the epithelial marker E-cadherin, and significantly decreasing MMP2, MMP9, VEGFA, and mesenchymal markers such as N-cadherin and vimentin. Additionally, it reduced AKT, and p-AKT levels (P < 0.01). Tumor growth in nude mice was suppressed following ASAP1 knockdown. Conclusion The overexpression of ASAP1 significantly promotes malignant behaviors in GC cells, whereas its knockdown diminishes these effects. This modulation is potentially through the downregulation of VEGFA, leading to reduced angiogenesis, Cleaved-Casp3 and Cleaved-PARP overexpression, and a decrease in MMPs, EMT, AKT, and p-AKT activity.
Collapse
Affiliation(s)
- Qiong Luo
- Departments of Oncology, Fuzhou, Fujian 350001, PR China
| | - Suyun Zhang
- Departments of Oncology, Fuzhou, Fujian 350001, PR China
| | - Fan Yang
- Departments of Pulmonary and Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, PR China
| | - Rui Feng
- Departments of Oncology, Fuzhou, Fujian 350001, PR China
| | - Qian Xu
- Departments of Oncology, Fuzhou, Fujian 350001, PR China
| | - Xiangqi Chen
- Departments of Pulmonary and Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, PR China
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Fuzhou, Fujian 350001, PR China
| | - Sheng Yang
- Departments of Oncology, Fuzhou, Fujian 350001, PR China
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Fuzhou, Fujian 350001, PR China
| |
Collapse
|
2
|
Zhu X, Zhang L, Feng D, Jiang L, Sun P, Zhao C, Zhang X, Xu J. A LY6E-PHB1-TRIM21 assembly degrades CD14 protein to mitigate LPS-induced inflammatory response. iScience 2023; 26:106808. [PMID: 37250795 PMCID: PMC10209397 DOI: 10.1016/j.isci.2023.106808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/02/2023] [Accepted: 05/01/2023] [Indexed: 05/31/2023] Open
Abstract
A major theme of host against invading pathogens lies in multiple regulatory nodes that ensure sufficient signals for protection while avoiding excessive signals toward over-inflammation. The TLR4/MD-2/CD14 complex receptor-mediated response to bacterial lipopolysaccharide (LPS) represents a paradigm for understanding the proper control of anti-pathogen innate immunity. In this study, we studied the mechanism by which the glycosylphosphatidylinositol (GPI)-linked LY6E protein constrains LPS response via downregulating CD14. We first showed that LY6E downregulated CD14 via ubiquitin-dependent proteasomal degradation. The subsequent profiling of LY6E protein interactome led to the revelation that the degradation of CD14 by LY6E requires PHB1, which interacts with CD14 in a LY6E-dependent manner. Finally, we identified the PHB1-interacting TRIM21 as the major ubiquitin E3 ligase for the LY6E-mediated ubiquitination of CD14. Together, our study elucidated the molecular basis of LY6E-mediated governance of LPS response, alongside providing new insights to regulatory mechanisms controlling the homeostasis of membrane proteins.
Collapse
Affiliation(s)
- Xinyu Zhu
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences; Fudan University, Shanghai 201508, P. R. China
| | - Linxia Zhang
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences; Fudan University, Shanghai 201508, P. R. China
| | - Daobin Feng
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences; Fudan University, Shanghai 201508, P. R. China
| | - Lang Jiang
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences; Fudan University, Shanghai 201508, P. R. China
| | - Peng Sun
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences; Fudan University, Shanghai 201508, P. R. China
| | - Chen Zhao
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences; Fudan University, Shanghai 201508, P. R. China
| | - Xiaoyan Zhang
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences; Fudan University, Shanghai 201508, P. R. China
- Clinical Center of Biotherapy, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
| | - Jianqing Xu
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences; Fudan University, Shanghai 201508, P. R. China
- Clinical Center of Biotherapy, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
| |
Collapse
|
3
|
Li Z, Tao Y, Gao Z, Peng S, Lai Y, Li K, Chen X, Huang H. SYTL2 promotes metastasis of prostate cancer cells by enhancing FSCN1-mediated pseudopodia formation and invasion. J Transl Med 2023; 21:303. [PMID: 37147713 PMCID: PMC10161564 DOI: 10.1186/s12967-023-04146-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/20/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Metastatic prostate cancer (mPCa) has a poor prognosis with limited treatment options. The high mobility of tumor cells is the key driving characteristic of metastasis. However, the mechanism is complex and far from clarified in PCa. Therefore, it is essential to explore the mechanism of metastasis and discover an intrinsic biomarker for mPCa. METHODS Transcriptome sequencing data and clinicopathologic features of PCa from multifarious public databases were used to identify novel metastatic genes in PCa. The PCa tissue cohort containing 102 formalin-fixed paraffin-embedded (FFPE) samples was used to evaluate the clinicopathologic features of synaptotagmin-like 2 (SYTL2) in PCa. The function of SYTL2 was investigated by migration and invasion assays and a 3D migration model in vitro and a popliteal lymph node metastasis model in vivo. We performed coimmunoprecipitation and protein stability assays to clarify the mechanism of SYTL2. RESULTS We discovered a pseudopodia regulator, SYTL2, which correlated with a higher Gleason score, worse prognosis and higher risk of metastasis. Functional experiments revealed that SYTL2 promoted migration, invasion and lymph node metastasis by increasing pseudopodia formation in vitro and in vivo. Furthermore, SYTL2 induced pseudopodia formation by enhancing the stability of fascin actin-bundling protein 1 (FSCN1) by binding and inhibiting the proteasome degradation pathway. Targeting FSCN1 enabled rescue and reversal of the oncogenic effect of SYTL2. CONCLUSIONS Overall, our study established an FSCN1-dependent mechanism by which SYTL2 regulates the mobility of PCa cells. We also found that the SYTL2-FSCN1-pseudopodia axis may serve as a pharmacological and novel target for treating mPCa.
Collapse
Affiliation(s)
- Zean Li
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107. W. Yanjiang Road, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yiran Tao
- Department of Urology, The Six Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
| | - Ze Gao
- Department of Urology, Qilu Hospital of Shandong University, Jinan, 250000, China
| | - Shirong Peng
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107. W. Yanjiang Road, Guangzhou, 510120, China
| | - Yiming Lai
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107. W. Yanjiang Road, Guangzhou, 510120, China
| | - Kaiwen Li
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107. W. Yanjiang Road, Guangzhou, 510120, China
| | - Xu Chen
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107. W. Yanjiang Road, Guangzhou, 510120, China.
- Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Hai Huang
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107. W. Yanjiang Road, Guangzhou, 510120, China.
- Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China.
| |
Collapse
|
4
|
You J, Chen Y, Chen D, Li Y, Wang T, Zhu J, Hong Q, Li Q. Circular RNA 0001789 sponges miR-140-3p and regulates PAK2 to promote the progression of gastric cancer. J Transl Med 2023; 21:83. [PMID: 36740679 PMCID: PMC9901162 DOI: 10.1186/s12967-022-03853-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/25/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is the third-leading cause of cancer-associated mortalities globally. The deregulation of circular RNAs (circRNAs) and microRNAs (miRNAs or miRs) is widely implicated in the pathogenesis and progression of different cancer types. METHODS The expression profiling of circRNAs in GC is required to identify crucial circRNAs as biomarkers or therapeutic targets. In the present study, a published circRNA microarray dataset was used to identify differentially expressed circRNAs between GC tissues and normal gastric mucosa tissues. Reverse transcription-quantitative PCR was performed to validate the expression of circ_0001789. Fisher's exact test, receiver operating characteristic curve and Kaplan-Meier plots were employed to analyze the clinical significance of circ_0001789. The miRNA targets of circ_0001789 were predicted using an online database, and their functional interaction was further confirmed by RNA pull-down, RNA immunoprecipitation and dual luciferase reporter assays. Transwell assays were conducted to investigate the biological functions of circ_0001789, miR-140-3p and p21 activated kinase 2 (PAK2) in the migration and invasion of GC cells. A xenograft mouse model was established to validate the role of circ_0001789 in the tumorigenesis of GC cells. RESULTS circ_0001789 was identified as a highly expressed circRNA in GC tissues versus normal gastric mucosa tissues. Silencing circ_0001789 attenuated the malignancy of GC cells, and exosomal circ_0001789 was sufficient to regulate the malignant phenotype of GC cells. miR-140-3p was further identified as a downstream target of circ_0001789, which showed a negative correlation with circ_0001789 expression in GC tissues. Overexpression of miR-140-3p suppressed cell migration, invasion and epithelial-mesenchymal transition in GC cells. PAK2 was identified as the target of miR-140-3 to mediate the malignant phenotype of GC cells. CONCLUSION The present data suggested that the upregulation of circ_0001789 was associated with the progression of GC and with poor prognosis in patients with GC, and that miR-140-3p/PAK2 served as the downstream axis to mediate the oncogenic effect of circ_0001789.
Collapse
Affiliation(s)
- Jun You
- grid.12955.3a0000 0001 2264 7233Department of Gastrointestinal Oncology Surgery, Cancer Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361001 China ,grid.256112.30000 0004 1797 9307The Third Clinical Medical College, Fujian Medical University, Xiamen, Fujian 361001 China
| | - Yinan Chen
- grid.12955.3a0000 0001 2264 7233Department of Gastrointestinal Oncology Surgery, Cancer Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361001 China ,grid.256112.30000 0004 1797 9307The Third Clinical Medical College, Fujian Medical University, Xiamen, Fujian 361001 China
| | - Donghan Chen
- grid.12955.3a0000 0001 2264 7233Department of Gastrointestinal Oncology Surgery, Cancer Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361001 China ,grid.256112.30000 0004 1797 9307The Third Clinical Medical College, Fujian Medical University, Xiamen, Fujian 361001 China
| | - Yongwen Li
- grid.12955.3a0000 0001 2264 7233Department of Gastrointestinal Oncology Surgery, Cancer Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361001 China ,grid.256112.30000 0004 1797 9307The Third Clinical Medical College, Fujian Medical University, Xiamen, Fujian 361001 China
| | - Tinghao Wang
- grid.12955.3a0000 0001 2264 7233Department of Gastrointestinal Oncology Surgery, Cancer Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361001 China ,grid.256112.30000 0004 1797 9307The Third Clinical Medical College, Fujian Medical University, Xiamen, Fujian 361001 China
| | - Jingtao Zhu
- grid.12955.3a0000 0001 2264 7233Department of Gastrointestinal Oncology Surgery, Cancer Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361001 China ,grid.256112.30000 0004 1797 9307The Third Clinical Medical College, Fujian Medical University, Xiamen, Fujian 361001 China
| | - Qingqi Hong
- Department of Gastrointestinal Oncology Surgery, Cancer Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361001, China. .,The Third Clinical Medical College, Fujian Medical University, Xiamen, Fujian, 361001, China.
| | - Qiyuan Li
- National Institute of Data Science in Health and Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, 361100, China.
| |
Collapse
|
5
|
Liu Y, Sun L, Guo H, Zhou S, Wang C, Ji C, Meng F, Liang S, Zhang B, Yuan Y, Ma K, Li X, Guo X, Cui T, Zhang N, Wang J, Liu Y, Liu L. Targeting SLP2-mediated lipid metabolism reprograming restricts proliferation and metastasis of hepatocellular carcinoma and promotes sensitivity to Lenvatinib. Oncogene 2023; 42:374-388. [PMID: 36473908 DOI: 10.1038/s41388-022-02551-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022]
Abstract
SLP2, a protein located on mitochondrial, has been shown to be associated with mitochondrial biosynthesis. Here we explored the potential mechanisms by which SLP2 regulates the development of hepatocellular carcinoma. SLP2 could bind to the c-terminal of JNK2 to affect the ubiquitinated proteasomal degradation pathway of JNK2 and maintain the protein stability of JNK2. The increase of JNK2 markedly increases SREBP1 activity, promoting SREBP1 translocation into the nucleus to promote de novo lipogenesis. Alteration of the JNK2 C-terminal disables SLP2 from mediating SLP2-enhanced de novo lipogenesis. YTHDF1 interacts with SLP2 mRNA in a METTL3/m6A-dependent manner. In a spontaneous HCC animal model, SLP2/c-Myc/sgP53 increases the incidence rate of spontaneous HCC, tumor volume, and tumor number. Importantly, statistical analyses show that levels of SLP2 correlate with tumor sizes, tumor metastasis, overall survival, and disease-free survival of the patients. Targeting the SLP2/SREBP1 pathway effectively inhibits proliferation and metastasis of HCC tumors with high SLP2 expression in vivo combined with lenvatinib. These results illustrate a direct lipogenesis-promoting role of the pro-oncogenic SLP2, providing a mechanistic link between de novo lipogenesis and HCC.
Collapse
Affiliation(s)
- Yufeng Liu
- Department of Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Linmao Sun
- Department of Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Hongrui Guo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, University of Science and Technology of China, Hefei, 230001, China
| | - Shuo Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, University of Science and Technology of China, Hefei, 230001, China
| | - Chunxu Wang
- Department of Hematology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Changyong Ji
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, University of Science and Technology of China, Hefei, 230001, China
| | - Fanzheng Meng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, University of Science and Technology of China, Hefei, 230001, China
| | - Shuhang Liang
- Department of Gastrointestinal Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Bo Zhang
- Department of Gastrointestinal Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Yubin Yuan
- Department of Hepatobiliary Surgery, Heze City Hospital, Heze, 274000, China
| | - Kun Ma
- Department of Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Xianying Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, University of Science and Technology of China, Hefei, 230001, China
| | - Xinyu Guo
- Department of Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Tianming Cui
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, University of Science and Technology of China, Hefei, 230001, China
| | - Ning Zhang
- Department of Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Jiabei Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, University of Science and Technology of China, Hefei, 230001, China.
| | - Yao Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, University of Science and Technology of China, Hefei, 230001, China.
| | - Lianxin Liu
- Department of Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
6
|
Oyang L, Li J, Jiang X, Lin J, Xia L, Yang L, Tan S, Wu N, Han Y, Yang Y, Luo X, Li J, Liao Q, Shi Y, Zhou Y. The function of prohibitins in mitochondria and the clinical potentials. Cancer Cell Int 2022; 22:343. [DOI: 10.1186/s12935-022-02765-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractProhibitins (PHBs) are a class of highly evolutionarily conserved proteins that widely distribute in prokaryotes and eukaryotes. PHBs function in cell growth and proliferation or differentiation, regulating metabolism and signaling pathways. PHBs have different subcellular localization in eukaryotes, but they are mainly located in mitochondria. In the mitochondria, PHBs stabilize the structure of the mitochondrial membrane and regulate mitochondrial autophagy, mitochondrial dynamics, mitochondrial biogenesis and quality control, and mitochondrial unfolded protein response. PHBs has shown to be associated with many diseases, such as mitochondria diseases, cancers, infectious diseases, and so on. Some molecule targets of PHBs can interfere with the occurrence and development of diseases. Therefore, this review clarifies the functions of PHBs in mitochondria, and provides a summary of the potential values in clinics.
Collapse
|
7
|
Cytochrome B5 type A alleviates HCC metastasis via regulating STOML2 related autophagy and promoting sensitivity to ruxolitinib. Cell Death Dis 2022; 13:623. [PMID: 35851063 PMCID: PMC9293983 DOI: 10.1038/s41419-022-05053-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 06/20/2022] [Accepted: 06/29/2022] [Indexed: 01/21/2023]
Abstract
The incidence of hepatocellular carcinoma (HCC) is increasing in the world. However, its role and underlying molecular mechanism in HCC progression remain unclear. We found that CYB5A plays a key role in HCC metastasis by inhibiting the JAK1/STAT3 pathway through binding to STOML2. CYB5A combined with STOML2 can predict the outcome of patients. To demonstrate the effect of CYB5A on JAK1 inhibitor function, we applied Ruxolitinib in metastatic tumors with high CYB5A expression and found that it slowed disease progression and prolonged survival in mice. To the best of our knowledge, this study is the first to report the Ruxolitinib effect on the metastatic ability of HCC cells in vivo and in vitro.
Collapse
|
8
|
Li B, Chu Y, Yan B, Ma X, Liu D, Wang S, Wang Y, Jia Y. Reciprocal Expression of Differentiated Embryonic Chondrocyte Expressed Genes Result in Functional Antagonism in Gastric Cancer. Dig Dis Sci 2022; 67:904-914. [PMID: 33704624 DOI: 10.1007/s10620-021-06921-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 02/23/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Differentiated embryonic chondrocyte expressed genes (DECs) are critical regulators of cellular proliferation and differentiation. However, DEC1 and DEC2 as family member have opposite or identical roles in tumor, acting as an "accelerator" or a "brake" in progression. AIMS The possible crosstalk between DEC1 and DEC2 in the gastric cancer (GC). METHODS The association of DEC1 and DEC2 expression with prognosis was investigated by immunohistochemistry. The expression pattern of DECs in GC cells was examined using the CCLE database. DECs knockdown or overexpression was conducted via lentiviral transfection. The proliferation of GC cells was evaluated by CCK8, EdU, and Colony forming. ChIP and luciferase reporter assays were used to verify interaction between DEC1 and the DEC2 promoter. The combination downstream with DEC1 and DEC2 was predicted by bioinformation, with Western blot providing further verification. RESULTS We found that reciprocal expression of DEC1 and DEC2 works together to sustain the progression of GC by promoting cell growth. We confirmed this observation in vivo, showing that inhibition DEC1expression could increase DEC2 expression. DEC1 suppresses DEC2 expression by directly binding to the E-box of the DEC2 promoter in GC cells. Furthermore, this regulation of DEC1 on DEC2 enables the further indirect or cooperative activation of additional downstream target genes, MAPK, and STAT3. CONCLUSION Our data demonstrate that DEC1 and DEC2 interact physically and functionally and identify a novel mode of cross-regulatory interaction between DECs that abrogates their functional activity.
Collapse
Affiliation(s)
- Binbin Li
- Research Center of Basic Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250013, People's Republic of China.,Department of Laboratory Medicine, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, 264200, People's Republic of China
| | - Yan Chu
- Research Center of Basic Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250013, People's Republic of China
| | - Bing Yan
- Departments of General Surgery, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250013, People's Republic of China
| | - Xiaoli Ma
- Research Center of Basic Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250013, People's Republic of China
| | - Duanrui Liu
- Research Center of Basic Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250013, People's Republic of China
| | - Shanglin Wang
- Research Center of Basic Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250013, People's Republic of China
| | - Yunshan Wang
- Research Center of Basic Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250013, People's Republic of China
| | - Yanfei Jia
- Research Center of Basic Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250013, People's Republic of China.
| |
Collapse
|
9
|
Ma W, Chen Y, Xiong W, Li W, Xu Z, Wang Y, Wei Z, Mou T, Wu Z, Cheng M, Zou Y, Zhu Y, Zhou W, Liu F, Geng Y. STOML2 interacts with PHB through activating MAPK signaling pathway to promote colorectal Cancer proliferation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:359. [PMID: 34781982 PMCID: PMC8591804 DOI: 10.1186/s13046-021-02116-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 09/24/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Highly expressed STOML2 has been reported in a variety of cancers, yet few have detailed its function and regulatory mechanism. This research aims to reveal regulatory mechanism of STOML2 and to provide evidence for clinical therapeutics, via exploration of its role in colorectal cancer, and identification of its interacting protein. METHODS Expression level of STOML2 in normal colon and CRC tissue from biobank in Nanfang Hospital was detected by pathologic methods. The malignant proliferation of CRC induced by STOML2 was validated via gain-of-function and loss-of-function experiments, with novel techniques applied, such as organoid culture, orthotopic model and endoscopy monitoring. Yeast two-hybrid assay screened interacting proteins of STOML2, followed by bioinformatics analysis to predict biological function and signaling pathway of candidate proteins. Target protein with most functional similarity to STOML2 was validated with co-immunoprecipitation, and immunofluorescence were conducted to co-localize STOML2 and PHB. Pathway regulated by STOML2 was detected with immunoblotting, and subsequent experimental therapy was conducted with RAF inhibitor Sorafenib. RESULTS STOML2 was significantly overexpressed in colorectal cancer and its elevation was associated with unfavorable prognosis. Knockdown of STOML2 suppressed proliferation of colorectal cancer, thus attenuated subcutaneous and orthotopic tumor growth, while overexpressed STOML2 promoted proliferation in cell lines and organoids. A list of 13 interacting proteins was screened out by yeast two-hybrid assay. DTYMK and PHB were identified to be most similar to STOML2 according to bioinformatics in terms of biological process and signaling pathways; however, co-immunoprecipitation confirmed interaction between STOML2 and PHB, rather than DTYMK, despite its highest rank in previous analysis. Co-localization between STOML2 and PHB was confirmed in cell lines and tissue level. Furthermore, knockdown of STOML2 downregulated phosphorylation of RAF1, MEK1/2, and ERK1/2 on the MAPK signaling pathway, indicating common pathway activated by STOML2 and PHB in colorectal cancer proliferation. CONCLUSIONS This study demonstrated that in colorectal cancer, STOML2 expression is elevated and interacts with PHB through activating MAPK signaling pathway, to promote proliferation both in vitro and in vivo. In addition, combination of screening assay and bioinformatics marks great significance in methodology to explore regulatory mechanism of protein of interest.
Collapse
Affiliation(s)
- Wenhui Ma
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), No. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, 528308, Guangdong Province, China.,Departments of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Yuehong Chen
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), No. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, 528308, Guangdong Province, China.,Departments of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Wenjun Xiong
- Departments of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Guangzhou, China.,Department of Gastrointestinal Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese, Guangzhou, Guangdong, China
| | - Wenyi Li
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Zhuoluo Xu
- Departments of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Ying Wang
- Departments of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhigang Wei
- Departments of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Guangzhou, China
| | - Tingyu Mou
- Departments of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Guangzhou, China
| | - Zhaokun Wu
- Departments of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Mingzhen Cheng
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Yini Zou
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Yu Zhu
- Departments of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Guangzhou, China
| | - Weijie Zhou
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), No. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, 528308, Guangdong Province, China. .,Departments of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China. .,Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Guangzhou, China. .,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China. .,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China.
| | - Feng Liu
- Departments of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China. .,Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Guangzhou, China. .,Department of Colorectal and Anal Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China.
| | - Yan Geng
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), No. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, 528308, Guangdong Province, China.
| |
Collapse
|
10
|
Cai C, Yang L, Zhuang X, He Y, Zhou K. A five-lncRNA model predicting overall survival in gastric cancer compared with normal tissues. Aging (Albany NY) 2021; 13:24349-24359. [PMID: 34751670 PMCID: PMC8610123 DOI: 10.18632/aging.203685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/25/2021] [Indexed: 01/05/2023]
Abstract
Aims: In cancer research, normal tissues adjacent to the tumor are usually defined as controls to compare with tumor samples, in order to screen out cancer-related genes. Although there is no obvious difference in pathology between normal tissues adjacent to the tumor and healthy tissues, there are significant changes at the molecular level. We aim to explore more potential tumor biomarkers using healthy tissues as controls rather than normal tissues adjacent to the tumor. Methods: Here we combine the Genotype-Tissue Expression project and The Cancer Genome Atlas for differential gene analysis. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were applied in order to predict the biological effects of related lncRNAs. Results: We established a 5-lncRNA prognosis model with an AUC value of 0.815. Pathway analysis indicated that 5-lncRNA mainly affected tissue carcinogenesis through PI3K-AKT signaling pathway, Focal adhesion, MAPK signaling pathway. Conclusion: The 5-lncRNA prognostic model we set up is more conducive to assess the overall survival time of gastric cancer patients.
Collapse
Affiliation(s)
- Congbo Cai
- Emergency Department of Yinzhou No. 2 Hospital, Ningbo 315000, Zhejiang, China
| | - Lei Yang
- Emergency Department of Yinzhou No. 2 Hospital, Ningbo 315000, Zhejiang, China
| | - Xieyan Zhuang
- Gynecology Department of Mingzhou Hospital, Ningbo 315000, Zhejiang, China
| | - Yi He
- Gastroenterology Department of Ningbo No. 9 Hospital, Ningbo 315000, Zhejiang, China
| | - Kena Zhou
- Gastroenterology Department of Ningbo No. 9 Hospital, Ningbo 315000, Zhejiang, China
| |
Collapse
|
11
|
Du S, Yang Z, Lu X, Yousuf S, Zhao M, Li W, Miao J, Wang X, Yu H, Zhu X, Chen H, Shi L, Xu E, Xia X, Guan W. Anoikis resistant gastric cancer cells promote angiogenesis and peritoneal metastasis through C/EBPβ-mediated PDGFB autocrine and paracrine signaling. Oncogene 2021; 40:5764-5779. [PMID: 34341514 DOI: 10.1038/s41388-021-01988-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 11/09/2022]
Abstract
Anoikis is a type of programmed cell death induced by loss of anchorage to the extracellular matrix (ECM). Anoikis resistance (AR) is crucial for the survival of metastatic cancer cells in blood, lymphatic circulation and distant organs. Compared to ordinary cancer cells, anoikis resistant cancer cells undergo various cellular and molecular alterations, probably characterizing the cells with unique features not limited to anoikis resistance. However, the molecular mechanisms connecting anoikis resistance to other metastatic properties are still poorly understood. Here, the biological interaction between anoikis resistance and angiogenesis as well as their involvement into peritoneal metastasis of gastric cancer (GC) were investigated in vitro and in vivo. The prognostic value of key components involved in this interaction was evaluated in the GC cohort. Compared to ordinary GC cells, GCAR cells exhibited stronger metastatic and pro-angiogenic traits corresponding to elevated PDGFB secretion. Mechanistically, transcription factor C/EBPβ facilitated PDGFB transcription by directly binding to and interacting with PDGFB promoter elements, subsequently increasing PDGFB secretion. Secreted PDGFB promoted the survival of detached GC cells through a C/EBPβ-dependent self-feedback loop. Moreover, secreted PDGFB promoted angiogenesis in metastases via activation of the MAPK/ERK signaling pathway in vascular endothelial cells. Both C/EBPβ activation level and PDGFB expression were significantly elevated in GC and correlated with metastatic progression and poor prognosis of patients with GC. Overall, interaction between GCAR cells and vascular endothelial cells promotes angiogenesis and peritoneal metastasis of GC based on C/EBPβ-mediated PDGFB autocrine and paracrine signaling. C/EBPβ-PDGFB-PDGFRβ-MAPK axis promises to be potential prognostic biomarkers and therapeutic targets for peritoneal metastasis of GC.
Collapse
Affiliation(s)
- Shangce Du
- Department of Gastrointestinal Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, P.R. China.,Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, P.R. China
| | - Zhi Yang
- Department of Gastrointestinal Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, P.R. China.,Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, P.R. China
| | - Xiaofeng Lu
- Department of Gastrointestinal Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, P.R. China.,Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, P.R. China
| | - Suhail Yousuf
- Department of Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Min Zhao
- Department of Gastrointestinal Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, P.R. China
| | - Wenxi Li
- Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Ji Miao
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, P.R. China
| | - Xingzhou Wang
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, P.R. China
| | - Heng Yu
- Department of Gastrointestinal Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, P.R. China
| | - Xinya Zhu
- Department of Gastrointestinal Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, P.R. China
| | - Hong Chen
- Department of Gastrointestinal Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, P.R. China
| | - Linseng Shi
- Department of Gastrointestinal Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, P.R. China
| | - En Xu
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, P.R. China.
| | - Xuefeng Xia
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, P.R. China.
| | - Wenxian Guan
- Department of Gastrointestinal Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, P.R. China. .,Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, P.R. China.
| |
Collapse
|
12
|
Li P, Luo X, Xie Y, Li P, Hu F, Chu J, Chen X, Song W, Wang A, Tian G, Gu X. GC-Derived EVs Enriched with MicroRNA-675-3p Contribute to the MAPK/PD-L1-Mediated Tumor Immune Escape by Targeting CXXC4. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 22:615-626. [PMID: 33230461 PMCID: PMC7578556 DOI: 10.1016/j.omtn.2020.08.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) delivered by gastric cancer (GC)-secreted extracellular vesicles (GC-EVs) are associated with the immune escape in GC. Microarray analysis based on the GEO: GSE112369 dataset identified the presence of poorly expressed CXXC finger protein 4 (CXXC4) in GC, which was validated in clinical samples of GC patients. Moreover, prediction based on TargetScan analysis demonstrated the putative miR-675-3p binding site in the 3′ UTR region of CXXC4. Thereby, our study aims to determine the role of GC-EV-encapsulated miR-675-3p in GC. First, CXXC4 was found to be negatively correlated with programmed cell death 1 ligand 1 (PD-L1). The effects of mitogen-activated protein kinase (MAPK) signaling on GC were evaluated using activator of the MAPK pathway. The overexpression of CXXC4 led to a downregulated MAPK signaling pathway, thus decreasing PD-L1 expression to augment the proliferation and activation of T cells co-cultured with GC HGC-27 cells. GC-EV-encapsulated miR-675-3p negatively regulated the expression of its target gene CXXC4. GC-EV-encapsulated miR-675-3p increased PD-L1 expression to stimulate the immune escape in vitro and EV-encapsulated miR-675-3p accelerated cisplatin resistance in vivo. Collectively, the aforementioned findings present a mechanism in which EV-mediated miR-675-3p upregulates PD-L1 expression, promoting immune escape in GC.
Collapse
Affiliation(s)
- Ping Li
- Department of Central Laboratory, Huaian Tumor Hospital & Huaian Hospital of Huaian City, Huaian 223200, P.R. China.,Department of General Surgery, Huaian Tumor Hospital & Huaian Hospital of Huaian City, Huaian 223200, P.R. China.,Department of Experimental Surgery-Cancer Metastasis, Medical Faculty Mannheim, Ruprecht Karls University, 68167 Mannheim, Germany
| | - Xingdong Luo
- Department of General Surgery, Huaian Tumor Hospital & Huaian Hospital of Huaian City, Huaian 223200, P.R. China
| | - Yue Xie
- Department of General Surgery, Gaoyou Traditional Chinese Medicine Hospital, Gaoyou 225600, P.R. China
| | - Pengfei Li
- Department of Central Laboratory, Huaian Tumor Hospital & Huaian Hospital of Huaian City, Huaian 223200, P.R. China
| | - Fangyong Hu
- Department of Central Laboratory, Huaian Tumor Hospital & Huaian Hospital of Huaian City, Huaian 223200, P.R. China
| | - Junfeng Chu
- Department of Oncology, Jiangdu People's Hospital Affiliated to Medical College of Yangzhou University, Yangzhou 225200, P.R. China
| | - Xiaojun Chen
- Department of Oncology, Jiangdu People's Hospital Affiliated to Medical College of Yangzhou University, Yangzhou 225200, P.R. China
| | - Wenbo Song
- Department of Oncology, Jiangdu People's Hospital Affiliated to Medical College of Yangzhou University, Yangzhou 225200, P.R. China
| | - Ali Wang
- Department of Oncology, Jiangdu People's Hospital Affiliated to Medical College of Yangzhou University, Yangzhou 225200, P.R. China
| | - Guangyu Tian
- Department of Oncology, Jiangdu People's Hospital Affiliated to Medical College of Yangzhou University, Yangzhou 225200, P.R. China
| | - Xiang Gu
- Department of Oncology, Jiangdu People's Hospital Affiliated to Medical College of Yangzhou University, Yangzhou 225200, P.R. China
| |
Collapse
|
13
|
Li P, Ge D, Li P, Hu F, Chu J, Chen X, Song W, Wang A, Tian G, Gu X. CXXC finger protein 4 inhibits the CDK18-ERK1/2 axis to suppress the immune escape of gastric cancer cells with involvement of ELK1/MIR100HG pathway. J Cell Mol Med 2020; 24:10151-10165. [PMID: 32715641 PMCID: PMC7520267 DOI: 10.1111/jcmm.15625] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/28/2020] [Accepted: 06/19/2020] [Indexed: 12/11/2022] Open
Abstract
Gastric cancer, is the fourth most common tumour type yet, ranks second in terms of the prevalence of cancer‐related deaths worldwide. CXXC finger protein 4 (CXXC4) has been considered as a novel cancer suppressive factor, including gastric cancer. This study attempted to investigate the possible function of CXXC4 in gastric cancer and the underlying mechanism. The binding of the ETS domain‐containing protein‐1 (ELK1) to the long non‐coding RNA MIR100HG promoter region was identified. Then, their expression patterns in gastric cancer tissues and cells (SGC7901) were detected. A CCK‐8 assay was used to detect SGC7901 cell proliferation. Subsequently, SGC7901 cells were co‐cultured with CD3+ T cells, followed by measurement of CD3+ T cell proliferation, magnitude of IFN‐γ+ T cell population and IFN‐γ secretion. A nude mouse model was subsequently developed for in vivo validation of the in vitro results. Low CXXC4 expression was found in SGC7901 cells. Nuclear entry of ELK1 can be inhibited by suppression of the extent of ELK1 phosphorylation. Furthermore, ELK1 is able to bind the MIR100HG promoter. Overexpression of CXXC4 resulted in weakened binding of ELK1 to the MIR100HG promoter, leading to a reduced proliferative potential of SGC7901 cells, and an increase in IFN‐γ secretion from CD3+ T cells. Moreover, in vivo experiments revealed that CXXC4 inhibited immune escape of gastric cancer cells through the ERK1/2 axis. Inhibition of the CXXC4/ELK1/MIR100HG pathway suppressed the immune escape of gastric cancer cells, highlighting a possible therapeutic target for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Ping Li
- Department of Central Laboratory, Huaian Tumor Hospital & Huaian Hospital of Huaian City, Huaian, China.,Department of General Surgery, Huaian Tumor Hospital & Huaian Hospital of Huaian City, Huaian, China.,Department of Experimental Surgery-Cancer Metastasis, Medical Faculty Mannheim, Ruprecht Karls University, Mannheim, Germany
| | - Dongfang Ge
- Department of Central Laboratory, Huaian Tumor Hospital & Huaian Hospital of Huaian City, Huaian, China
| | - Pengfei Li
- Department of Central Laboratory, Huaian Tumor Hospital & Huaian Hospital of Huaian City, Huaian, China
| | - Fangyong Hu
- Department of Central Laboratory, Huaian Tumor Hospital & Huaian Hospital of Huaian City, Huaian, China
| | - Junfeng Chu
- Department of Oncology, Jiangdu People's Hospital Affiliated to Medical College of Yangzhou University, Yangzhou, China
| | - Xiaojun Chen
- Department of Oncology, Jiangdu People's Hospital Affiliated to Medical College of Yangzhou University, Yangzhou, China
| | - Wenbo Song
- Department of Oncology, Jiangdu People's Hospital Affiliated to Medical College of Yangzhou University, Yangzhou, China
| | - Ali Wang
- Department of Oncology, Jiangdu People's Hospital Affiliated to Medical College of Yangzhou University, Yangzhou, China
| | - Guangyu Tian
- Department of Oncology, Jiangdu People's Hospital Affiliated to Medical College of Yangzhou University, Yangzhou, China
| | - Xiang Gu
- Department of Oncology, Jiangdu People's Hospital Affiliated to Medical College of Yangzhou University, Yangzhou, China
| |
Collapse
|
14
|
Liu H, Shin SH, Chen H, Liu T, Li Z, Hu Y, Liu F, Zhang C, Kim DJ, Liu K, Dong Z. CDK12 and PAK2 as novel therapeutic targets for human gastric cancer. Theranostics 2020; 10:6201-6215. [PMID: 32483448 PMCID: PMC7255043 DOI: 10.7150/thno.46137] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 04/23/2020] [Indexed: 12/24/2022] Open
Abstract
Background: Gastric cancer remains the second leading cause of cancer-related death, and the third in mortality due to lack of effective therapeutic targets for late stage cancer patients. This study aims to identify potential druggable target biomarkers as potential therapeutic options for patients with gastric cancer. Methods: Immunohistochemistry of human gastric tumor tissues was conducted to determine the expression level of cyclin-dependent kinase 12 (CDK12). Multiple in vitro and in vivo assays such as RNAi, mass spectrometry, computer docking models, kinase assays, cell xenograft NU/NU mouse models (CDXs) and patient-derived xenograft NOD/SCID mouse models (PDXs) were conducted to study the function and molecular interaction of CDK12 with p21 activated kinase 2 (PAK2), as well as to find CDK12 inhibitors as potential treatment options for human gastric cancer. Results: Here we identified that CDK12 is a driver gene in human gastric cancer growth. Mechanistically, CDK12 directly binds to and phosphorylates PAK2 at T134/T169 to activate MAPK signaling pathway. We further identified FDA approved clinical drug procaterol can serve as an effective CDK12 inhibitor, leading to dramatic restriction of cancer cell proliferation and tumor growth in human gastric cancer cells and PDXs. Conclusions: Our data highlight the potential of CDK12/PAK2 as therapeutic targets for patients with gastric cancer, and we propose procaterol treatment as a novel therapeutic strategy for human gastric cancer.
Collapse
Affiliation(s)
- Hui Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Seung Ho Shin
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
- Department of Food and Nutrition, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hanyong Chen
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Tingting Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Zhi Li
- Department of Digestive, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan, 450008, China
| | - Yamei Hu
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Fangfang Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Chengjuan Zhang
- Department of Digestive, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan, 450008, China
| | - Dong Joon Kim
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan, 450008, China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan, 450008, China
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan, 450008, China
| |
Collapse
|
15
|
Liu Q, Li A, Wang L, He W, Zhao L, Wu C, Lu S, Ye X, Zhao H, Shen X, Xiao X, Liu Z. Stomatin-like Protein 2 Promotes Tumor Cell Survival by Activating the JAK2-STAT3-PIM1 Pathway, Suggesting a Novel Therapy in CRC. MOLECULAR THERAPY-ONCOLYTICS 2020; 17:169-179. [PMID: 32346607 PMCID: PMC7177985 DOI: 10.1016/j.omto.2020.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 03/24/2020] [Indexed: 12/12/2022]
Abstract
Despite intensive efforts, a considerable proportion of colorectal cancer (CRC) patients develop local recurrence and distant metastasis. Stomatin-like protein 2 (SLP-2), a member of the highly conserved stomatin superfamily, is upregulated across cancer types. However, the biological and functional roles of SLP-2 remain elusive in CRC. Here, we report that high SLP-2 expression was found in CRC tissues and was linked to tumor progression and tumor cell differentiation. Additionally, high SLP-2 expression correlated with poor overall survival (OS) in CRC patients (p < 0.001). SLP-2 knockout (SLP-2KO), generated by CRISPR/Cas9, reduced cell growth, migration, and invasion; induced apoptosis in CRC cells; and reduced tumor xenograft growth in vivo. A 181-compound library screening showed that SLP-2KO produced resistance to JAK2 inhibitors (NVP-BSK805 and TG-101348) and a PIM1 inhibitor (SGI-1776), revealing that the JAK2-STAT3-PIM1 oncogenic pathway was potentially controlled by SLP-2 in CRC. In vitro and in vivo, TG-101348 combined with SGI-1776 was synergistic in CRC (combination index [CI] < 1). Overall, our findings suggest that SLP-2 controls the JAK2-STAT3-PIM1 oncogenic pathway, offering a rationale for a novel therapeutic strategy with combined SGI-1776 and TG-101348 in CRC. Additionally, SLP-2 may be a prognostic marker and biomarker for sensitivity to JAK2 and PIM1 inhibitors.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Pathology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Anqi Li
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Lisha Wang
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Wei He
- Department of Pathology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ling Zhao
- Department of Pathology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chao Wu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Shasha Lu
- Department of Hematology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xuanguang Ye
- Department of Pathology, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Huiyong Zhao
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Xiaohan Shen
- Department of Diagnosis, Ningbo Diagnostic Pathology Center, Ningbo 315021, China
| | - Xiuying Xiao
- Department of Oncology, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Zebing Liu
- Department of Pathology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
16
|
Liu Y, Ding Y, Nie Y, Yang M. EMP1 Promotes the Proliferation and Invasion of Ovarian Cancer Cells Through Activating the MAPK Pathway. Onco Targets Ther 2020; 13:2047-2055. [PMID: 32210572 PMCID: PMC7071728 DOI: 10.2147/ott.s240028] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/05/2020] [Indexed: 12/22/2022] Open
Abstract
Introduction Epithelial membrane protein 1 (EMP1), a member of the EMP family, is overexpressed in a large number of tumors and is thought to be a cellular connexin on the cell membrane and is involved in proliferation, invasion, metastasis of tumor cells, and epithelial-mesenchymal transition (EMT). Nevertheless, its biomedical function in ovarian cancer is still unclear. Methods EMP1 was detected in ovarian cancer cell lines by whole transcriptome resequencing. The mRNA of EMP1 was examined by qRT-PCR. The relationship between expression of EMP1 and clinical classification, metastasis, and shortened survival time in ovarian cancer specimens was analysed by immunohistochemical (IHC). The mechanism of EMP1 enhanced proliferation and invasion of ovarian cancer cells was determined by siRNA interference, colony formation, migration and invasion experiments, and Western blot. Results EMP1 was up-regulated in ovarian cancer cell lines and ovarian cancer tissues in comparison with non-cancerous ovarian specimens. High expression of EMP1 in ovarian cancer specimens was obviously related to high clinical classification, metastasis, and shortened survival time. High expressed EMP1 facilitates cell proliferation, invasion and EMT in ovarian cancer cells. Over-expressed EMP1 increased the protein levels of RAS/RAF/MAPK/c-JUN. Conclusion Over-expressed EMP1 in ovarian cancer promotes tumor cell proliferation, invasion, and EMT by the MAPK signaling pathway.
Collapse
Affiliation(s)
- Yang Liu
- Department of Obstetrics and Gynecology, Second Xiangya Hospital of Central South University, Changsha 410083, People's Republic of China
| | - Yiling Ding
- Department of Obstetrics and Gynecology, Second Xiangya Hospital of Central South University, Changsha 410083, People's Republic of China
| | - Yanting Nie
- Department of Obstetrics and Gynecology, Second Xiangya Hospital of Central South University, Changsha 410083, People's Republic of China
| | - Mengyuan Yang
- Department of Obstetrics and Gynecology, Second Xiangya Hospital of Central South University, Changsha 410083, People's Republic of China
| |
Collapse
|
17
|
Qi M, Yu B, Yu H, Li F. Integrated analysis of a ceRNA network reveals potential prognostic lncRNAs in gastric cancer. Cancer Med 2020; 9:1798-1817. [PMID: 31923354 PMCID: PMC7050084 DOI: 10.1002/cam4.2760] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 11/18/2019] [Accepted: 11/21/2019] [Indexed: 01/17/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) have important biological functions as competing endogenous RNAs (ceRNAs) in tumors, yet the functions and regulatory mechanisms of lncRNA-related ceRNAs in gastric cancer have not been fully elucidated. In this study, we constructed a lncRNA-miRNA-mRNA ceRNA network and identified potential lncRNA biomarkers in gastric cancer. Basing on the RNA profiles downloaded from The Cancer Genome Atlas (TCGA) platform, the gastric cancer-specific differentially expressed lncRNAs, miRNAs, and mRNAs were screened for constructing a ceRNA network using bioinformatic tools. The enrichment analysis of the biological processes in Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes pathways was performed on the ceRNA-related DEmRNAs. According to the modularization of protein-protein interaction (PPI) network, we extracted a ceRNA subnetwork and analyzed the correlation between the expression of the lncRNAs involved and specific clinical features of patients. Next, the expression of highly up-regulated in liver cancer (HULC) and RP11-314B1.2 showed significant changes in several pathological processes involved in gastric cancer, and nine lncRNAs were found to be correlated with the overall survival of patients with gastric cancer. Through the univariate and multivariate Cox regression analyses, two lncRNAs (LINC00106 and RP11-999E24.3) were identified and utilized to establish a risk score model for assessing the prognosis of patients. The analysis results were also partially verified using quantitative real-time PCR. The findings from this study indicate that HULC, RP11-314B1.2, LINC00106, and RP11-999E24.3 could be considered as potential therapeutic targets or prognostic biomarkers in gastric cancer, and provide a new perspective for cancer pathogenesis research.
Collapse
Affiliation(s)
- Mingran Qi
- Department of PathogenobiologyThe Key Laboratory of ZoonosisChinese Ministry of EducationCollege of Basic MedicineJilin UniversityChangchunJilinChina
| | - Bingxin Yu
- Department of UltrasoundChina‐Japan Union Hospital of Jilin UniversityChangchunJilinChina
| | - Huiyuan Yu
- School of Public HealthJilin UniversityChangchunJilinChina
| | - Fan Li
- Department of PathogenobiologyThe Key Laboratory of ZoonosisChinese Ministry of EducationCollege of Basic MedicineJilin UniversityChangchunJilinChina
- The Key Laboratory for Bionics EngineeringMinistry of EducationJilin UniversityChinaChangchunJilinChina
- Engineering Research Center for Medical Biomaterials of Jilin ProvinceJilin UniversityChangchunJilinChina
- Key Laboratory for Biomedical Materials of Jilin ProvinceJilin UniversityChangchunJilinChina
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central AsiaXinjiangChina
| |
Collapse
|
18
|
Zhang H, Huang H, Feng X, Song H, Zhang Z, Shen A, Qiu X. Deubiquitinase USP28 inhibits ubiquitin ligase KLHL2-mediated uridine-cytidine kinase 1 degradation and confers sensitivity to 5'-azacytidine-resistant human leukemia cells. Theranostics 2020; 10:1046-1059. [PMID: 31938050 PMCID: PMC6956814 DOI: 10.7150/thno.36503] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 10/26/2019] [Indexed: 12/11/2022] Open
Abstract
Resistance to the chemotherapeutic drug 5'-azacytidine (5'-AZA) is a major obstacle in the treatment of patients with acute myeloid leukemia (AML). The uridine-cytidine kinase 1 (UCK1) has an established role in activating 5'-AZA and its protein level is significantly downregulated in patients resistant to the drug. However, the underlying molecular mechanism for the reduced UCK1 expression remains to be elucidated. Methods: Using mass spectrometry and molecular biochemistry analyses, we identified specific enzymes mediating UCK1 degradation. Human AML cell lines and murine AML model were used to characterize the effects of these enzymes on 5'-AZA resistance. Results: We demonstrated that the ubiquitin E3 ligase KLHL2 interacted with UCK1 and mediated its polyubiquitination at the K81 residue and degradation. We showed that deubiquitinase USP28 antagonized KLHL2-mediated polyubiquitylation of UCK1. We also provided evidence that ATM-mediated phosphorylation of USP28 resulted in its disassociation from KLHL2 and UCK1 destabilization. Conversely, UCK1 phosphorylation by 5'-AZA-activated ATM enhanced the KLHL2-UCK1 complex formation. Importantly, silencing KLHL2 or USP28 overexpression not only inhibited AML cell proliferation but also sensitized AML cells to 5'-AZA-induced apoptosis in vitro and in vivo. These results were no longer observed in USP28-deficient cells. Conclusions: Our study revealed a novel mechanism by which the KLHL2/USP28/ATM axis mediates resistance of AML cells to 5'-AZA by regulating UCK1 ubiquitination and phosphorylation. These results have direct clinical implications and provide a rationale for the combination drug treatment of AML patients.
Collapse
|
19
|
Zhu Z, Yu Z, Rong Z, Luo Z, Zhang J, Qiu Z, Huang C. The novel GINS4 axis promotes gastric cancer growth and progression by activating Rac1 and CDC42. Theranostics 2019; 9:8294-8311. [PMID: 31754397 PMCID: PMC6857050 DOI: 10.7150/thno.36256] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 09/15/2019] [Indexed: 12/20/2022] Open
Abstract
Rationale: As a component of GINS complex, GINS4 is essential for initiating DNA replication and elongation of the cell cycle G1/S phase in eukaryotes and plays a vital role in normal physiological processes. However, the precise functions and regulation mechanisms of GINS4 in human tumors remain elusive. Methods: GINS4 expression was analyzed in gastric cancer tissues by qRT-PCR and western blotting, and its clinical relevance was studied using TMA. The biological functions of GINS4 were detected in vitro and in vivo. cDNA array, co-IP, GST pull-down and GTPase activation assays were performed to investigate the downstream regulation mechanism of GINS4. Upstream regulation mechanism of GINS4 was explored and demonstrated by circRNA sequencing, bioinformatics analysis, luciferase reporter assay and rescue experiments. Results: Strikingly high GINS4 expression was detected in gastric cancer tissues and correlated with poor differentiation, advanced tumor stage, invasion depth and lymph node metastasis. GINS4 promoted cell growth and metastasis in vitro and in vivo, and suppressed cell apoptosis in vitro. Mechanistically, GINS4 activated Rac1/CDC42 through directly binding to Rac1/CDC42, thereby activating their downstream pathways. Furthermore, circMLLT10 acts as a miR-509-3-5p sponge to attenuate its repressive effect on target GINS4. In addition, circMLLT10 promoted cell growth and metastasis and suppressed cell apoptosis, whereas miR-509-3-5p inhibited cell growth and metastasis and promoted cell apoptosis. Conclusion: The findings indicate for the first time that the novel GINS4 axis promotes gastric cancer cell growth and progression by activating Rac1 and CDC42. GINS4 may be a promising biomarker and target for diagnosis and treatment of gastric cancer.
Collapse
|
20
|
Tong J, Ma X, Yu H, Yang J. SNHG15: a promising cancer-related long noncoding RNA. Cancer Manag Res 2019; 11:5961-5969. [PMID: 31308739 PMCID: PMC6613027 DOI: 10.2147/cmar.s208054] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/23/2019] [Indexed: 12/24/2022] Open
Abstract
Cancer is expected to rank as the leading cause of death worldwide due to increasing morbidity and mortality. Long noncoding RNAs (lncRNAs) have been found to play pivotal roles in multiple biological processes, such as transcriptional interference, posttranscriptional regulation and epigenetic modification. Small nucleolar RNA host gene 15 (SNHG15), a snoRNA host gene which produces a short half-lived lncRNA, was reported to be upregulated in tumor cells and participate in the occurrence and development of multiple cancers. And more than half of the SNHG15 research in cancers has been published within the last 2 years. In this review, we summarized the current evidence concerning the biological functions and molecular mechanisms of SNHG15 in various cancers, including gastric, hepatocellular, pancreatic, colorectal, breast, and thyroid cancer, osteosarcoma, glioma, lung cancer, renal cell carcinoma, and epithelial ovarian cancer. SNHG15 plays critical roles in regulation of cell proliferation, migration and invasion of tumors via different potential mechanisms. Moreover, the abnormal expression of SNHG15 was associated with clinical features of patients with cancers. Consequently, SNHG15 could be considered as a promising biomarker for cancer diagnosis, prognosis or treatment.
Collapse
Affiliation(s)
- Jinfei Tong
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, People's Republic of China
| | - Xudong Ma
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, People's Republic of China
| | - Hailan Yu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, People's Republic of China
| | - Jianhua Yang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, People's Republic of China
| |
Collapse
|
21
|
Zhang J, Song X, Li C, Tian Y. Expression and clinical significance of SLP-2 in ovarian tumors. Oncol Lett 2019; 17:4626-4632. [PMID: 30944651 PMCID: PMC6444406 DOI: 10.3892/ol.2019.10116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 02/25/2019] [Indexed: 12/20/2022] Open
Abstract
The expression and clinical significance of stomatin-like protein 2 (SLP-2) in ovarian tumors were investigated. A total of 280 cases of ovarian tissue specimens preserved from inpatients after surgical treatments in the Department of Oncology of Yidu Central Hospital of Weifang from April 2013 to May 2016 were collected, including 130 cases of malignant ovarian tumor tissue specimens (malignant tumor group), 75 cases of benign ovarian tumor tissue specimens (benign tumor group) and 75 cases of normal ovarian tissue specimens from bilateral ovariectomy for unilateral ovarian lesions (control group). Immunohistochemistry was used to detect the expression of SLP-2 protein in the three groups. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was utilized to detect the relative expression of SLP-2 mRNA in the three groups, and the relationship between SLP-2 and clinicopathological parameters of the ovarian cancer patients was analyzed. The patients with ovarian cancer were divided into the SLP-2 high-expression group and the SLP-2 low-expression group according to the median of SLP-2 relative expression. The survival of patients was analyzed using the Kaplan-Meier and Cox regression model. The results of immunohistochemistry showed that the positive expression rate of SLP-2 protein in the malignant tumor group was significantly higher than that in the benign tumor and control groups (P<0.001). The results of RT-qPCR showed that compared with the control group, the relative expression of SLP-2 mRNA in the ovarian tissues in the benign tumor group and the malignant tumor group was increased (P<0.001). The relative expression of SLP-2 mRNA in the malignant tumor group was higher than that in the benign tumor group (P<0.001). The relative expression of SLP-2 mRNA correlated with clinical stage, pathological differentiation and lymph node metastasis of the patients with ovarian cancer (P<0.05). The 5-year overall survival (OS) in the SLP-2 mRNA high expression group was significantly lower than that in the SLP-2 mRNA low expression group at 5 years (P<0.05). SLP-2 mRNA was an independent prognostic factor influencing OS of the patients (P<0.05). SLP-2 may be involved in the occurrence and development of ovarian cancer and related to the clinical stage, pathological differentiation and lymph node metastasis of the patients with ovarian cancer, which may also play a role in promoting the invasion and metastasis processes of ovarian cancer. Therefore, SLP-2 is expected to be an effective biomarker for targeted treatment and prognosis of ovarian tumor.
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Obstetrics and Gynecology, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, P.R. China
| | - Xiucai Song
- Department of Obstetrics and Gynecology, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, P.R. China
| | - Cuihong Li
- Department of Obstetrics and Gynecology, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, P.R. China
| | - Yanjie Tian
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|