1
|
Mlakar V, Dupanloup I, Gonzales F, Papangelopoulou D, Ansari M, Gumy-Pause F. 17q Gain in Neuroblastoma: A Review of Clinical and Biological Implications. Cancers (Basel) 2024; 16:338. [PMID: 38254827 PMCID: PMC10814316 DOI: 10.3390/cancers16020338] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Neuroblastoma (NB) is the most frequent extracranial solid childhood tumor. Despite advances in the understanding and treatment of this disease, the prognosis in cases of high-risk NB is still poor. 17q gain has been shown to be the most frequent genomic alteration in NB. However, the significance of this remains unclear because of its high frequency and association with other genetic modifications, particularly segmental chromosomal aberrations, 1p and 11q deletions, and MYCN amplification, all of which are also associated with a poor clinical prognosis. This work reviewed the evidence on the clinical and biological significance of 17q gain. It strongly supports the significance of 17q gain in the development of NB and its importance as a clinically relevant marker. However, it is crucial to distinguish between whole and partial chromosome 17q gains. The most important breakpoints appear to be at 17q12 and 17q21. The former distinguishes between whole and partial chromosome 17q gain; the latter is a site of IGF2BP1 and NME1 genes that appear to be the main oncogenes responsible for the functional effects of 17q gain.
Collapse
Affiliation(s)
- Vid Mlakar
- Cansearch Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, Rue Michel Servet 1, 1211 Geneva, Switzerland; (I.D.); (F.G.); (D.P.); (M.A.); (F.G.-P.)
| | - Isabelle Dupanloup
- Cansearch Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, Rue Michel Servet 1, 1211 Geneva, Switzerland; (I.D.); (F.G.); (D.P.); (M.A.); (F.G.-P.)
- Swiss Institute of Bioinformatics, Amphipôle, Quartier UNIL-Sorge, 1015 Lausanne, Switzerland
| | - Fanny Gonzales
- Cansearch Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, Rue Michel Servet 1, 1211 Geneva, Switzerland; (I.D.); (F.G.); (D.P.); (M.A.); (F.G.-P.)
- Division of Pediatric Oncology and Hematology, Department of Women, Child and Adolescent, University Geneva Hospitals, Rue Willy-Donzé 6, 1205 Geneva, Switzerland
| | - Danai Papangelopoulou
- Cansearch Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, Rue Michel Servet 1, 1211 Geneva, Switzerland; (I.D.); (F.G.); (D.P.); (M.A.); (F.G.-P.)
- Division of Pediatric Oncology and Hematology, Department of Women, Child and Adolescent, University Geneva Hospitals, Rue Willy-Donzé 6, 1205 Geneva, Switzerland
| | - Marc Ansari
- Cansearch Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, Rue Michel Servet 1, 1211 Geneva, Switzerland; (I.D.); (F.G.); (D.P.); (M.A.); (F.G.-P.)
- Division of Pediatric Oncology and Hematology, Department of Women, Child and Adolescent, University Geneva Hospitals, Rue Willy-Donzé 6, 1205 Geneva, Switzerland
| | - Fabienne Gumy-Pause
- Cansearch Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, Rue Michel Servet 1, 1211 Geneva, Switzerland; (I.D.); (F.G.); (D.P.); (M.A.); (F.G.-P.)
- Division of Pediatric Oncology and Hematology, Department of Women, Child and Adolescent, University Geneva Hospitals, Rue Willy-Donzé 6, 1205 Geneva, Switzerland
| |
Collapse
|
2
|
Imbaby S, Elkholy SE, Faisal S, Abdelmaogood AKK, Mehana AE, Mansour BSA, Abd El-Moneam SM, Elaidy SM. The GSTP1/MAPKs/BIM/SMAC modulatory actions of nitazoxanide: Bioinformatics and experimental evidence in subcutaneous solid Ehrlich carcinoma-inoculated mice. Life Sci 2023; 319:121496. [PMID: 36822315 DOI: 10.1016/j.lfs.2023.121496] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 02/25/2023]
Abstract
AIMS Ehrlich ascites carcinoma and its subcutaneous inoculated solid tumour form (SEC) are reliable models for chemotherapeutic molecular targets exploration. Novel chemotherapeutic approaches are identified as molecular targets for intrinsic apoptosis, like the modulation of the second mitochondria-derived activator of caspases (SMAC). SMAC is a physiological substrate of mitogen-activated protein kinases (MAPKs). Glutathione-S-transferase P1 (GSTP1) and its close association with MAPKs play an important role in malignant cell proliferation, metastasis, and resistance to chemotherapeutics. Nitazoxanide (NTZ) is an emerging cancer therapy and its targeted GSTP1 evidence remains a knowledge need. MAIN METHODS In the present mice-established SEC, the chemotherapeutic roles of oral NTZ (200 mg/kg/day) and 5-fluorouracil (5-FU; 20 mg/kg/day, intraperitoneally) regimens were evaluated by measuring changes in tumour mass, the tumour MAPKs, cytochrome c, Bcl-2 interacting mediator of cell death (BIM), and SMAC signalling pathway in addition to its molecular downstream; caspases 3 and 9. KEY FINDINGS Computational analysis for these target protein interactions showed direct-ordered interactions. After individual therapy with NTZ and 5-FU regimens, the histological architecture of the extracted tumour discs revealed decreases in viable tumour regions with significant necrosis surrounds. These findings were consistent with gross tumour sizes. Each separate regimen lowered the remarkable GSTP1 and elevated the low MAPKs expressions, cytochrome c, BIM, SMAC, and caspases 3, and 9 in EST tissues. SIGNIFICANCE The chemotherapeutic activity of NTZ in SEC was proven. Additionally, NTZ possesses a SMAC modulatory activity that, following thorough research, should be taken into consideration as a chemotherapeutic approach in solid tumours.
Collapse
Affiliation(s)
- Samar Imbaby
- Department of Clinical Pharmacology, Faculty of Medicine, Suez Canal University, 41522 Ismailia, Egypt.
| | - Shereen E Elkholy
- Department of Clinical Pharmacology, Faculty of Medicine, Port Said University, Port Said, Egypt
| | - Salwa Faisal
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, 41522 Ismailia, Egypt
| | - Asmaa K K Abdelmaogood
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Suez Canal University, 41522 Ismailia, Egypt
| | - Amir E Mehana
- Department of Zoology, Faculty of Science, Suez Canal University, 41522 Ismailia, Egypt
| | - Basma S A Mansour
- Department of Human Anatomy and Embryology, Faculty of Medicine, Suez Canal University, 41522 Ismailia, Egypt
| | - Samar M Abd El-Moneam
- Department of Human Anatomy and Embryology, Faculty of Medicine, Suez Canal University, 41522 Ismailia, Egypt
| | - Samah M Elaidy
- Department of Clinical Pharmacology, Faculty of Medicine, Suez Canal University, 41522 Ismailia, Egypt.
| |
Collapse
|
3
|
Li H, Zhang S, Zhou S, Bao Y, Cao X, Shen L, Xu B, Gao W, Luo Y. Pepsin enhances glycolysis to promote malignant transformation of vocal fold leukoplakia epithelial cells with dysplasia. Eur Arch Otorhinolaryngol 2023; 280:1841-1854. [PMID: 36380093 PMCID: PMC9988773 DOI: 10.1007/s00405-022-07729-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/26/2022] [Indexed: 11/17/2022]
Abstract
PURPOSE The mechanism underlying malignant transformation of vocal fold leukoplakia (VFL) and the precise role of the expression of pepsin in VFL remain unclear. This study aimed to investigate the effects of acidified pepsin on VFL epithelial cell growth and migration, and also identify pertinent molecular mechanisms. METHODS Immunochemistry and Western blotting were performed to measure glucose transporter type 1 (GLUT1), monocarboxylate transporters 4 (MCT4), and Hexokinase-II (HK-II) expressions. Cell viability, cell cycle, apoptosis, and migration were investigated by CCK-8 assay, flow cytometry and Transwell chamber assay, respectively. Glycolysis-related contents were determined using the corresponding kits. Mitochondrial HK-II was photographed under a confocal microscope using Mito-Tracker Red. RESULTS It was found: the expression of pepsin and proportion of pepsin+ cells in VFL increased with the increased dysplasia grade; acidified pepsin enhanced cell growth and migration capabilities of VFL epithelial cells, reduced mitochondrial respiratory chain complex I activity and oxidative phosphorylation, and enhanced aerobic glycolysis and GLUT1 expression in VFL epithelial cells; along with the transfection of GLUT1 overexpression plasmid, 18FFDG uptake, lactate secretion and growth and migration capabilities of VFL epithelial cell were increased; this effect was partially blocked by the glycolysis inhibitor 2-deoxy-glucose; acidified pepsin increased the expression of HK-II and enhanced its distribution in mitochondria of VFL epithelial cells. CONCLUSION It was concluded that acidified pepsin enhances VFL epithelial cell growth and migration abilities by reducing mitochondrial respiratory complex I activity and promoting metabolic reprogramming from oxidative phosphorylation to aerobic glycolysis.
Collapse
Affiliation(s)
- Haitong Li
- Department of Otolaryngology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, People's Republic of China
| | - Shasha Zhang
- Department of Otolaryngology, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, People's Republic of China
| | - Shuihong Zhou
- Department of Otolaryngology, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, People's Republic of China
| | - Yangyang Bao
- Department of Otolaryngology, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, People's Republic of China
| | - Xiaojuan Cao
- Department of Otolaryngology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, People's Republic of China
| | - Lifang Shen
- Department of Otolaryngology, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, People's Republic of China
| | - Bin Xu
- Department of Otolaryngology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, People's Republic of China
| | - Weimin Gao
- Department of Otolaryngology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, People's Republic of China
| | - Yunzhen Luo
- Department of Otolaryngology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, People's Republic of China.
| |
Collapse
|
4
|
Zheng J, Yan X, Lu T, Song W, Li Y, Liang J, Zhang J, Cai J, Sui X, Xiao J, Chen H, Chen G, Zhang Q, Liu Y, Yang Y, Zheng K, Pan Z. CircFOXK2 promotes hepatocellular carcinoma progression and leads to a poor clinical prognosis via regulating the Warburg effect. J Exp Clin Cancer Res 2023; 42:63. [PMID: 36922872 PMCID: PMC10018916 DOI: 10.1186/s13046-023-02624-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 02/15/2023] [Indexed: 03/17/2023] Open
Abstract
BACKGROUND The Warburg effect is well-established to be essential for tumor progression and accounts for the poor clinical outcomes of hepatocellular carcinoma (HCC) patients. An increasing body of literature suggests that circular RNAs (circRNAs) are important regulators for HCC. However, few circRNAs involved in the Warburg effect of HCC have hitherto been investigated. Herein, we aimed to explore the contribution of circFOXK2 to glucose metabolism reprogramming in HCC. METHODS In the present study, different primers were designed to identify 14 circRNAs originating from the FOXK2 gene, and their differential expression between HCC and adjacent liver tissues was screened. Ultimately, circFOXK2 (hsa_circ_0000817) was selected for further research. Next, the clinical significance of circFOXK2 was evaluated. We then assessed the pro-oncogenic activity of circFOXK2 and its impact on the Warburg effect in both HCC cell lines and animal xenografts. Finally, the molecular mechanisms of how circFOXK2 regulates the Warburg effect of HCC were explored. RESULTS CircFOXK2 was aberrantly upregulated in HCC tissues and positively correlated with poor clinical outcomes in patients that underwent radical hepatectomy. Silencing of circFOXK2 significantly suppressed HCC progression both in vitro and in vivo. Mechanistically, circFOXK2 upregulated the expression of protein FOXK2-142aa to promote LDHA phosphorylation and led to mitochondrial fission by regulating the miR-484/Fis1 pathway, ultimately activating the Warburg effect in HCC. CONCLUSIONS CircFOXK2 is a prognostic biomarker of HCC that promotes the Warburg effect by promoting the expression of proteins and miRNA sponges that lead to tumor progression. Overall, circFOXK2 has huge prospects as a potential therapeutic target for patients with HCC.
Collapse
Affiliation(s)
- Jun Zheng
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-Sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Xijing Yan
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-Sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Tongyu Lu
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-Sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Wen Song
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yang Li
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-Sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Jinliang Liang
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Jiebin Zhang
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-Sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Jianye Cai
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-Sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Xin Sui
- Surgical ICU of the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Jiaqi Xiao
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-Sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Haitian Chen
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-Sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Guihua Chen
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-Sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Qi Zhang
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-Sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China.
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| | - Yubin Liu
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| | - Yang Yang
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-Sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China.
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| | - Kanghong Zheng
- Department of General Surgery of Guangdong Tongjiang Hospital, Foshan, 528300, China.
| | - Zihao Pan
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| |
Collapse
|
5
|
Pandey SK, Shteinfer-Kuzmine A, Chalifa-Caspi V, Shoshan-Barmatz V. Non-apoptotic activity of the mitochondrial protein SMAC/Diablo in lung cancer: Novel target to disrupt survival, inflammation, and immunosuppression. Front Oncol 2022; 12:992260. [PMID: 36185255 PMCID: PMC9515501 DOI: 10.3389/fonc.2022.992260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Mitochondrial SMAC/Diablo induces apoptosis by binding the inhibitor of apoptosis proteins (IAPs), thereby activating caspases and, subsequently, apoptosis. Previously, we found that despite its pro-apoptotic activity, SMAC/Diablo is overexpressed in cancer, and demonstrated that in cancer it possesses new essential and non-apoptotic functions that are associated with regulating phospholipid synthesis including modulating mitochondrial phosphatidylserine decarboxylase activity. Here, we demonstrate additional functions for SMAC/Diablo associated with inflammation and immunity. CRISPR/Cas9 SMAC/Diablo-depleted A549 lung cancer cells displayed inhibited cell proliferation and migration. Proteomics analysis of these cells revealed altered expression of proteins associated with lipids synthesis and signaling, vesicular transport and trafficking, metabolism, epigenetics, the extracellular matrix, cell signaling, and neutrophil-mediated immunity. SMAC-KO A549 cell-showed inhibited tumor growth and proliferation and activated apoptosis. The small SMAC-depleted “tumor” showed a morphology of alveoli-like structures, reversed epithelial-mesenchymal transition, and altered tumor microenvironment. The SMAC-lacking tumor showed reduced expression of inflammation-related proteins such as NF-kB and TNF-α, and of the PD-L1, associated with immune system suppression. These results suggest that SMAC is involved in multiple processes that are essential for tumor growth and progression. Thus, targeting SMAC’s non-canonical function is a potential strategy to treat cancer.
Collapse
Affiliation(s)
- Swaroop Kumar Pandey
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Anna Shteinfer-Kuzmine
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Vered Chalifa-Caspi
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Varda Shoshan-Barmatz
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- *Correspondence: Varda Shoshan-Barmatz,
| |
Collapse
|
6
|
Zhong X, Wu Q, Wang Z, Zhang M, Zheng S, Shi F, Chen Y, Che Y, Yuan S, Xing K. Iron deficiency exacerbates aortic medial degeneration by inducing excessive mitochondrial fission. Food Funct 2022; 13:7666-7683. [PMID: 35735054 DOI: 10.1039/d2fo01084d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Iron deficiency (ID) is a global nutritional deficiency that was shown to be involved in the pathogenesis of aortic aneurysm and dissection (AAD) in our previous studies. Some studies suggested that mitochondrial dynamics was involved in the apoptosis and phenotypic transformation of vascular smooth muscle cells (VSMCs). However, little is known about the role of mitochondrial dynamics in aortic medial degeneration (AMD) promoted by an iron deficient diet. The present study investigated the effect of ID on the phenotypic transformation of VSMCs, the progression of AMD, and the underlying mechanism. The expression of p-Drp1 (Ser616) and Fis1 was markedly upregulated in the aortic media of AAD patients and ApoE-/- mice with subcutaneous AngII osmotic pumps. ID facilitated the formation of mitochondria-associated endoplasmic reticulum membranes (MAMs), which triggered excessive mitochondrial fission, induced the phenotypic transformation of VSMCs, and ultimately accelerated the progression of AMD. Furthermore, the present study indicated that an inhibitor of Drp1 could partially reverse this process. Maintaining iron balance in the human body may prevent the development of AAD.
Collapse
Affiliation(s)
- Xiaohan Zhong
- Department of Cardiothoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China. .,Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, 9# Zhangzhidong Road, Wuhan 430000, Hubei Province, People's Republic of China.,Central Laboratory, Renmin Hospital of Wuhan University, 9# Zhangzhidong Road, Wuhan 430000, Hubei Province, People's Republic of China
| | - Qi Wu
- Department of Cardiothoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China. .,Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, 9# Zhangzhidong Road, Wuhan 430000, Hubei Province, People's Republic of China.,Central Laboratory, Renmin Hospital of Wuhan University, 9# Zhangzhidong Road, Wuhan 430000, Hubei Province, People's Republic of China
| | - Zhiwei Wang
- Department of Cardiothoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China. .,Central Laboratory, Renmin Hospital of Wuhan University, 9# Zhangzhidong Road, Wuhan 430000, Hubei Province, People's Republic of China
| | - Min Zhang
- Department of Cardiothoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China. .,Central Laboratory, Renmin Hospital of Wuhan University, 9# Zhangzhidong Road, Wuhan 430000, Hubei Province, People's Republic of China
| | - Sihao Zheng
- Department of Cardiothoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China. .,Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, 9# Zhangzhidong Road, Wuhan 430000, Hubei Province, People's Republic of China.,Central Laboratory, Renmin Hospital of Wuhan University, 9# Zhangzhidong Road, Wuhan 430000, Hubei Province, People's Republic of China
| | - Feng Shi
- Department of Cardiothoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China. .,Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, 9# Zhangzhidong Road, Wuhan 430000, Hubei Province, People's Republic of China.,Central Laboratory, Renmin Hospital of Wuhan University, 9# Zhangzhidong Road, Wuhan 430000, Hubei Province, People's Republic of China
| | - Yuanyang Chen
- Department of Cardiothoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China. .,Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, 9# Zhangzhidong Road, Wuhan 430000, Hubei Province, People's Republic of China.,Central Laboratory, Renmin Hospital of Wuhan University, 9# Zhangzhidong Road, Wuhan 430000, Hubei Province, People's Republic of China
| | - Yanjia Che
- Department of Cardiothoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China. .,Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, 9# Zhangzhidong Road, Wuhan 430000, Hubei Province, People's Republic of China.,Central Laboratory, Renmin Hospital of Wuhan University, 9# Zhangzhidong Road, Wuhan 430000, Hubei Province, People's Republic of China
| | - Shun Yuan
- Department of Cardiothoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China. .,Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, 9# Zhangzhidong Road, Wuhan 430000, Hubei Province, People's Republic of China.,Central Laboratory, Renmin Hospital of Wuhan University, 9# Zhangzhidong Road, Wuhan 430000, Hubei Province, People's Republic of China
| | - Kai Xing
- Department of Cardiothoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China. .,Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, 9# Zhangzhidong Road, Wuhan 430000, Hubei Province, People's Republic of China.,Central Laboratory, Renmin Hospital of Wuhan University, 9# Zhangzhidong Road, Wuhan 430000, Hubei Province, People's Republic of China
| |
Collapse
|
7
|
Nothdurfter D, Ploner C, Coraça-Huber DC, Wilflingseder D, Müller T, Hermann M, Hagenbuchner J, Ausserlechner MJ. 3D bioprinted, vascularized neuroblastoma tumor environment in fluidic chip devices for precision medicine drug testing. Biofabrication 2022; 14. [PMID: 35333193 DOI: 10.1088/1758-5090/ac5fb7] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/22/2022] [Indexed: 11/12/2022]
Abstract
Neuroblastoma is an extracranial solid tumor which develops in early childhood and still has a poor prognosis. One strategy to increase cure rates is the identification of patient-specific drug responses in tissue models that mimic the interaction between patient cancer cells and tumor environment. We therefore developed a perfused and micro-vascularized tumor-environment model that is directly bioprinted into custom-manufactured fluidic chips. A gelatin-methacrylate/fibrin-based matrix containing multiple cell types mimics the tumor-microenvironment that promotes spontaneous micro-vessel formation by embedded endothelial cells. We demonstrate that both, adipocyte- and iPSC-derived mesenchymal stem cells can guide this process. Bioprinted channels are coated with endothelial cells post printing to form a dense vessel - tissue barrier. The tissue model thereby mimics structure and function of human soft tissue with endothelial cell-coated larger vessels for perfusion and micro-vessel networks within the hydrogel-matrix. Patient-derived neuroblastoma spheroids are added to the matrix during the printing process and grown for more than two weeks. We demonstrate that micro-vessels are attracted by and grow into tumor spheroids and that neuroblastoma cells invade the tumor-environment as soon as the spheroids disrupt. In summary, we describe the first bioprinted, micro-vascularized neuroblastoma - tumor-environment model directly printed into fluidic chips and a novel medium-throughput biofabrication platform suitable for studying tumor angiogenesis and metastasis in precision medicine approaches in future.
Collapse
Affiliation(s)
- Daniel Nothdurfter
- Department of Pediatrics I and 3D Bioprinting Lab, Medical University Innsbruck, Austria
| | - Christian Ploner
- Department of Plastic and Reconstructive Surgery, Medical University Innsbruck, Austria
| | - Débora C Coraça-Huber
- Research Laboratory for Biofilms and Implant Associated Infections (BIOFILM LAB), Experimental Orthopedics, Department of Orthopedic Surgery, Medical University Innsbruck, Austria
| | - Doris Wilflingseder
- Institute of Hygiene and Medical Microbiology, Medical University Innsbruck, Austria
| | - Thomas Müller
- Department of Pediatrics I and 3D Bioprinting Lab, Medical University Innsbruck, Austria
| | - Martin Hermann
- Department of Anaesthesiology and Intensive Care Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Judith Hagenbuchner
- Department of Pediatrics II and 3D Bioprinting Lab, Medical University Innsbruck, Austria
| | | |
Collapse
|
8
|
Jiang N, Xie B, Xiao W, Fan M, Xu S, Duan Y, Hamsafar Y, Evans AC, Huang J, Zhou W, Lin X, Ye N, Wanggou S, Chen W, Jing D, Fragoso RC, Dugger BN, Wilson PF, Coleman MA, Xia S, Li X, Sun LQ, Monjazeb AM, Wang A, Murphy WJ, Kung HJ, Lam KS, Chen HW, Li JJ. Fatty acid oxidation fuels glioblastoma radioresistance with CD47-mediated immune evasion. Nat Commun 2022; 13:1511. [PMID: 35314680 PMCID: PMC8938495 DOI: 10.1038/s41467-022-29137-3] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 02/25/2022] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma multiforme (GBM) remains the top challenge to radiotherapy with only 25% one-year survival after diagnosis. Here, we reveal that co-enhancement of mitochondrial fatty acid oxidation (FAO) enzymes (CPT1A, CPT2 and ACAD9) and immune checkpoint CD47 is dominant in recurrent GBM patients with poor prognosis. A glycolysis-to-FAO metabolic rewiring is associated with CD47 anti-phagocytosis in radioresistant GBM cells and regrown GBM after radiation in syngeneic mice. Inhibition of FAO by CPT1 inhibitor etomoxir or CRISPR-generated CPT1A-/-, CPT2-/-, ACAD9-/- cells demonstrate that FAO-derived acetyl-CoA upregulates CD47 transcription via NF-κB/RelA acetylation. Blocking FAO impairs tumor growth and reduces CD47 anti-phagocytosis. Etomoxir combined with anti-CD47 antibody synergizes radiation control of regrown tumors with boosted macrophage phagocytosis. These results demonstrate that enhanced fat acid metabolism promotes aggressive growth of GBM with CD47-mediated immune evasion. The FAO-CD47 axis may be targeted to improve GBM control by eliminating the radioresistant phagocytosis-proofing tumor cells in GBM radioimmunotherapy.
Collapse
Affiliation(s)
- Nian Jiang
- grid.27860.3b0000 0004 1936 9684Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, CA 95817 USA ,grid.216417.70000 0001 0379 7164Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008 PR China
| | - Bowen Xie
- grid.27860.3b0000 0004 1936 9684Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, CA 95817 USA ,grid.12527.330000 0001 0662 3178Institute for Immunology and School of Medicine, Tsinghua University, Beijing, 100084 PR China
| | - Wenwu Xiao
- grid.27860.3b0000 0004 1936 9684Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA 95817 USA
| | - Ming Fan
- grid.27860.3b0000 0004 1936 9684Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, CA 95817 USA
| | - Shanxiu Xu
- grid.27860.3b0000 0004 1936 9684Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817 USA
| | - Yixin Duan
- grid.27860.3b0000 0004 1936 9684Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, CA 95817 USA
| | - Yamah Hamsafar
- grid.27860.3b0000 0004 1936 9684Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA 95817 USA
| | - Angela C. Evans
- grid.27860.3b0000 0004 1936 9684Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, CA 95817 USA
| | - Jie Huang
- grid.27860.3b0000 0004 1936 9684Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, CA 95817 USA
| | - Weibing Zhou
- grid.27860.3b0000 0004 1936 9684Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, CA 95817 USA ,grid.216417.70000 0001 0379 7164Department of Radiation Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008 PR China
| | - Xuelei Lin
- grid.216417.70000 0001 0379 7164Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008 PR China
| | - Ningrong Ye
- grid.216417.70000 0001 0379 7164Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008 PR China
| | - Siyi Wanggou
- grid.216417.70000 0001 0379 7164Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008 PR China
| | - Wen Chen
- grid.27860.3b0000 0004 1936 9684Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, CA 95817 USA ,grid.216417.70000 0001 0379 7164Department of Radiation Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008 PR China
| | - Di Jing
- grid.27860.3b0000 0004 1936 9684Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA 95817 USA ,grid.216417.70000 0001 0379 7164Department of Radiation Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008 PR China
| | - Ruben C. Fragoso
- grid.27860.3b0000 0004 1936 9684Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, CA 95817 USA ,grid.27860.3b0000 0004 1936 9684NCI-Designated Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817 USA
| | - Brittany N. Dugger
- grid.27860.3b0000 0004 1936 9684Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA 95817 USA
| | - Paul F. Wilson
- grid.27860.3b0000 0004 1936 9684Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, CA 95817 USA ,grid.27860.3b0000 0004 1936 9684NCI-Designated Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817 USA
| | - Matthew A. Coleman
- grid.27860.3b0000 0004 1936 9684Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, CA 95817 USA ,grid.27860.3b0000 0004 1936 9684NCI-Designated Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817 USA
| | - Shuli Xia
- grid.21107.350000 0001 2171 9311Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205 USA
| | - Xuejun Li
- grid.216417.70000 0001 0379 7164Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008 PR China ,grid.216417.70000 0001 0379 7164Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan 410008 PR China
| | - Lun-Quan Sun
- grid.216417.70000 0001 0379 7164Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008 PR China
| | - Arta M. Monjazeb
- grid.27860.3b0000 0004 1936 9684Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, CA 95817 USA ,grid.27860.3b0000 0004 1936 9684NCI-Designated Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817 USA
| | - Aijun Wang
- grid.27860.3b0000 0004 1936 9684Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817 USA
| | - William J. Murphy
- grid.27860.3b0000 0004 1936 9684NCI-Designated Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817 USA ,grid.27860.3b0000 0004 1936 9684Departments of Dermatology and Internal Medicine, UC Davis School of Medicine, Sacramento, CA 95817 USA
| | - Hsing-Jien Kung
- grid.27860.3b0000 0004 1936 9684Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA 95817 USA ,grid.412896.00000 0000 9337 0481TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, 110 Taiwan
| | - Kit S. Lam
- grid.27860.3b0000 0004 1936 9684Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA 95817 USA ,grid.27860.3b0000 0004 1936 9684NCI-Designated Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817 USA
| | - Hong-Wu Chen
- grid.27860.3b0000 0004 1936 9684Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA 95817 USA ,grid.27860.3b0000 0004 1936 9684NCI-Designated Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817 USA ,grid.413933.f0000 0004 0419 2847Veterans Affairs Northern California Health Care System, Mather, CA95655 USA
| | - Jian Jian Li
- Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, CA, 95817, USA. .,NCI-Designated Comprehensive Cancer Center, University of California Davis, Sacramento, CA, 95817, USA.
| |
Collapse
|
9
|
Analysis of Mitochondrial Function, Structure, and Intracellular Organization In Situ in Cardiomyocytes and Skeletal Muscles. Int J Mol Sci 2022; 23:ijms23042252. [PMID: 35216368 PMCID: PMC8876605 DOI: 10.3390/ijms23042252] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 01/27/2023] Open
Abstract
Analysis of the function, structure, and intracellular organization of mitochondria is important for elucidating energy metabolism and intracellular energy transfer. In addition, basic and clinically oriented studies that investigate organ/tissue/cell dysfunction in various human diseases, including myopathies, cardiac/brain ischemia-reperfusion injuries, neurodegenerative diseases, cancer, and aging, require precise estimation of mitochondrial function. It should be noted that the main metabolic and functional characteristics of mitochondria obtained in situ (in permeabilized cells and tissue samples) and in vitro (in isolated organelles) are quite different, thereby compromising interpretations of experimental and clinical data. These differences are explained by the existence of the mitochondrial network, which possesses multiple interactions between the cytoplasm and other subcellular organelles. Metabolic and functional crosstalk between mitochondria and extra-mitochondrial cellular environments plays a crucial role in the regulation of mitochondrial metabolism and physiology. Therefore, it is important to analyze mitochondria in vivo or in situ without their isolation from the natural cellular environment. This review summarizes previous studies and discusses existing approaches and methods for the analysis of mitochondrial function, structure, and intracellular organization in situ.
Collapse
|
10
|
Xie L, Zhou T, Xie Y, Bode AM, Cao Y. Mitochondria-Shaping Proteins and Chemotherapy. Front Oncol 2021; 11:769036. [PMID: 34868997 PMCID: PMC8637292 DOI: 10.3389/fonc.2021.769036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/18/2021] [Indexed: 12/23/2022] Open
Abstract
The emergence, in recent decades, of an entirely new area of “Mitochondrial dynamics”, which consists principally of fission and fusion, reflects the recognition that mitochondria play a significant role in human tumorigenesis and response to therapeutics. Proteins that determine mitochondrial dynamics are referred to as “shaping proteins”. Marked heterogeneity has been observed in the response of tumor cells to chemotherapy, which is associated with imbalances in mitochondrial dynamics and function leading to adaptive and acquired resistance to chemotherapeutic agents. Therefore, targeting mitochondria-shaping proteins may prove to be a promising approach to treat chemotherapy resistant cancers. In this review, we summarize the alterations of mitochondrial dynamics in chemotherapeutic processing and the antitumor mechanisms by which chemotherapy drugs synergize with mitochondria-shaping proteins. These might shed light on new biomarkers for better prediction of cancer chemosensitivity and contribute to the exploitation of potent therapeutic strategies for the clinical treatment of cancers.
Collapse
Affiliation(s)
- Longlong Xie
- Hunan Children's Hospital, The Pediatric Academy of University of South China, Changsha, China.,Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, China
| | - Tiansheng Zhou
- Hunan Children's Hospital, The Pediatric Academy of University of South China, Changsha, China
| | - Yujun Xie
- Hunan Children's Hospital, The Pediatric Academy of University of South China, Changsha, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN, United States
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, China.,Research Center for Technologies of Nucleic Acid-Based Diagnostics and Therapeutics Hunan Province, Changsha, China.,Molecular Imaging Research Center of Central South University, Changsha, China.,National Joint Engineering Research Center for Genetic Diagnostics of Infectious Diseases and Cancer, Changsha, China
| |
Collapse
|
11
|
Newly designed compounds from scaffolds of known actives as inhibitors of survivin: computational analysis from the perspective of fragment-based drug design. In Silico Pharmacol 2021; 9:47. [PMID: 34350094 DOI: 10.1007/s40203-021-00108-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023] Open
Abstract
Survivin is an apoptosis suppressing protein linked to different forms of cancer. As it stands, there are no approved drugs for the inhibition of survivin in cancer cells despite a number of promising compounds in clinical trials. This study designed a new set of compounds from fragments of active survivin inhibitors to potentiate their binding with survivin at BIR domain. Three hundred and five (305) fragments made from eight potent inhibitors of survivin were reconstructed to form a new set of compounds. The compounds were optimized using R group enumeration and bioisostere replacement after extensive docking analysis. The optimised compounds were filtered by a validated pharmacophore model to reveal how well they are aligned to the pharmacophore sites. Molecular docking of the well aligned compounds revealed the top-scoring compounds; and these compounds were compared with the eight inhibitors used as template for fragment-based design on the basis of binding affinity (rigid and flexible docking), predicted pIC50 and intermolecular interactions. The electronic behaviours (global descriptors, HOMO/LUMO, molecular electrostatic potential and Fukui functions) of newly designed compounds were calculated to investigate their reactivity and atomic sites prone to neutrophilic/electrophilic attack. The nine newly designed compounds had better rigid and flexible docking scores, free energy of binding and intermolecular interactions with survivin at BIR domain than the eight active inhibitors. Based on frontier molecular orbitals, OPE-3 was found to be the most reactive and less stable compound (0.13194 eV), followed by OPE-4 and OPE-9. The global descriptive parameters showed that OPE-3 had highest softness value (7.5245 eV) while OPE-8 recorded the maximum hardness value (0.08486 eV). The well-validated QSAR model also showed that OPE-3, OPE-7 and OPE-8 had the most significant bioactivity of all the inhibitors. This study thus provides new insight into the design of compounds capable of modulating the activity of survivin. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-021-00108-8.
Collapse
|
12
|
Qin Y, Yu Y, Yang C, Wang Z, Yang Y, Wang C, Zheng Q, Li D, Xu W. Atractylenolide I Inhibits NLRP3 Inflammasome Activation in Colitis-Associated Colorectal Cancer via Suppressing Drp1-Mediated Mitochondrial Fission. Front Pharmacol 2021; 12:674340. [PMID: 34335248 PMCID: PMC8320763 DOI: 10.3389/fphar.2021.674340] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/18/2021] [Indexed: 01/04/2023] Open
Abstract
Inflammatory bowel disease (IBD) is an important high-risk factor that promotes the occurrence and development of colon cancer. Research on the mechanism of regulating NLRP3 can provide potential targets for treating NLRP3 inflammasome–related diseases and changing the inflammatory potential of immune cells. In this study, the effects of atractylenolide I on colitis-associated CRC (caCRC) and inflammasome activation were investigated both in vivo and in vitro. Furthermore, the role of atractylenolide I on Drp1-mediated mitochondrial fission was analyzed via Western blotting and transmission electron microscopy (TEM). Moreover, the Drp1 overexpression lentiviral vector was used to study the role of Drp1 on the signaling mechanisms of atractylenolide I. Atractylenolide I treatment significantly reduced the cell viability of human HCT116 and SW480 cells and induced apoptosis, and effectively inhibited colon tumors in the AOM/DSS mouse model. The reduction of NLRP3 inflammasome activation and excessive fission of mitochondria mediated by Drp1 were associated with the administration of atractylenolide I. Upregulation of Drp1 reversed the inhibitory effect of atractylenolide I on the activation of NLRP3 inflammasomes. Overexpressing the Drp1 expression counteracted the restraint of atractylenolide I on the release of IL-1β of LPS/DSS-stimulated BMDMs. Atractylenolide I inhibited NLRP3 and caspase-1 expression in mice BMDMs, with no influence in the Drp1-overexpressed BMDMs. These results demonstrated that atractylenolide I inhibits NLRP3 inflammasome activation in colitis-associated colorectal cancer via suppressing Drp1-mediated mitochondrial fission.
Collapse
Affiliation(s)
- Yao Qin
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, China
| | - Yanwei Yu
- Yantai Hospital of Traditional Chinese Medicine, Yantai, China
| | - Chendong Yang
- Yantai Hospital of Traditional Chinese Medicine, Yantai, China
| | - Zhuien Wang
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, China
| | - Yi Yang
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, China
| | - Chongxu Wang
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, China
| | - Qiusheng Zheng
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, China
| | - Defang Li
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, China
| | - Wenjuan Xu
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, China
| |
Collapse
|
13
|
Miles MA, Caruso S, Baxter AA, Poon IKH, Hawkins CJ. Smac mimetics can provoke lytic cell death that is neither apoptotic nor necroptotic. Apoptosis 2021; 25:500-518. [PMID: 32440848 DOI: 10.1007/s10495-020-01610-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Smac mimetics, or IAP antagonists, are a class of drugs currently being evaluated as anti-cancer therapeutics. These agents antagonize IAP proteins, including cIAP1/2 and XIAP, to induce cell death via apoptotic or, upon caspase-8 deficiency, necroptotic cell death pathways. Many cancer cells are unresponsive to Smac mimetic treatment as a single agent but can be sensitized to killing in the presence of the cytokine TNFα, provided either exogenously or via autocrine production. We found that high concentrations of a subset of Smac mimetics could provoke death in cells that did not produce TNFα, despite sensitization at lower concentrations by TNFα. The ability of these drugs to kill did not correlate with valency. These cells remained responsive to the lethal effects of Smac mimetics at high concentrations despite genetic or pharmacological impairments in apoptotic, necroptotic, pyroptotic, autophagic and ferroptotic cell death pathways. Analysis of dying cells revealed necrotic morphology, which was accompanied by the release of lactate dehydrogenase and cell membrane rupture without prior phosphatidylserine exposure implying cell lysis, which occurred over a several hours. Our study reveals that cells incapable of autocrine TNFα production are sensitive to some Smac mimetic compounds when used at high concentrations, and this exposure elicits a lytic cell death phenotype that occurs via a mechanism not requiring apoptotic caspases or necroptotic effectors RIPK3 or MLKL. These data reveal the possibility that non-canonical cell death pathways can be triggered by these drugs when applied at high concentrations.
Collapse
Affiliation(s)
- Mark A Miles
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia.
| | - Sarah Caruso
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Amy A Baxter
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Ivan K H Poon
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Christine J Hawkins
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| |
Collapse
|
14
|
Kuznetsov AV, Javadov S, Margreiter R, Grimm M, Hagenbuchner J, Ausserlechner MJ. Structural and functional remodeling of mitochondria as an adaptive response to energy deprivation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148393. [PMID: 33549532 DOI: 10.1016/j.bbabio.2021.148393] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/21/2021] [Accepted: 01/31/2021] [Indexed: 01/23/2023]
Abstract
Cancer cells bioenergetics is more dependent on glycolysis than mitochondrial oxidative phosphorylation, a phenomenon known as the Warburg Effect. It has been proposed that inhibition of glycolysis may selectively affect cancer cells. However, the effects of glycolysis inhibition on mitochondrial function and structure in cancer cells are not completely understood. Here, we investigated the comparative effects of 2-deoxy-d-glucose (2-DG, a glucose analogue, which suppresses cellular glycolysis) on cellular bioenergetics in human colon cancer DLD-1 cells, smooth muscle cells, human umbilical vein endothelial cells and HL-1 cardiomyocytes. In all cells, 2-DG treatment resulted in significant ATP depletion, however, the cell viability remained unchanged. Also, we did not observe the synergistic effects of 2-DG with anticancer drugs doxorubicin and 5-fluorouracil. Instead, after 2-DG treatment and ATP depletion, mitochondrial respiration and membrane potential were significantly enhanced and mitochondrial morphology changed in the direction of more network organization. Analysis of protein expression demonstrated that 2-DG treatment induced an activation of AMPK (elevated pAMPK/AMPK ratio), increased mitochondrial fusion (mitofusins 1 and 2) and decreased fission (Drp1) proteins. In conclusion, this study suggests a strong link between respiratory function and structural organization of mitochondria in the cell. We propose that the functionality of the mitochondrial network is enhanced compared to disconnected mitochondria.
Collapse
Affiliation(s)
- Andrey V Kuznetsov
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Innsbruck Medical University, Innsbruck, Austria; Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria.
| | - Sabzali Javadov
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, PR, USA.
| | - Raimund Margreiter
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria.
| | - Michael Grimm
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Innsbruck Medical University, Innsbruck, Austria.
| | - Judith Hagenbuchner
- Department of Pediatrics II, Medical University of Innsbruck, Innsbruck, Austria.
| | | |
Collapse
|
15
|
Hu HF, Xu WW, Li YJ, He Y, Zhang WX, Liao L, Zhang QH, Han L, Yin XF, Zhao XX, Pan YL, Li B, He QY. Anti-allergic drug azelastine suppresses colon tumorigenesis by directly targeting ARF1 to inhibit IQGAP1-ERK-Drp1-mediated mitochondrial fission. Am J Cancer Res 2021; 11:1828-1844. [PMID: 33408784 PMCID: PMC7778598 DOI: 10.7150/thno.48698] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022] Open
Abstract
This study aimed to screen novel anticancer strategies from FDA-approved non-cancer drugs and identify potential biomarkers and therapeutic targets for colorectal cancer (CRC). Methods: A library consisting of 1056 FDA-approved drugs was screened for anticancer agents. WST-1, colony-formation, flow cytometry, and tumor xenograft assays were used to determine the anticancer effect of azelastine. Quantitative proteomics, confocal imaging, Western blotting and JC-1 assays were performed to examine the effects on mitochondrial pathways. The target protein of azelastine was analyzed and confirmed by DARTS, WST-1, Biacore and tumor xenograft assays. Immunohistochemistry, gain- and loss-of-function experiments, WST-1, colony-formation, immunoprecipitation, and tumor xenograft assays were used to examine the functional and clinical significance of ARF1 in colon tumorigenesis. Results: Azelastine, a current anti-allergic drug, was found to exert a significant inhibitory effect on CRC cell proliferation in vitro and in vivo, but not on ARF1-deficient or ARF1-T48S mutant cells. ARF1 was identified as a direct target of azelastine. High ARF1 expression was associated with advanced stages and poor survival of CRC. ARF1 promoted colon tumorigenesis through its interaction with IQGAP1 and subsequent activation of ERK signaling and mitochondrial fission by enhancing the interaction of IQGAP1 with MEK and ERK. Mechanistically, azelastine bound to Thr-48 in ARF1 and repressed its activity, decreasing Drp1 phosphorylation. This, in turn, inhibited mitochondrial fission and suppressed colon tumorigenesis by blocking IQGAP1-ERK signaling. Conclusions: This study provides the first evidence that azelastine may be novel therapeutics for CRC treatment. ARF1 promotes colon tumorigenesis, representing a promising biomarker and therapeutic target in CRC.
Collapse
|
16
|
Smac mimetic promotes TNF-α to induce apoptosis of gallbladder carcinoma cells. Cell Signal 2020; 72:109654. [PMID: 32334028 DOI: 10.1016/j.cellsig.2020.109654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/03/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022]
Abstract
Gallbladder carcinoma has a high degree of malignancy. No effective treatment exists for patients with advanced tumors. The second mitochondria-derived activator of caspases (Smac) is the antagonist of the inhibitors of apoptosis protein. Smac mimetics are a class of effective tumor-targeted drugs undergoing clinical trials. However, studies on the effect of Smac mimetics on gallbladder cancer are unavailable. In this study, Smac mimetics can promote tumor necrosis factor-α (TNF-α) to inhibit the proliferation of gallbladder cancer cells and activate the apoptotic pathway, thereby promoting the ubiquitination of Lys48 on Receptor interacting protein kinase-1 (RIPK1) and leading to proteasomal degradation that causes damage to RIPK1 protein integrity. The formation of complex I (RIPK1, tumor necrosis factor 1-associated death domain protein, and TNF receptor-associated factor 2) is inhibited. Then, nonubiquitinated RIPK1 binds with the Fas-associated death domain and caspase-8 to form complex II and promotes the death receptor pathway of apoptosis. Animal experiments further verify that TNF-α combined with Smac mimetics can inhibit the growth of transplanted tumors and induce the apoptosis of transplanted tumor cells. This research provides a new direction for the targeted therapy of gallbladder cancer.
Collapse
|
17
|
Han S, Wei R, Zhang X, Jiang N, Fan M, Huang JH, Xie B, Zhang L, Miao W, Butler ACP, Coleman MA, Vaughan AT, Wang Y, Chen HW, Liu J, Li JJ. CPT1A/2-Mediated FAO Enhancement-A Metabolic Target in Radioresistant Breast Cancer. Front Oncol 2019; 9:1201. [PMID: 31803610 PMCID: PMC6873486 DOI: 10.3389/fonc.2019.01201] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 10/22/2019] [Indexed: 12/22/2022] Open
Abstract
Tumor cells, including cancer stem cells (CSCs) resistant to radio- and chemotherapy, must enhance metabolism to meet the extra energy demands to repair and survive such genotoxic conditions. However, such stress-induced adaptive metabolic alterations, especially in cancer cells that survive radiotherapy, remain unresolved. In this study, we found that CPT1 (Carnitine palmitoyl transferase I) and CPT2 (Carnitine palmitoyl transferase II), a pair of rate-limiting enzymes for mitochondrial fatty acid transportation, play a critical role in increasing fatty acid oxidation (FAO) required for the cellular fuel demands in radioresistant breast cancer cells (RBCs) and radiation-derived breast cancer stem cells (RD-BCSCs). Enhanced CPT1A/CPT2 expression was detected in the recurrent human breast cancers and associated with a worse prognosis in breast cancer patients. Blocking FAO via a FAO inhibitor or by CRISPR-mediated CPT1A/CPT2 gene deficiency inhibited radiation-induced ERK activation and aggressive growth and radioresistance of RBCs and RD-BCSCs. These results revealed that switching to FAO contributes to radiation-induced mitochondrial energy metabolism, and CPT1A/CPT2 is a potential metabolic target in cancer radiotherapy.
Collapse
Affiliation(s)
- Shujun Han
- Department of Radiation Oncology, School of Medicine, University of California, Davis, Sacramento, CA, United States
- Center for Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ryan Wei
- Department of Radiation Oncology, School of Medicine, University of California, Davis, Sacramento, CA, United States
- Lewis Katz School of Medicine/St. Luke's University Regional Campus, Temple University, Philadelphia, PA, United States
| | - Xiaodi Zhang
- Department of Radiation Oncology, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Nian Jiang
- Department of Radiation Oncology, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Ming Fan
- Department of Radiation Oncology, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Jie Hunter Huang
- Department of Radiation Oncology, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Bowen Xie
- Department of Radiation Oncology, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Lu Zhang
- Department of Radiation Oncology, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Weili Miao
- Department of Chemistry, University of California, Riverside, Riverside, CA, United States
| | - Ashley Chen-Ping Butler
- Department of Radiation Oncology, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Matthew A. Coleman
- Department of Radiation Oncology, School of Medicine, University of California, Davis, Sacramento, CA, United States
- NCI-Designated Compressive Cancer Center, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Andrew T. Vaughan
- Department of Radiation Oncology, School of Medicine, University of California, Davis, Sacramento, CA, United States
- NCI-Designated Compressive Cancer Center, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, Riverside, CA, United States
| | - Hong-Wu Chen
- NCI-Designated Compressive Cancer Center, School of Medicine, University of California, Davis, Sacramento, CA, United States
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA, United States
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jian Jian Li
- Department of Radiation Oncology, School of Medicine, University of California, Davis, Sacramento, CA, United States
- NCI-Designated Compressive Cancer Center, School of Medicine, University of California, Davis, Sacramento, CA, United States
| |
Collapse
|