1
|
Bonilla-Vidal L, Świtalska M, Espina M, Wietrzyk J, García ML, Souto EB, Gliszczyńska A, Sánchez-López E. Antitumoral melatonin-loaded nanostructured lipid carriers. Nanomedicine (Lond) 2024; 19:1879-1894. [PMID: 39092498 PMCID: PMC11457606 DOI: 10.1080/17435889.2024.2379757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/10/2024] [Indexed: 08/04/2024] Open
Abstract
Aim: Cancer constitutes the second leading cause of death worldwide, with conventional therapies limited by significant side effects. Melatonin (MEL), a natural compound with antitumoral properties, suffers from instability and low solubility. To overcome these issues, MEL was encapsulated into nanostructured lipid carriers (MEL-NLC) containing rosehip oil to enhance stability and boost its antitumoral activity.Methods: MEL-NLC were optimized by a design of experiments approach and characterized for their physicochemical properties. Stability and biopharmaceutical behavior were assessed, along with interaction studies and in vitro antitumoral efficacy against various cancer cell lines.Results: Optimized MEL-NLC exhibited desirable physicochemical characteristics, including small particle size and sustained MEL release, along with long-term stability. In vitro studies demonstrated that MEL-NLC selectively induced cytotoxicity in several cancer cell lines while sparing healthy cells.Conclusion: MEL-NLC represent a promising alternative for cancer, combining enhanced stability and targeted antitumoral activity, potentially overcoming the limitations of conventional treatments.
Collapse
Affiliation(s)
- Lorena Bonilla-Vidal
- Department of Pharmacy, Pharmaceutical Technology & Physical Chemistry, University of Barcelona, Barcelona, 08028, Spain
- Institute of Nanoscience & Nanotechnology (INUB), University of Barcelona, Barcelona, 08028, Spain
| | - Marta Świtalska
- Department of Experimental Oncology, Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wrocław, Poland
| | - Marta Espina
- Department of Pharmacy, Pharmaceutical Technology & Physical Chemistry, University of Barcelona, Barcelona, 08028, Spain
- Institute of Nanoscience & Nanotechnology (INUB), University of Barcelona, Barcelona, 08028, Spain
| | - Joanna Wietrzyk
- Department of Experimental Oncology, Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wrocław, Poland
| | - Maria Luisa García
- Department of Pharmacy, Pharmaceutical Technology & Physical Chemistry, University of Barcelona, Barcelona, 08028, Spain
- Institute of Nanoscience & Nanotechnology (INUB), University of Barcelona, Barcelona, 08028, Spain
| | - Eliana B Souto
- Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, Porto, 4050-313, Portugal
| | - Anna Gliszczyńska
- Department of Food Chemistry & Biocatalysis, Wrocław University of Environmental & Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| | - Elena Sánchez-López
- Department of Pharmacy, Pharmaceutical Technology & Physical Chemistry, University of Barcelona, Barcelona, 08028, Spain
- Institute of Nanoscience & Nanotechnology (INUB), University of Barcelona, Barcelona, 08028, Spain
| |
Collapse
|
2
|
Fan C, Yang X, Yan L, Shi Z. Oxidative stress is two-sided in the treatment of acute myeloid leukemia. Cancer Med 2024; 13:e6806. [PMID: 38715546 PMCID: PMC11077289 DOI: 10.1002/cam4.6806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 05/12/2024] Open
Abstract
INTRODUCTION Oxidative stress caused by elevated ROS, as a novel therapeutic mechanism, has been implicated in various tumors including AML. AML cells are chronically under oxidative stress, yet overreliance on ROS production makes tumor cells increasingly vulnerable to further damage. Reducing the cytotoxic effect of ROS on normal cells while killing leukemia stem cell (LSC) with high levels of reactive oxygen species is a new challenge for oxidative stress therapy in leukemia. METHODS By searching literature databases, we summarized recent relevant studies. The relationship of ROS on AML genes, signaling pathways, and transcription factors, and the correlation of ROS with AML bone marrow microenvironment and autophagy were summarized. In addition, we summarize the current status of research on ROS and AML therapeutics. Finally, we discuss the research progress on redox resistance in AML. RESULTS This review discusses the evidence showing the link between redox reactions and the progression of AML and compiles the latest research findings that will facilitate future biological studies of redox effects associated with AML treatment. CONCLUSION We believe that exploiting this unique oxidative stress property of AML cells may provide a new way to prevent relapse and drug resistance.
Collapse
Affiliation(s)
- Chenyang Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| | - Xiangdong Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| | - Lixiang Yan
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| | - Zhexin Shi
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| |
Collapse
|
3
|
Jin S, Wang TT, Huang JC, Wang YS, Guo B, Yue ZP. Melatonin modulates endometrial decidualization via NOTCH1-NRF2-FOXO1-GSH pathway†. Biol Reprod 2023; 109:299-308. [PMID: 37334936 DOI: 10.1093/biolre/ioad066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/19/2023] [Accepted: 06/11/2023] [Indexed: 06/21/2023] Open
Abstract
Melatonin is important for oocyte maturation, fertilization, early embryonic development, and embryo implantation, but less knowledge is available regarding its role in decidualization. The present study found that melatonin did not alter the proliferation of human endometrial stromal cells (ESCs), as well as cell cycle progress, but suppressed stromal differentiation after binding to the melatonin receptor 1B (MTNR1B), which was visualized in decidualizing ESCs. Further analysis evidenced that application of melatonin resulted in the diminishment for NOTCH1 and RBPJ expression. Supplementation of recombinant NOTCH1 protein (rNOTCH1) counteracted the impairment of stromal differentiation conferred by melatonin, while the addition of the NOTCH signaling pathway inhibitor DAPT aggravated the differentiation progress. Meanwhile, melatonin might restrain the expression and transcriptional activity of nuclear factor erythroid 2-related factor 2 (NRF2), whose blockage accelerated the fault of stromal differentiation under the context of melatonin, but this restraint was subsequently ameliorated by rNOTCH1. Forkhead box O 1 (FOXO1) was identified as a downstream target of melatonin in decidualization. Repression of NRF2 antagonized the retrieval of rNOTCH1 due to aberrant FOXO1 expression elicited by melatonin. Moreover, melatonin brought about the occurrence of oxidative stress accompanied by an obvious accumulation of intracellular reactive oxygen species and a significant reduction in glutathione (GSH) content, as well as enzymatic activities of glutathione peroxidase and glutathione reductase, whereas supplementation of rNOTCH1 improved the above-mentioned effects. Nevertheless, this improvement was disrupted by the blockage of NRF2 and FOXO1. Furthermore, addition of GSH rescued the defect of stromal differentiation by melatonin. Collectively, melatonin might impair endometrial decidualization by restraining the differentiation of ESCs dependent on NOTCH1-NRF2-FOXO1-GSH pathway after binding to the MTNR1B receptor.
Collapse
Affiliation(s)
- Shan Jin
- College of Veterinary Medicine, Jilin University, Changchun, P. R. China
- Reproductive Medical Center, the Second Hospital of Jilin University, Changchun, P. R. China
| | - Ting-Ting Wang
- College of Veterinary Medicine, Jilin University, Changchun, P. R. China
| | - Ji-Cheng Huang
- College of Veterinary Medicine, Jilin University, Changchun, P. R. China
| | - Yu-Si Wang
- College of Veterinary Medicine, Jilin University, Changchun, P. R. China
| | - Bin Guo
- College of Veterinary Medicine, Jilin University, Changchun, P. R. China
| | - Zhan-Peng Yue
- College of Veterinary Medicine, Jilin University, Changchun, P. R. China
| |
Collapse
|
4
|
Mafi A, Rismanchi H, Gholinezhad Y, Mohammadi MM, Mousavi V, Hosseini SA, Milasi YE, Reiter RJ, Ghezelbash B, Rezaee M, Sheida A, Zarepour F, Asemi Z, Mansournia MA, Mirzaei H. Melatonin as a regulator of apoptosis in leukaemia: molecular mechanism and therapeutic perspectives. Front Pharmacol 2023; 14:1224151. [PMID: 37645444 PMCID: PMC10461318 DOI: 10.3389/fphar.2023.1224151] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/19/2023] [Indexed: 08/31/2023] Open
Abstract
Leukaemia is a dangerous malignancy that causes thousands of deaths every year throughout the world. The rate of morbidity and mortality is significant despite many advancements in therapy strategies for affected individuals. Most antitumour medications used now in clinical oncology use apoptotic signalling pathways to induce cancer cell death. Accumulated data have shown a direct correlation between inducing apoptosis in cancer cells with higher tumour regression and survival. Until now, the efficacy of melatonin as a powerful antitumour agent has been firmly established. A change in melatonin concentrations has been reported in multiple tumours such as endometrial, hematopoietic, and breast cancers. Findings show that melatonin's anticancer properties, such as its prooxidation function and ability to promote apoptosis, indicate the possibility of utilizing this natural substance as a promising agent in innovative cancer therapy approaches. Melatonin stimulates cell apoptosis via the regulation of many apoptosis facilitators, including mitochondria, cytochrome c, Bcl-2, production of reactive oxygen species, and apoptosis receptors. This paper aimed to further assess the anticancer effects of melatonin through the apoptotic pathway, considering the role that cellular apoptosis plays in the pathogenesis of cancer. The effect of melatonin may mean that it is appropriate for use as an adjuvant, along with other therapeutic approaches such as radiotherapy and chemotherapy.
Collapse
Affiliation(s)
- Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamidreza Rismanchi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yasaman Gholinezhad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Vahide Mousavi
- School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Seyed Ali Hosseini
- School of Medicine, Babol University of Medical Sciences, Babol, Mazandaran, Iran
| | - Yaser Eshaghi Milasi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health Long School of Medicine, San Antonio, TX, United States
| | - Behrooz Ghezelbash
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Malihe Rezaee
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Zarepour
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
5
|
Shen D, Deng Z, Liu W, Zhou F, Fang Y, Shan D, Wang G, Qian K, Yu M, Zhang Y, Ju L, Xiao Y, Wang X. Melatonin inhibits bladder tumorigenesis by suppressing PPARγ/ENO1-mediated glycolysis. Cell Death Dis 2023; 14:246. [PMID: 37024456 PMCID: PMC10079981 DOI: 10.1038/s41419-023-05770-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/08/2023]
Abstract
Melatonin is a well-known natural hormone, which shows a potential anticancer effect in many human cancers. Bladder cancer (BLCA) is one of the most malignant human cancers in the world. Chemoresistance is an increasingly prominent phenomenon that presents an obstacle to the clinical treatment of BLCA. There is an urgent need to investigate novel drugs to improve the current clinical status. In our study, we comprehensively explored the inhibitory effect of melatonin on BLCA and found that it could suppress glycolysis process. Moreover, we discovered that ENO1, a glycolytic enzyme involved in the ninth step of glycolysis, was the downstream effector of melatonin and could be a predictive biomarker of BLCA. We also proved that enhanced glycolysis simulated by adding exogenous pyruvate could induce gemcitabine resistance, and melatonin treatment or silencing of ENO1 could intensify the cytotoxic effect of gemcitabine on BLCA cells. Excessive accumulation of reactive oxygen species (ROS) mediated the inhibitory effect of melatonin on BLCA cells. Additionally, we uncovered that PPARγ was a novel upstream regulator of ENO1, which mediated the downregulation of ENO1 caused by melatonin. Our study offers a fresh perspective on the anticancer effect of melatonin and encourages further studies on clinical chemoresistance.
Collapse
Affiliation(s)
- Dexin Shen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhao Deng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Liu
- Department of Urology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Fenfang Zhou
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yayun Fang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetic Resources Preservation Center of Hubei Province, Wuhan, China
| | - Danni Shan
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetic Resources Preservation Center of Hubei Province, Wuhan, China
| | - Gang Wang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetic Resources Preservation Center of Hubei Province, Wuhan, China
| | - Kaiyu Qian
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetic Resources Preservation Center of Hubei Province, Wuhan, China
| | - Mengxue Yu
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetic Resources Preservation Center of Hubei Province, Wuhan, China
| | - Yi Zhang
- Euler Technology, ZGC Life Sciences Park, Beijing, China
- Center for Quantitative Biology, School of Life Sciences, Peking University, Beijing, China
| | - Lingao Ju
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Human Genetic Resources Preservation Center of Hubei Province, Wuhan, China.
| | - Yu Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Human Genetic Resources Preservation Center of Hubei Province, Wuhan, China.
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
6
|
Lomovsky AI, Baburina YL, Fadeev RS, Lomovskaya YV, Kobyakova MI, Krestinin RR, Sotnikova LD, Krestinina OV. Melatonin Can Enhance the Effect of Drugs Used in the Treatment of Leukemia. BIOCHEMISTRY (MOSCOW) 2023; 88:73-85. [PMID: 37068876 DOI: 10.1134/s0006297923010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine, MEL), secreted by the pineal gland, plays an important role in regulation of various functions in the human body. There is evidence that MEL exhibits antitumor effect in various types of cancer. We studied the combined effect of MEL and drugs from different pharmacological groups, such as cytarabine (CYT) and navitoclax (ABT-737), on the state of the pool of acute myeloid leukemia (AML) tumor cell using the MV4-11 cell line as model. The combined action of MEL with CYT or ABT-737 contributed to the decrease in proliferative activity of leukemic cells, decrease in the membrane potential of mitochondria, and increase in the production of reactive oxygen species (ROS) and cytosolic Ca2+. We have shown that introduction of MEL together with CYT or ABT-737 increases expression of the C/EBP homologous protein (CHOP) and the autophagy marker LC3A/B and decreases expression of the protein disulfide isomerase (PDI) and binding immunoglobulin protein (BIP), and, therefore, could modulate endoplasmic reticulum (ER) stress and initiate autophagy. The findings support an early suggestion that MEL is able to provide benefits for cancer treatment and be considered as an adjunct to the drugs used in cancer therapy.
Collapse
Affiliation(s)
- Alexey I Lomovsky
- Institute of Theoretical and Experimental Biophysics, Pushchino, Moscow Region, 142290, Russia
| | - Yulia L Baburina
- Institute of Theoretical and Experimental Biophysics, Pushchino, Moscow Region, 142290, Russia
| | - Roman S Fadeev
- Institute of Theoretical and Experimental Biophysics, Pushchino, Moscow Region, 142290, Russia
| | - Yana V Lomovskaya
- Institute of Theoretical and Experimental Biophysics, Pushchino, Moscow Region, 142290, Russia
| | - Margarita I Kobyakova
- Institute of Theoretical and Experimental Biophysics, Pushchino, Moscow Region, 142290, Russia
| | - Roman R Krestinin
- Institute of Theoretical and Experimental Biophysics, Pushchino, Moscow Region, 142290, Russia
| | - Linda D Sotnikova
- Institute of Theoretical and Experimental Biophysics, Pushchino, Moscow Region, 142290, Russia
| | - Olga V Krestinina
- Institute of Theoretical and Experimental Biophysics, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
7
|
Stępniak J, Krawczyk-Lipiec J, Lewiński A, Karbownik-Lewińska M. Sorafenib versus Lenvatinib Causes Stronger Oxidative Damage to Membrane Lipids in Noncancerous Tissues of the Thyroid, Liver, and Kidney: Effective Protection by Melatonin and Indole-3-Propionic Acid. Biomedicines 2022; 10:biomedicines10112890. [PMID: 36428458 PMCID: PMC9687109 DOI: 10.3390/biomedicines10112890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022] Open
Abstract
Sorafenib and lenvatinib are multi-targeted tyrosine kinase inhibitors which are currently approved to treat advanced hepatocellular carcinoma, renal cell carcinoma and radioiodine-refractory differentiated thyroid carcinoma. However this treatment is often limited due to common adverse events which may occur via oxidative stress. The study aims to compare sorafenib- and lenvatinib-induced oxidative damage to membrane lipids (lipid peroxidation, LPO) in homogenates of porcine noncancerous tissues of the thyroid, the liver, and the kidney and to check if it can be prevented by antioxidants melatonin and indole-3-propionic acid (IPA). Homogenates of individual tissues were incubated in the presence of sorafenib or lenvatinib (1 mM, 100 µM, 10 µM, 1 µM, 100 nM, 10 nM, 1 nM, 100 pM) together with/without melatonin (5.0 mM) or IPA (5.0 mM). The concentration of malondialdehyde + 4-hydroxyalkenals, as the LPO index, was measured spectrophotometrically. The incubation of tissue homogenates with sorafenib resulted in a concentration-dependent increase in LPO (statistically significant for concentrations of 1mM and 100 µM in the thyroid and the liver, and of 1 mM, 100 µM, and 10 µM in the kidney). The incubation of thyroid homogenates with lenvatinib did not change LPO level. In case of the liver and the kidney, lenvatinib increased LPO but only in its highest concentration of 1 mM. Melatonin and IPA reduced completely (to the level of control) sorafenib- and lenvatinib-induced LPO in all examined tissues regardless of the drug concentration. In conclusion, sorafenib comparing to lenvatinib is a stronger damaging agent of membrane lipids in noncancerous tissues of the thyroid, the liver, and the kidney. The antioxidants melatonin and IPA can be considered to be used in co-treatment with sorafenib and lenvatinib to prevent their undesirable toxicity occurring via oxidative stress.
Collapse
Affiliation(s)
- Jan Stępniak
- Department of Oncological Endocrinology, Medical University of Lodz, 90-752 Lodz, Poland
| | - Joanna Krawczyk-Lipiec
- Department of Oncological Endocrinology, Medical University of Lodz, 90-752 Lodz, Poland
| | - Andrzej Lewiński
- Polish Mother’s Memorial Hospital—Research Institute, 93-338 Lodz, Poland
- Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, 93-338 Lodz, Poland
| | - Małgorzata Karbownik-Lewińska
- Department of Oncological Endocrinology, Medical University of Lodz, 90-752 Lodz, Poland
- Polish Mother’s Memorial Hospital—Research Institute, 93-338 Lodz, Poland
- Correspondence:
| |
Collapse
|
8
|
Moradian F, Pourhanifeh MH, Mehrzadi S, Karimi‐Behnagh A, Hosseinzadeh A. Therapeutic potentials of melatonin in the treatment of lymphoma: A review of current evidence. Fundam Clin Pharmacol 2022; 36:777-789. [DOI: 10.1111/fcp.12780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/03/2022] [Accepted: 04/04/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Farid Moradian
- Departement of General Surgery Alborz University of Medical Science Alborz Iran
| | - Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences Kashan University of Medical Sciences Kashan Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center Iran University of Medical Sciences Tehran Iran
| | | | - Azam Hosseinzadeh
- Razi Drug Research Center Iran University of Medical Sciences Tehran Iran
| |
Collapse
|
9
|
Ma ZQ, Feng YT, Guo K, Liu D, Shao CJ, Pan MH, Zhang YM, Zhang YX, Lu D, Huang D, Zhang F, Wang JL, Yang B, Han J, Yan XL, Hu Y. Melatonin inhibits ESCC tumor growth by mitigating the HDAC7/β-catenin/c-Myc positive feedback loop and suppressing the USP10-maintained HDAC7 protein stability. Mil Med Res 2022; 9:54. [PMID: 36163081 PMCID: PMC9513894 DOI: 10.1186/s40779-022-00412-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Melatonin, a natural hormone secreted by the pineal gland, has been reported to exhibit antitumor properties through diverse mechanisms of action. However, the oncostatic function of melatonin on esophageal squamous cell carcinoma (ESCC) remains elusive. This study was conducted to investigate the potential effect and underlying molecular mechanism of melatonin as single anticancer agent against ESCC cells. METHODS ESCC cell lines treated with or without melatonin were used in this study. In vitro colony formation and EdU incorporation assays, and nude mice tumor xenograft model were used to confirm the proliferative capacities of ESCC cells. RNA-seq, qPCR, Western blotting, recombinant lentivirus-mediated target gene overexpression or knockdown, plasmids transfection and co-IP were applied to investigate the underlying molecular mechanism by which melatonin inhibited ESCC cell growth. IHC staining on ESCC tissue microarray and further survival analyses were performed to explore the relationship between target genes' expression and prognosis of ESCC. RESULTS Melatonin treatment dose-dependently inhibited the proliferative ability and the expression of histone deacetylase 7 (HDAC7), c-Myc and ubiquitin-specific peptidase 10 (USP10) in ESCC cells (P < 0.05). The expressions of HDAC7, c-Myc and USP10 in tumors were detected significantly higher than the paired normal tissues from 148 ESCC patients (P < 0.001). Then, the Kaplan-Meier survival analyses suggested that ESCC patients with high HDAC7, c-Myc or USP10 levels predicted worse overall survival (Log-rank P < 0.001). Co-IP and Western blotting analyses further revealed that HDAC7 physically deacetylated and activated β-catenin thus promoting downstream target c-Myc gene transcription. Notably, our mechanistic study validated that HDAC7/β-catenin/c-Myc could form the positive feedback loop to enhance ESCC cell growth, and USP10 could deubiquitinate and stabilize HDAC7 protein in the ESCC cells. Additionally, we verified that inhibition of the HDAC7/β-catenin/c-Myc axis and USP10/HDAC7 pathway mediated the anti-proliferative action of melatonin on ESCC cells. CONCLUSIONS Our findings elucidate that melatonin mitigates the HDAC7/β-catenin/c-Myc positive feedback loop and inhibits the USP10-maintained HDAC7 protein stability thus suppressing ESCC cell growth, and provides the reference for identifying biomarkers and therapeutic targets for ESCC.
Collapse
Affiliation(s)
- Zhi-Qiang Ma
- Department of Medical Oncology, Senior Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.,Department of Thoracic Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an, 710038, China
| | - Ying-Tong Feng
- Department of Thoracic Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an, 710038, China.,Department of Cardiothoracic Surgery, the 71th Group Army Hospital of PLA, the Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Kai Guo
- Department of Thoracic Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an, 710038, China.,Department of Thoracic Surgery, Shaanxi Provincial People's Hospital, the Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710068, China
| | - Dong Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China
| | - Chang-Jian Shao
- Department of Thoracic Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an, 710038, China
| | - Ming-Hong Pan
- Department of Thoracic Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an, 710038, China
| | - Yi-Meng Zhang
- Department of Ophthalmology, Tangdu Hospital, the Fourth Military Medical University, Xi'an, 710038, China
| | - Yu-Xi Zhang
- Department of Cardiovascular Surgery, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, China
| | - Di Lu
- Department of Medical Oncology, Senior Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Di Huang
- Department of Medical Oncology, Senior Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Fan Zhang
- Department of Medical Oncology, Senior Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jin-Liang Wang
- Department of Medical Oncology, Senior Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Bo Yang
- Department of Medical Oncology, Senior Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jing Han
- Department of Ophthalmology, Tangdu Hospital, the Fourth Military Medical University, Xi'an, 710038, China.
| | - Xiao-Long Yan
- Department of Thoracic Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an, 710038, China.
| | - Yi Hu
- Department of Medical Oncology, Senior Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
10
|
Luan P, Zhang H, Chen X, Zhu Y, Hu G, Cai J, Zhang Z. Melatonin relieves 2,2,4,4-tetrabromodiphenyl ether (BDE-47)-induced apoptosis and mitochondrial dysfunction through the AMPK-Sirt1-PGC-1α axis in fish kidney cells (CIK). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113276. [PMID: 35123185 DOI: 10.1016/j.ecoenv.2022.113276] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/15/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) exist in aquatic environments with nephrotoxicity to non-target aquatic species. Melatonin (MT) exhibits an inhibitory effect of oxidative stress and apoptosis in various diseases. 2, 2', 4, 4'-tetrabromodiphenyl ether (BDE-47) is the main homolog of PBDE samples. Therefore, we investigated the toxic mechanism of BDE-47 and the alleviation effect of MT, the ctenopharyngodon idellus kidney (CIK) cells were treated with BDE-47 (100 μM) and/or MT (60 μM) for 24 h. Firstly, BDE-47 exposure could inhibit oxidative stress-related antioxidant enzymes (T-AOC, SOD, CAT and GPx) and increase the content of malondialdehyde (MDA) to cause oxidative stress. Secondly, BDE-47 enhanced mitochondrial division and inhibited fusion to induce mitochondrial membrane potential in CIK cells. BDE-47 enhanced the mRNA and protein levels of mitochondrial-pathway apoptosis related genes (Cas 3, Cyt-c, and BAX). Thirdly, BDE-47 treatment decreased the expression levels of mitochondrial-related regulatory factors AMPK-Sirt1-PGC-1α signal pathway. Intriguingly, BDE-47-induced oxidative stress, mitochondrial pathway apoptosis and mitochondrial dynamics disorder could be alleviated by MT treatment. Overall, we concluded that MT could relieve BDE-47-induced oxidative stress, mitochondrial dysfunction and apoptosis through the AMPK-Sirt1-PGC-1α axis. These results enrich the mechanisms of BDE-47 poisoning and reveal that MT treatment may be a potential strategy for solving BDE-47 poisoning.
Collapse
Affiliation(s)
- Peixian Luan
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 0150070, PR China; Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150070, PR China
| | - Haoran Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiaoming Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yue Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Guo Hu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 0150070, PR China; Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150070, PR China.
| | - Jingzeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
11
|
Nyamsambuu A, Khan MA, Zhou X, Chen HC. Molecular mechanism of inhibitory effects of melatonin on prostate cancer cell proliferation, migration and invasion. PLoS One 2022; 17:e0261341. [PMID: 35061708 PMCID: PMC8782292 DOI: 10.1371/journal.pone.0261341] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/30/2021] [Indexed: 11/24/2022] Open
Abstract
The increasing incidence of prostate cancer (PCa) indicates an urgent need for the development of new effective drug therapy. There are limited options to treat the PCa, this study tried to determine a new therapy option for this acute cancer. Androgen-independent PCa cell lines PC3 and DU145 were treated with different melatonin concentrations (0.1~3.5 mM) for 1~3 days and assessed cell migration, cell invasion, cycle arrest in G0/G1 phase as well as apoptosis. We utilized RNA-seq technology to analyze the transcriptional misregulation pathways in DU145 prostate cancer cell line with melatonin (0.5 mM) treatment. Data revealed 20031 genes were up and down-regulated, there were 271 genes that differentially expressed: 97 up-regulated (P<0.05) and 174 down-regulated (P<0.05) genes. Furthermore, RNA-seq results manifested that the melatonin treatment led to a significant increase in the expression levels of HPGD, IL2Rβ, NGFR, however, IGFBP3 and IL6 (P <0.05) had decreased expression levels. The immunoblot assay revealed the expression of IL2Rβ and NGFR genes was up-regulated, qPCR confirmed the gene expression of HPGD and IL2RB were also up-regulated in Du145 cells. Consequently, we probed mechanisms that generate kinetic patterns of NF-κB-dependent gene expression in PCa cells responding to a NF-κB-activation, the significant results were indicated by the inhibition of the NF-kB pathway via IL2Rβ actions. Based on our investigation, it could be concluded that melatonin is a chemotherapeutic molecule against PCa and provides a new idea for clinical therapy of PCa.
Collapse
Affiliation(s)
- Altannavch Nyamsambuu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Md. Asaduzzaman Khan
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan, China
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Xi Zhou
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Han-Chun Chen
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
12
|
Tsai JP, Lee CC, Huang PY, Hsieh YH, Chen YS. Melatonin combined with sorafenib synergistically inhibit the invasive ability through targeting metastasis-associated protein 2 expression in human renal cancer cells. Tzu Chi Med J 2022; 34:192-199. [PMID: 35465276 PMCID: PMC9020234 DOI: 10.4103/tcmj.tcmj_204_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/09/2021] [Accepted: 08/19/2021] [Indexed: 11/04/2022] Open
Abstract
Objectives: Materials and Methods: Results: Conclusion:
Collapse
|
13
|
Mu Q, Najafi M. Modulation of the tumor microenvironment (TME) by melatonin. Eur J Pharmacol 2021; 907:174365. [PMID: 34302814 DOI: 10.1016/j.ejphar.2021.174365] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/10/2021] [Accepted: 07/19/2021] [Indexed: 12/12/2022]
Abstract
The tumor microenvironment (TME) includes a number of non-cancerous cells that affect cancer cell survival. Although CD8+ T lymphocytes and natural killer (NK) cells suppress tumor growth through induction of cell death in cancer cells, there are various immunosuppressive cells such as regulatory T cells (Tregs), tumor-associated macrophages (TAMs), cancer-associated fibroblasts (CAFs), myeloid-derived suppressor cells (MDSCs), etc., which drive cancer cell proliferation. These cells may also support tumor growth and metastasis by stimulating angiogenesis, epithelial-mesenchymal transition (EMT), and resistance to apoptosis. Interactions between cancer cells and other cells, as well as molecules released into EMT, play a key role in tumor growth and suppression of antitumoral immunity. Melatonin is a natural hormone that may be found in certain foods and is also available as a drug. Melatonin has been demonstrated to modulate cell activity and the release of cytokines and growth factors in TME. The purpose of this review is to explain the cellular and molecular mechanisms of cancer cell resistance as a result of interactions with TME. Next, we explain how melatonin affects cells and interactions within the TME.
Collapse
Affiliation(s)
- Qi Mu
- College of Nursing, Inner Mongolia University for Nationalities, Tongliao, 028000, China.
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
14
|
Ng MG, Ng KY, Koh RY, Chye SM. Potential role of melatonin in prevention and treatment of leukaemia. Horm Mol Biol Clin Investig 2021; 42:445-461. [PMID: 34355548 DOI: 10.1515/hmbci-2021-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 07/06/2021] [Indexed: 11/15/2022]
Abstract
Leukaemia is a haematological malignancy originated from the bone marrow. Studies have shown that shift work could disrupt the melatonin secretion and eventually increase leukaemia incidence risk. Melatonin, a pineal hormone, has shown promising oncostatic properties on a wide range of cancers, including leukaemia. We first reviewed the relationship between shift work and the incidence rate of leukaemia and then discussed the role of melatonin receptors (MT1 and MT2) and their functions in leukaemia. Moreover, the connection between inflammation and leukaemia, and melatonin-induced anti-leukaemia mechanisms including anti-proliferation, apoptosis induction and immunomodulation are comprehensively discussed. Apart from that, the synergistic effects of melatonin with other anticancer compounds are also included. In short, this review article has compiled the evidence of anti-leukaemia properties displayed by melatonin and discuss its potential to act as adjunct for anti-leukaemia treatment. This review may serve as a reference for future studies or experimental research to explore the possibility of melatonin serving as a novel therapeutic agent for leukaemia.
Collapse
Affiliation(s)
- Ming Guan Ng
- School of Health Science, International Medical University, Kuala Lumpur, Malaysia
| | - Khuen Yen Ng
- School of Pharmacy, Monash University Malaysia, Selangor, Malaysia
| | - Rhun Yian Koh
- Division of Biomedical Science and Biotechnology, School of Health Science, International Medical University, Kuala Lumpur, Malaysia
| | - Soi Moi Chye
- Division of Biomedical Science and Biotechnology, School of Health Science, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
15
|
González A, Alonso-González C, González-González A, Menéndez-Menéndez J, Cos S, Martínez-Campa C. Melatonin as an Adjuvant to Antiangiogenic Cancer Treatments. Cancers (Basel) 2021; 13:3263. [PMID: 34209857 PMCID: PMC8268559 DOI: 10.3390/cancers13133263] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 02/07/2023] Open
Abstract
Melatonin is a hormone with different functions, antitumor actions being one of the most studied. Among its antitumor mechanisms is its ability to inhibit angiogenesis. Melatonin shows antiangiogenic effects in several types of tumors. Combination of melatonin and chemotherapeutic agents have a synergistic effect inhibiting angiogenesis. One of the undesirable effects of chemotherapy is the induction of pro-angiogenic factors, whilst the addition of melatonin is able to overcome these undesirable effects. This protective effect of the pineal hormone against angiogenesis might be one of the mechanisms underlying its anticancer effect, explaining, at least in part, why melatonin administration increases the sensitivity of tumors to the inhibitory effects exerted by ordinary chemotherapeutic agents. Melatonin has the ability to turn cancer totally resistant to chemotherapeutic agents into a more sensitive chemotherapy state. Definitely, melatonin regulates the expression and/or activity of many factors involved in angiogenesis which levels are affected (either positively or negatively) by chemotherapeutic agents. In addition, the pineal hormone has been proposed as a radiosensitizer, increasing the oncostatic effects of radiation on tumor cells. This review serves as a synopsis of the interaction between melatonin and angiogenesis, and we will outline some antiangiogenic mechanisms through which melatonin sensitizes cancer cells to treatments, such as radiotherapy or chemotherapy.
Collapse
Affiliation(s)
| | | | | | | | - Samuel Cos
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Valdecilla (IDIVAL), 39011 Santander, Spain; (A.G.); (A.G.-G.); (J.M.-M.); (C.M.-C.)
| | | |
Collapse
|
16
|
Mehrzadi S, Pourhanifeh MH, Mirzaei A, Moradian F, Hosseinzadeh A. An updated review of mechanistic potentials of melatonin against cancer: pivotal roles in angiogenesis, apoptosis, autophagy, endoplasmic reticulum stress and oxidative stress. Cancer Cell Int 2021; 21:188. [PMID: 33789681 PMCID: PMC8011077 DOI: 10.1186/s12935-021-01892-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/23/2021] [Indexed: 12/19/2022] Open
Abstract
Cancers are serious life-threatening diseases which annually are responsible for millions of deaths across the world. Despite many developments in therapeutic approaches for affected individuals, the rate of morbidity and mortality is high. The survival rate and life quality of cancer patients is still low. In addition, the poor prognosis of patients and side effects of the present treatments underscores that finding novel and effective complementary and alternative therapies is a critical issue. Melatonin is a powerful anticancer agent and its efficiency has been widely documented up to now. Melatonin applies its anticancer abilities through affecting various mechanisms including angiogenesis, apoptosis, autophagy, endoplasmic reticulum stress and oxidative stress. Regarding the implication of mentioned cellular processes in cancer pathogenesis, we aimed to further evaluate the anticancer effects of melatonin via these mechanisms.
Collapse
Affiliation(s)
- Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Mirzaei
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Farid Moradian
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Shen D, Ju L, Zhou F, Yu M, Ma H, Zhang Y, Liu T, Xiao Y, Wang X, Qian K. The inhibitory effect of melatonin on human prostate cancer. Cell Commun Signal 2021; 19:34. [PMID: 33722247 PMCID: PMC7962396 DOI: 10.1186/s12964-021-00723-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/10/2021] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer (PCa) is one of the most commonly diagnosed human cancers in males. Nearly 191,930 new cases and 33,330 new deaths of PCa are estimated in 2020. Androgen and androgen receptor pathways played essential roles in the pathogenesis of PCa. Androgen depletion therapy is the most used therapies for primary PCa patients. However, due to the high relapse and mortality of PCa, developing novel noninvasive therapies have become the focus of research. Melatonin is an indole-like neurohormone mainly produced in the human pineal gland with a prominent anti-oxidant property. The anti-tumor ability of melatonin has been substantially confirmed and several related articles have also reported the inhibitory effect of melatonin on PCa, while reviews of this inhibitory effect of melatonin on PCa in recent 10 years are absent. Therefore, we systematically discuss the relationship between melatonin disruption and the risk of PCa, the mechanism of how melatonin inhibited PCa, and the synergistic benefits of melatonin and other drugs to summarize current understandings about the function of melatonin in suppressing human prostate cancer. We also raise several unsolved issues that need to be resolved to translate currently non-clinical trials of melatonin for clinic use. We hope this literature review could provide a solid theoretical basis for the future utilization of melatonin in preventing, diagnosing and treating human prostate cancer. Video abstract
Collapse
Affiliation(s)
- Dexin Shen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lingao Ju
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China.,Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| | - Fenfang Zhou
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mengxue Yu
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China.,Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| | - Haoli Ma
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China.,Cancer Precision Diagnosis and Treatment and Translational Medicine, Hubei Engineering Research Center, Wuhan, China.,Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yi Zhang
- Center for Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center of Life Sciences, Beijing, China.,Euler Technology, ZGC Life Sciences Park, Beijing, China
| | - Tongzu Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| | - Yu Xiao
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China. .,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China. .,Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China.
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China. .,Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China. .,Medical Research Institute, Wuhan University, Wuhan, China.
| | - Kaiyu Qian
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China. .,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China. .,Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
18
|
Kong FH, Ye QF, Miao XY, Liu X, Huang SQ, Xiong L, Wen Y, Zhang ZJ. Current status of sorafenib nanoparticle delivery systems in the treatment of hepatocellular carcinoma. Theranostics 2021; 11:5464-5490. [PMID: 33859758 PMCID: PMC8039945 DOI: 10.7150/thno.54822] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/17/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver cancer and one of the leading causes of cancer-related death worldwide. Advanced HCC displays strong resistance to chemotherapy, and traditional chemotherapy drugs do not achieve satisfactory therapeutic efficacy. Sorafenib is an oral kinase inhibitor that inhibits tumor cell proliferation and angiogenesis and induces cancer cell apoptosis. It also improves the survival rates of patients with advanced liver cancer. However, due to its poor solubility, fast metabolism, and low bioavailability, clinical applications of sorafenib have been substantially restricted. In recent years, various studies have been conducted on the use of nanoparticles to improve drug targeting and therapeutic efficacy in HCC. Moreover, nanoparticles have been extensively explored to improve the therapeutic efficacy of sorafenib, and a variety of nanoparticles, such as polymer, lipid, silica, and metal nanoparticles, have been developed for treating liver cancer. All these new technologies have improved the targeted treatment of HCC by sorafenib and promoted nanomedicines as treatments for HCC. This review provides an overview of hot topics in tumor nanoscience and the latest status of treatments for HCC. It further introduces the current research status of nanoparticle drug delivery systems for treatment of HCC with sorafenib.
Collapse
Affiliation(s)
- Fan-Hua Kong
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Hepatobiliary Diseases of Wuhan University, Transplant Centre of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Qi-Fa Ye
- Institute of Hepatobiliary Diseases of Wuhan University, Transplant Centre of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Xiong-Ying Miao
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xi Liu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Si-Qi Huang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li Xiong
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yu Wen
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zi-Jian Zhang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
19
|
Wang Z, Cai J, Cheng J, Yang W, Zhu Y, Li H, Lu T, Chen Y, Lu S. FLT3 Inhibitors in Acute Myeloid Leukemia: Challenges and Recent Developments in Overcoming Resistance. J Med Chem 2021; 64:2878-2900. [PMID: 33719439 DOI: 10.1021/acs.jmedchem.0c01851] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mutations in the FMS-like tyrosine kinase 3 (FLT3) gene are often present in newly diagnosed acute myeloid leukemia (AML) patients with an incidence rate of approximately 30%. Recently, many FLT3 inhibitors have been developed and exhibit positive preclinical and clinical effects against AML. However, patients develop resistance soon after undergoing FLT3 inhibitor treatment, resulting in short durable responses and poor clinical effects. This review will discuss the main mechanisms of resistance to clinical FLT3 inhibitors and summarize the emerging strategies that are utilized to overcome drug resistance. Basically, medicinal chemistry efforts to develop new small-molecule FLT3 inhibitors offer a direct solution to this problem. Other potential strategies include the combination of FLT3 inhibitors with other therapies and the development of multitarget inhibitors. It is hoped that this review will provide inspiring insights into the discovery of new AML therapies that can eventually overcome the resistance to current FLT3 inhibitors.
Collapse
Affiliation(s)
- Zhijie Wang
- School of Science, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Jiongheng Cai
- School of Science, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Jie Cheng
- School of Science, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Wenqianzi Yang
- School of Science, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Yifan Zhu
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Hongmei Li
- School of Science, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Tao Lu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Yadong Chen
- Laboratory of Molecular Design and Drug Discovery, China Pharmaceutical University, Nanjing, 211198, P.R. China
| | - Shuai Lu
- School of Science, China Pharmaceutical University, Nanjing 211198, P.R. China
| |
Collapse
|
20
|
Yu Z, Du J, Hui H, Kan S, Huo T, Zhao K, Wu T, Guo Q, Lu N. LT-171-861, a novel FLT3 inhibitor, shows excellent preclinical efficacy for the treatment of FLT3 mutant acute myeloid leukemia. Am J Cancer Res 2021; 11:93-106. [PMID: 33391463 PMCID: PMC7681098 DOI: 10.7150/thno.46593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/07/2020] [Indexed: 12/11/2022] Open
Abstract
Rationale: Acute myeloid leukemia (AML) is a common type of haematological malignancy. Several studies have shown that neoplasia in AML is enhanced by tyrosine kinase pathways. Recently, given that aberrant activation of Fms-like tyrosine receptor kinase 3 (FLT3) acts as a critical survival signal for cancer cells in 20‒30% patients with AML, inhibition of FLT3 may be a potential therapeutic strategy. Therefore, we identified LT-171-861, a novel kinase inhibitor with remarkable inhibitory activity against FLT3, in preclinical models of AML. Methods: We determined the inhibitory effects of LT-171-861 in vitro using AML cell lines and transformed BaF3 cells. Target engagement assays were used to verify the interaction between LT-171-861 and FLT3. Finally, a subcutaneous model and a bone marrow engrafted model were used to evaluate the antitumor effects of LT‑171‑861 in vivo. Results: Our data demonstrated that LT-171-861 had high affinity for FLT3 protein. We also showed that LT-171-861 had an inhibitory effect on FLT3 mutants in cellular assays. Moreover, LT-171-861 had a growth-inhibitory effect on human AML cell lines harboring FLT3 internal tandem duplications (FLT3-ITD) such as FLT3-D835Y, FLT3‑ITD-N676D, FLT3-ITD-D835Y, FLT3-ITD-F691L, FLT3-ITD-Y842C and AML blasts from patients with FLT3-ITD. Furthermore, LT-171-861 showed potent antileukemic efficacy against AML cells. We also show the efficacy of LT‑171-861 in a subcutaneous implantation model and a bone marrow engrafted model in vivo, where administration of LT-171-861 led to almost complete tumor regression and increased survival. Conclusions: Overall, this study not only identifies LT-171-861 as a potent FLT3 inhibitor, but also provides a rationale for the upcoming clinical trial of LT-171-861 in patients with AML and FLT3-ITD mutations.
Collapse
|
21
|
Liu Y, Jia Y, Yang K, Tong Z, Shi J, Li R, Xiao X, Ren W, Hardeland R, Reiter RJ, Wang Z. Melatonin overcomes MCR-mediated colistin resistance in Gram-negative pathogens. Am J Cancer Res 2020; 10:10697-10711. [PMID: 32929375 PMCID: PMC7482817 DOI: 10.7150/thno.45951] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Emergence, prevalence and widely spread of plasmid-mediated colistin resistance in Enterobacteriaceae strongly impairs the clinical efficacy of colistin against life-threatening bacterial infections. Combinations of antibiotics and FDA-approved non-antibiotic agents represent a promising means to address the widespread emergence of antibiotic-resistant pathogens. Methods: Herein, we investigated the synergistic activity between melatonin and antibiotics against MCR (mobilized colistin resistance)-positive Gram-negative pathogens through checkerboard assay and time-killing curve. Molecular mechanisms underlying its mode of action were elucidated. Finally, we assessed the in vivo efficacy of melatonin in combination with colistin against drug-resistant Gram-negative bacteria. Results: Melatonin, which has been approved for treating sleep disturbances and circadian disorders, substantially potentiates the activity of three antibiotics, particularly colistin, against MCR-expressing pathogens without enhancing its toxicity. This is evidence that the combination of colistin with melatonin enhances bacterial outer membrane permeability, promotes oxidative damage and inhibits the effect of efflux pumps. In three animal models infected by mcr-1-carrying E. coli, melatonin dramatically rescues colistin efficacy. Conclusion: Our findings revealed that melatonin serves as a promising colistin adjuvant against MCR-positive Gram-negative pathogens.
Collapse
|
22
|
Tian T, Chen ZH, Zheng Z, Liu Y, Zhao Q, Liu Y, Qiu H, Long Q, Chen M, Li L, Xie F, Luo G, Wu X, Deng W. Investigation of the role and mechanism of ARHGAP5-mediated colorectal cancer metastasis. Theranostics 2020; 10:5998-6010. [PMID: 32483433 PMCID: PMC7254992 DOI: 10.7150/thno.43427] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 04/18/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Metastatic colorectal cancer (CRC) is a lethal disease; however, the underlying molecular mechanisms remain unclear and require further study. Methods: RNA-Seq, PCR, Western blotting, immunohistochemistry, ChIP and RNAi assays were performed to investigate Rho GTPase-activating protein 5 (ARHGAP5, aslo known as p190RhoGAP-B, p190-B) expression and the clinical relevance, functional roles and regulatory mechanisms of this protein using human CRC cells and tissues. In vivo, two cell-based xenograft models were used to evaluate the roles of ARHGAP5 in CRC metastasis. Results: Here, we report that ARHGAP5 expression is significantly increased in metastatic CRC tissues and is inversely associated with patient overall survival. The suppression of ARHGAP5 reduces CRC cell metastasis in vitro and in cell-based xenograft models. Furthermore, we show that ARHGAP5 promotes CRC cell epithelial-mesenchymal transition by negatively regulating RhoA activity. Mechanistically, cAMP response element-binding protein (CREB1) transcriptionally upregulates ARHGAP5 expression, and decreased miR-137 further contributes to ARHGAP5 mRNA stability in CRC. Conclusions: Overall, our study highlights the crucial function of ARHGAP5 in CRC metastasis, thus suggesting novel prognostic biomarkers and hypothetical therapeutic targets.
Collapse
Affiliation(s)
- Tian Tian
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Zhan-Hong Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Zongheng Zheng
- The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yubo Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Qi Zhao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Yuying Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Huijun Qiu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Qian Long
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Miao Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Liren Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Fangyun Xie
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Guangyu Luo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Xiaojun Wu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Wuguo Deng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| |
Collapse
|
23
|
Qu P, Luo S, Du Y, Zhang Y, Song X, Yuan X, Lin Z, Li Y, Liu E. Extracellular vesicles and melatonin benefit embryonic develop by regulating reactive oxygen species and 5-methylcytosine. J Pineal Res 2020; 68:e12635. [PMID: 32012354 PMCID: PMC7154726 DOI: 10.1111/jpi.12635] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/20/2020] [Accepted: 01/28/2020] [Indexed: 12/13/2022]
Abstract
Embryo culture conditions are crucial as they can affect embryo quality and even offspring. Oviductal extracellular vesicles (EVs) long been considered a major factor influencing interactions between the oviduct and embryos, and thus its absence is associated with inferior embryonic development in in vitro culture. Herein, we demonstrated that melatonin is present in oviduct fluids and oviduct fluid-derived EVs. Addition of either EVs (1.87 × 1011 particles/mL) or melatonin (340 ng/mL) led to a significant downregulation of reactive oxygen species (ROS) and 5-methylcytosine (5-mC), as well as an increase in the blastocyst rate of embryos, which was inhibited by the addition of luzindole-a melatonin receptor agonist. A combination of EVs (1.87 × 1010 particles/mL) and melatonin (at 34.3 pg/mL) led to the same results as well as a significant decrease in the apoptosis index and increase in the inner cell mass (ICM)/trophectoderm (TE) index. These results suggest that an EV-melatonin treatment benefits embryonic development. Our findings provide insights into the role of EVs and melatonin during cell communication and provide new evidence of the communication between embryos and maternal oviduct.
Collapse
Affiliation(s)
- Pengxiang Qu
- Laboratory Animal CentreXi’an Jiaotong University Health Science CentreXi’anShaanxiChina
| | - Shiwei Luo
- Laboratory Animal CentreXi’an Jiaotong University Health Science CentreXi’anShaanxiChina
| | - Yue Du
- NDCLSRadcliff Department of MedicineUniversity of OxfordOxfordUK
| | - Yanru Zhang
- Laboratory Animal CentreXi’an Jiaotong University Health Science CentreXi’anShaanxiChina
| | - Xiaojie Song
- Laboratory Animal CentreXi’an Jiaotong University Health Science CentreXi’anShaanxiChina
| | - Xuetao Yuan
- Laboratory Animal CentreXi’an Jiaotong University Health Science CentreXi’anShaanxiChina
| | - Zujie Lin
- Laboratory Animal CentreXi’an Jiaotong University Health Science CentreXi’anShaanxiChina
| | - Yuchen Li
- Laboratory Animal CentreXi’an Jiaotong University Health Science CentreXi’anShaanxiChina
| | - Enqi Liu
- Laboratory Animal CentreXi’an Jiaotong University Health Science CentreXi’anShaanxiChina
| |
Collapse
|
24
|
All-trans retinoic acid exerts selective anti-FLT3-ITD acute myeloid leukemia efficacy through downregulating Chk1 kinase. Cancer Lett 2020; 473:130-138. [PMID: 31904486 DOI: 10.1016/j.canlet.2019.12.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/27/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022]
Abstract
All-trans retinoic acid (ATRA) is known to be a potent inhibitor of FLT3-ITD acute myeloid leukemia (AML) cells, although the exact mechanism remains unclear. In this work, we report that ATRA causes fatal mitotic catastrophe in FLT3-ITD AML cells by degrading Chk1 kinase, and therefore preventing DNA damage repair. In order to explore a further enhancement in the inhibitory effect of ATRA on FLT3-ITD AML cells, we investigated the suitability of a combination of ATRA and DNA damage drug SN38. In vitro experiments showed that this combinatorial approach effectively inhibited the proliferation of FLT3-ITD cells and induced cell apoptosis in AML. In vivo experiments confirmed that the combination could substantially improve the anti-tumor effect of SN38. Taken together, our results indicate that ATRA down-regulates Chk1 in FLT3-ITD AML cells, and the combination of ATRA and SN38 significantly improves the anti-tumor effect of either ATRA or SN38 when used alone.
Collapse
|
25
|
Shafabakhsh R, Mirzaei H, Asemi Z. Melatonin: A promising agent targeting leukemia. J Cell Biochem 2019; 121:2730-2738. [PMID: 31713261 DOI: 10.1002/jcb.29495] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/10/2019] [Indexed: 12/27/2022]
Abstract
Leukemia or cancer of blood is a well-known cancer, which affects a range of people from newborns to the very old. It is a public health problem throughout the world. By way of treatment, due to the lack of specific anticancer therapies, common treatments of leukemia lead to severe side effects. Nonspecific anticancer drugs result in inhibition of normal cell growth and thereby their necrosis. Moreover, drug resistance is an additional problem, which stands in the way of leukemia treatment. Thus, finding new treatments for leukemia is essential. Melatonin, as a natural product, has been shown to be effective in a wide variety of diseases such as coronary heart disease, schizophrenia, chronic pain, and Alzheimer's disease. In addition, melatonin levels have been observed to be altered in different cancers, such as breast cancer, colorectal cancer endometrial cancer, and hematopoetical cancers. Anticancer features of melatonin such as pro-oxidation, apoptosis induction, antiangiogenesis property and metastasis and invasion inhibition suggest that this natural compound can be used as a potential agent in novel therapeutic strategies for cancers. Also, it has been reported that melatonin has positive and protective effects on different physiological reactions and in normal bone marrow cells suggesting effectiveness in leukemia therapy. Thus, the aim of our paper was to depict and summarize the main molecular targets of melatonin on leukemia models.
Collapse
Affiliation(s)
- Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|