1
|
Sailo BL, Garhwal A, Mishra A, Hegde M, Vishwa R, Girisa S, Abbas M, Alqahtani MS, Abdulhammed A, Sethi G, Kempson I, Kunnumakkara AB. Potential of capsaicin as a combinatorial agent to overcome chemoresistance and to improve outcomes of cancer therapy. Biochem Pharmacol 2025; 236:116828. [PMID: 40023449 DOI: 10.1016/j.bcp.2025.116828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/10/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
Capsaicin (CAPS), a bioactive alkaloid derived from chili peppers, has garnered significant interest for its potential role as a combinatorial and chemosensitizing agent in cancer therapy. Numerous preclinical studies have demonstrated that CAPS enhanced the efficacy of various anticancer agents by promoting apoptosis, modulating autophagy and inhibiting angiogenesis, tumor growth, and metastasis. Additionally, CAPS modulated critical regulators of chemoresistance, such as P-glycoprotein (P-gp), extracellular signal-regulated kinase (ERK), nuclear factor-kappa B (NF-κB) pathway, and signal transducer and activator of transcription 3 (STAT3) pathway, thereby contributing to the reversal of multidrug resistance (MDR). Moreover, when administered in combination with chemotherapeutic agents, CAPS has been shown to improve treatment efficacy at lower drug concentrations. Given its multitargeted mechanism of action, CAPS represents a promising adjunct to conventional cancer therapies. However, due to its lipophilic nature, the development of optimized formulation strategies is essential to enhance its bioavailability and ensure consistent therapeutic outcomes. In conclusion, CAPS holds significant potential as a combinatorial and chemosensitizing agent, helping to overcome chemoresistance and enhance treatment outcomes across various malignancies. These promising findings warrant further preclinical and clinical investigations.
Collapse
Affiliation(s)
- Bethsebie Lalduhsaki Sailo
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Anushka Garhwal
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Anamika Mishra
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Ravichandran Vishwa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, 61421 Abha, Saudi Arabia
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, 61421 Abha, Saudi Arabia; BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester LE1 7RH, UK
| | - Ayman Abdulhammed
- Department of Biochemistry and Hormone, King Fahad Central Hospital, Gizan 82666, Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117699, Singapore.
| | - Ivan Kempson
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India.
| |
Collapse
|
2
|
Li B, Ming H, Qin S, Nice EC, Dong J, Du Z, Huang C. Redox regulation: mechanisms, biology and therapeutic targets in diseases. Signal Transduct Target Ther 2025; 10:72. [PMID: 40050273 PMCID: PMC11885647 DOI: 10.1038/s41392-024-02095-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/09/2024] [Accepted: 11/21/2024] [Indexed: 03/09/2025] Open
Abstract
Redox signaling acts as a critical mediator in the dynamic interactions between organisms and their external environment, profoundly influencing both the onset and progression of various diseases. Under physiological conditions, oxidative free radicals generated by the mitochondrial oxidative respiratory chain, endoplasmic reticulum, and NADPH oxidases can be effectively neutralized by NRF2-mediated antioxidant responses. These responses elevate the synthesis of superoxide dismutase (SOD), catalase, as well as key molecules like nicotinamide adenine dinucleotide phosphate (NADPH) and glutathione (GSH), thereby maintaining cellular redox homeostasis. Disruption of this finely tuned equilibrium is closely linked to the pathogenesis of a wide range of diseases. Recent advances have broadened our understanding of the molecular mechanisms underpinning this dysregulation, highlighting the pivotal roles of genomic instability, epigenetic modifications, protein degradation, and metabolic reprogramming. These findings provide a foundation for exploring redox regulation as a mechanistic basis for improving therapeutic strategies. While antioxidant-based therapies have shown early promise in conditions where oxidative stress plays a primary pathological role, their efficacy in diseases characterized by complex, multifactorial etiologies remains controversial. A deeper, context-specific understanding of redox signaling, particularly the roles of redox-sensitive proteins, is critical for designing targeted therapies aimed at re-establishing redox balance. Emerging small molecule inhibitors that target specific cysteine residues in redox-sensitive proteins have demonstrated promising preclinical outcomes, setting the stage for forthcoming clinical trials. In this review, we summarize our current understanding of the intricate relationship between oxidative stress and disease pathogenesis and also discuss how these insights can be leveraged to optimize therapeutic strategies in clinical practice.
Collapse
Affiliation(s)
- Bowen Li
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China
| | - Hui Ming
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China
| | - Siyuan Qin
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, PR China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Jingsi Dong
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Zhongyan Du
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
- Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Hangzhou, China.
| | - Canhua Huang
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China.
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, PR China.
| |
Collapse
|
3
|
Li Z, Zhao Q, Liu X, Zhou X, Wang Y, Zhao M, Wu F, Zhao G, Guo X. Capsaicin combined with cisplatin inhibits TGF-β1-induced EMT and TSCC cells migration via the Claudin-1/PI3K/AKT/mTOR signaling pathway. Cancer Cell Int 2024; 24:300. [PMID: 39198820 PMCID: PMC11360848 DOI: 10.1186/s12935-024-03485-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
Tongue squamous cell carcinoma (TSCC) is one of the most common malignant tumors among oral cancers, and its treatment is based on radio-chemotherapy and surgery, which always produces more serious side effects and sequelae. Traditional medicine can compensate for the shortcomings of modern medical treatments and play a better therapeutic role. Currently, active ingredients derived from plants are attracting the attention of researchers and clinical professionals. We examined capsaicin (CAP), an active ingredient isolated from Capsicum annuum (family Solanaceae), and explored the effect of CAP combined with cisplatin (DDP) on epithelial-mesenchymal transition (EMT) and TSCC cells migration. Our results demonstrated that Transforming growth factor-β1(TGF-β1) induced EMT and promoted cell migration in TSCC cells. CAP combined with DDP inhibits non-TGF-β1-induced or TGF-β1-induced EMT and migration. Mechanistically, the inhibition of non-TGF-β1-induced EMT and migration by CAP combined with DDP was mediated by the AMPK/mTOR pathway, whereas TGF-β1-induced EMT and migration were regulated by the Claudin-1/PI3K/AKT/mTOR pathway. A nude lung metastasis mouse model was established for in vivo validation. These results support our hypothesis that the combination of CAP and DDP inhibits TSCC metastasis. These data set the stage for further studies aimed at validating CAP as an effective active ingredient for enhancing chemotherapy efficacy and reducing the dosage and toxicity of chemotherapeutic drugs, ultimately paving the way for translational research and clinical trials for TSCC eradication.
Collapse
Affiliation(s)
- Zhuang Li
- Department of Medical Biology, School of Basic Medicine Sciences, Hubei University of Chinese Medicine, No. 16, Huangjiahu West Road, Wuhan, 430065, Hubei, P.R. China
- Hubei Shizhen Laboratory, Wuhan, 430065, Hubei, P.R. China
| | - Qiwei Zhao
- Department of Medical Biology, School of Basic Medicine Sciences, Hubei University of Chinese Medicine, No. 16, Huangjiahu West Road, Wuhan, 430065, Hubei, P.R. China
- Hubei Shizhen Laboratory, Wuhan, 430065, Hubei, P.R. China
| | - Xiayang Liu
- Department of Medical Biology, School of Basic Medicine Sciences, Hubei University of Chinese Medicine, No. 16, Huangjiahu West Road, Wuhan, 430065, Hubei, P.R. China
- Hubei Shizhen Laboratory, Wuhan, 430065, Hubei, P.R. China
| | - Xinyue Zhou
- Department of Medical Biology, School of Basic Medicine Sciences, Hubei University of Chinese Medicine, No. 16, Huangjiahu West Road, Wuhan, 430065, Hubei, P.R. China
- Hubei Shizhen Laboratory, Wuhan, 430065, Hubei, P.R. China
| | - Yu Wang
- Department of Medical Biology, School of Basic Medicine Sciences, Hubei University of Chinese Medicine, No. 16, Huangjiahu West Road, Wuhan, 430065, Hubei, P.R. China
- Hubei Shizhen Laboratory, Wuhan, 430065, Hubei, P.R. China
| | - Min Zhao
- Department of Medical Biology, School of Basic Medicine Sciences, Hubei University of Chinese Medicine, No. 16, Huangjiahu West Road, Wuhan, 430065, Hubei, P.R. China
- Hubei Shizhen Laboratory, Wuhan, 430065, Hubei, P.R. China
| | - Fenghua Wu
- Department of Medical Biology, School of Basic Medicine Sciences, Hubei University of Chinese Medicine, No. 16, Huangjiahu West Road, Wuhan, 430065, Hubei, P.R. China
- Hubei Shizhen Laboratory, Wuhan, 430065, Hubei, P.R. China
| | - Gang Zhao
- Department of Medical Biology, School of Basic Medicine Sciences, Hubei University of Chinese Medicine, No. 16, Huangjiahu West Road, Wuhan, 430065, Hubei, P.R. China
| | - Xiaohong Guo
- Department of Medical Biology, School of Basic Medicine Sciences, Hubei University of Chinese Medicine, No. 16, Huangjiahu West Road, Wuhan, 430065, Hubei, P.R. China.
- Hubei Shizhen Laboratory, Wuhan, 430065, Hubei, P.R. China.
| |
Collapse
|
4
|
Fakhri S, Moradi SZ, Faraji F, Kooshki L, Webber K, Bishayee A. Modulation of hypoxia-inducible factor-1 signaling pathways in cancer angiogenesis, invasion, and metastasis by natural compounds: a comprehensive and critical review. Cancer Metastasis Rev 2024; 43:501-574. [PMID: 37792223 DOI: 10.1007/s10555-023-10136-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/07/2023] [Indexed: 10/05/2023]
Abstract
Tumor cells employ multiple signaling mediators to escape the hypoxic condition and trigger angiogenesis and metastasis. As a critical orchestrate of tumorigenic conditions, hypoxia-inducible factor-1 (HIF-1) is responsible for stimulating several target genes and dysregulated pathways in tumor invasion and migration. Therefore, targeting HIF-1 pathway and cross-talked mediators seems to be a novel strategy in cancer prevention and treatment. In recent decades, tremendous efforts have been made to develop multi-targeted therapies to modulate several dysregulated pathways in cancer angiogenesis, invasion, and metastasis. In this line, natural compounds have shown a bright future in combating angiogenic and metastatic conditions. Among the natural secondary metabolites, we have evaluated the critical potential of phenolic compounds, terpenes/terpenoids, alkaloids, sulfur compounds, marine- and microbe-derived agents in the attenuation of HIF-1, and interconnected pathways in fighting tumor-associated angiogenesis and invasion. This is the first comprehensive review on natural constituents as potential regulators of HIF-1 and interconnected pathways against cancer angiogenesis and metastasis. This review aims to reshape the previous strategies in cancer prevention and treatment.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Farahnaz Faraji
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Leila Kooshki
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, 6714415153, Iran
| | - Kassidy Webber
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL, 34211, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL, 34211, USA.
| |
Collapse
|
5
|
Liu X, Zhang M, He C, Jia S, Xiang R, Xu Y, Zhao M. Research focus and thematic trends of transient receptor potential vanilloid member 1 research: a bibliometric analysis of the global publications (1990-2023). NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1327-1346. [PMID: 37695335 DOI: 10.1007/s00210-023-02709-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
Recently, various studies have been devoted to the study of transient receptor potential vanilloid member 1 (TRPV1)-related diseases, potential drugs, and related mechanisms. The objective of this investigation was to examine the significant areas and cutting-edge developments in TRPV1 study within recent decades. Articles or reviews were obtained from the Web of Science Core Collection. VOSviewer 1.6.18 and CiteSpace 6.1 R2 software were utilized to examine publication growth, distribution by country/region, institution, journal, authorship, references, and keywords. The software identified keywords with a high citation burstiness to determine emerging topics. From 1990 to 2023, the annual global publications increased by 62,000%, from 1 to 621. Journal of neuroscience published the most manuscripts and Nature produced the highest citations. The USA, Seoul National University and Di marzo V were the most productive and impactful institution, country, and author, respectively. "TRPV1," "Capsaicin receptor," "Activation," and "Pain" are the most important keywords. The burst keywords "TRPV1 channel," "Oxidative stress," "TRPV1 structure," and "Cancer" are supposed to be the research frontiers. The present study offers valuable insights into the understanding of TRPV1 and pain-related conditions. The research on TRPV1 has demonstrated a steady increase in studies related to pain-related diseases in the past few decades. The significance of TRPV1 in cancer pathogenesis and the resolution of its structure will emerge as a new academic trend in this field, providing direction for more widespread and comprehensive studies in the future.
Collapse
Affiliation(s)
- Xin Liu
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Mengying Zhang
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Chongyang He
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Shubing Jia
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Rongwu Xiang
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Yijia Xu
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China.
| | - Mingyi Zhao
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China.
| |
Collapse
|
6
|
Mondal A, Banerjee S, Terang W, Bishayee A, Zhang J, Ren L, da Silva MN, Bishayee A. Capsaicin: A chili pepper bioactive phytocompound with a potential role in suppressing cancer development and progression. Phytother Res 2024; 38:1191-1223. [PMID: 38176910 DOI: 10.1002/ptr.8107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 01/06/2024]
Abstract
Cancer profoundly influences morbidity and fatality rates worldwide. Patients often have dismal prognoses despite recent improvements in cancer therapy regimens. However, potent biomolecules derived from natural sources, including medicinal and dietary plants, contain biological and pharmacological properties to prevent and treat various human malignancies. Capsaicin is a bioactive phytocompound present in red hot chili peppers. Capsaicin has demonstrated many biological effects, including antioxidant, anti-inflammatory, antimicrobial, and anticarcinogenic capabilities. This review highlights the cellular and molecular pathways through which capsaicin exhibits antineoplastic activities. Our work also depicts the synergistic anticancer properties of capsaicin in conjunction with other natural bioactive components and approved anticancer drugs. Capsaicin inhibits proliferation in various cancerous cells, and its antineoplastic actions in numerous in vitro and in vivo carcinoma models impact oncogenesis, tumor-promoting and suppressor genes, and associated signaling pathways. Capsaicin alone or combined with other phytocompounds or approved antineoplastic drugs triggers cell cycle progression arrest, generating reactive oxygen species and disrupting mitochondrial membrane integrity, ultimately stimulating caspases and promoting death. Furthermore, capsaicin alone or in combination can promote apoptosis in carcinoma cells by enhancing the p53 and c-Myc gene expressions. In conclusion, capsaicin alone or in combination can have enormous potential for cancer prevention and intervention, but further high-quality studies are needed to firmly establish the clinical efficacy of this phytocompound.
Collapse
Affiliation(s)
- Arijit Mondal
- Department of Pharmaceutical Chemistry, M.R. College of Pharmaceutical Sciences and Research, Balisha, India
| | - Sabyasachi Banerjee
- Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences, Asansol, India
| | - Wearank Terang
- Department of Pharmacology, Rahman Institute of Pharmaceutical Sciences and Research, Kamrup, India
| | - Anusha Bishayee
- Department of Statistics and Data Science, College of Arts and Sciences, Cornell University, Ithaca, New York, USA
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Milton Nascimento da Silva
- Laboratory of Liquid Chromatography, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Brazil
- Chemistry Post-Graduation Program, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Brazil
- Pharmaceutical Science Post-Graduation Program, Institute of Health Sciences, Federal University of Pará, Belém, Brazil
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| |
Collapse
|
7
|
Singhirunnusorn P, Moolmuang B, Ruchirawat M. Capsaicin suppresses the migration and invasion of human nasopharyngeal carcinoma cells through the modulation of mTOR signaling pathway. Food Sci Biotechnol 2023; 32:1913-1924. [PMID: 37781054 PMCID: PMC10541384 DOI: 10.1007/s10068-023-01297-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 10/03/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC), a malignancy of the nasopharynx, is prevalent in Southeast Asia and Southern China. The prognosis of NPC is poor and local recurrence and metastasis often occur. Capsaicin (tran-8-methyl-N-vanillyl-6-nonenamide), a pungent constituent of hot chili peppers, shows anti-cancer activities such as anti-proliferation and anti-metastasis. Currently, the role of capsaicin in cell metastasis of NPC is not well understood. We tested whether capsaicin has anti-metastatic activity in NPC cell lines. Capsaicin suppressed cell proliferation in dose-dependent manner. Moreover, capsaicin inhibited cell metastasis as shown by wound healing assay and decreased the expressions of MMP-2 and MMP-9. In addition, the phosphorylation of mTOR was downregulated by capsaicin. Combination of capsaicin and rapamycin (mTOR inhibitor) treatments led to increasing of anti-growth and anti-metastatic activities. Therefore, capsaicin has potential to be used as an optional therapeutic drug for treatment of NPC.
Collapse
Affiliation(s)
- Pattama Singhirunnusorn
- Laboratory of Chemical Carcinogenesis, Chulabhorn Research Institute, Bangkok, 10210 Thailand
| | - Benchamart Moolmuang
- Laboratory of Chemical Carcinogenesis, Chulabhorn Research Institute, Bangkok, 10210 Thailand
| | - Mathuros Ruchirawat
- Center of Excellence on Environmental Health and Toxicology, Office of Higher Education Commission, Bangkok, 10400 Thailand
| |
Collapse
|
8
|
Blažević T, Ciotu CI, Gold-Binder M, Heiss EH, Fischer MJM, Dirsch VM. Cultured rat aortic vascular smooth muscle cells do not express a functional TRPV1. PLoS One 2023; 18:e0281191. [PMID: 36787302 PMCID: PMC9928102 DOI: 10.1371/journal.pone.0281191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 01/17/2023] [Indexed: 02/15/2023] Open
Abstract
We showed previously that capsaicin, an active compound of chili peppers, can inhibit platelet-derived growth factor-induced proliferation in primary rat vascular smooth muscle cells (VSMCs). The inhibition of BrdU incorporation by capsaicin in these cells was revoked by BCTC, which might be explained by a role of TRPV1 in VSMCs proliferation. To further pursue the hypothesis of a TRPV1-dependent effect of capsaicin, we investigated TRPV1 expression and function. Commercially available antibodies against two different TRPV1 epitopes (N-terminus and C-terminus) were rendered invalid in detecting TRPV1, as shown: i) in western blot experiments using control lysates of TRPV1-expressing (PC-12 and hTRPV1 transfected HEK293T) and TRPV1-downregulated (CRISPR/Cas gene edited A10) cells, and ii) by substantial differences in staining patterns between the applied antibodies using fluorescence confocal microscopy. The TRPV1 agonists capsaicin, resiniferatoxin, piperine and evodiamine did not increase intracellular calcium levels in primary VSMCs and in A10 cells. Using RT qPCR, we could detect a rather low TRPV1 expression in VSMCs at the mRNA level (Cp value around 30), after validating the primer pair in NGF-stimulated PC-12 cells. We conclude that rat vascular smooth muscle cells do not possess canonical TRPV1 channel activity, which could explain the observed antiproliferative effect of capsaicin.
Collapse
Affiliation(s)
- Tina Blažević
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
- * E-mail:
| | - Cosmin I. Ciotu
- Institute of Physiology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Markus Gold-Binder
- Institute of Physiology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Elke H. Heiss
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Michael J. M. Fischer
- Institute of Physiology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Verena M. Dirsch
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Cheng P, Wu J, Zong G, Wang F, Deng R, Tao R, Qian C, Shan Y, Wang A, Zhao Y, Wei Z, Lu Y. Capsaicin shapes gut microbiota and pre-metastatic niche to facilitate cancer metastasis to liver. Pharmacol Res 2023; 188:106643. [PMID: 36608780 DOI: 10.1016/j.phrs.2022.106643] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/18/2022] [Accepted: 12/31/2022] [Indexed: 01/05/2023]
Abstract
Dietary factors are fundamental in tumorigenesis throughout our lifetime. A spicy diet has been ambiguous on the development of cancers, especially in the study of colon cancer metastasis. Here, we utilized a mouse metastasis model to test the potential role of capsaicin in influencing metastasis. Long-term continuous administration of capsaicin diet (300 mg/kg) to mice promotes the formation of liver pre-metastatic niche to facilitate the metastasis of colon cancer cells. Bacteria translocation to liver is clearly observed. Capsaicin increases intestinal barrier permeability and disrupts gut vascular barrier by altering the composition of gut microbiota. Capsaicin not only changes the abundance of mucin-related bacteria like Akkermanisa and Muribaculaceae, but also bacteria involved in bile acids metabolism. Dysregulated bile acids profile is related to the recruitment of natural killer T (NKT) cells in pre-metastatic niche, primary bile acid α-Muricholic acid can enhance the recruitment of NKT cells, while secondary bile acids Glycoursodeoxycholic acid and Taurohyodeoxycholic acid impair the recruitment of NKT cells. These findings reveal long term consumption of capsaicin increases the risk of cancer metastasis through modulating the gut microbiota. Capsaicin (300 mg/kg) disrupts gut barrier and promotes the translocation of bacteria to liver, while altered bile acids metabolism affects the recruitment of NKT cells in liver, forming a pre-metastatic niche and promoting cancer metastasis.
Collapse
Affiliation(s)
- Peng Cheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiawei Wu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Gangfan Zong
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Feihui Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Rui Deng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ruizhi Tao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Cheng Qian
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yunlong Shan
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yang Zhao
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhonghong Wei
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
10
|
Wu X, Wang N, Liang J, Wang B, Jin Y, Liu B, Yang Y. Is the Triggering of PD-L1 Dimerization a Potential Mechanism for Food-Derived Small Molecules in Cancer Immunotherapy? A Study by Molecular Dynamics. Int J Mol Sci 2023; 24:ijms24021413. [PMID: 36674929 PMCID: PMC9864258 DOI: 10.3390/ijms24021413] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/04/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
Using small molecules to inhibit the PD-1/PD-L1 pathway is an important approach in cancer immunotherapy. Natural compounds such as capsaicin, zucapsaicin, 6-gingerol and curcumin have been proposed to have anticancer immunologic functions by downregulating the PD-L1 expression. PD-L1 dimerization promoted by small molecules was recently reported to be a potential mechanism to inhibit the PD-1/PD-L1 pathway. To clarify the molecular mechanism of such compounds on PD-L1 dimerization, molecular docking and molecular dynamics simulations were performed. The results evidenced that these compounds could inhibit PD-1/PD-L1 interactions by directly targeting PD-L1 dimerization. Binding free energy calculations showed that capsaicin, zucapsaicin, 6-gingerol and curcumin have strong binding ability with the PD-L1 dimer, where the affinities of them follow the trend of zucapsaicin > capsaicin > 6-gingerol ≈ curcumin. Analysis by residue energy decomposition, contact numbers and nonbonded interactions revealed that these compounds have a tight interaction with the C-sheet, F-sheet and G-sheet fragments of the PD-L1 dimer, which were also involved in the interactions with PD-1. Moreover, non-polar interactions between these compounds and the key residues Ile54, Tyr56, Met115 and Ala121 play a key role in stabilizing the protein−ligand complexes in solution, in which the 4′-hydroxy-3′-methoxyphenyl group and the carbonyl group of zucapsaicin, capsaicin, 6-ginger and curcumin were significant for the complexation of small molecules with the PD-L1 dimer. The conformational variations of these complexes were further analyzed by free energy landscape (FEL) and principal component analysis (PCA) and showed that these small molecules could make the structure of dimers more stable. This work provides a mechanism insight for food-derived small molecules blocking the PD-1/PD-L1 pathway via directly targeting the PD-L1 dimerization and offers theoretical guidance to discover more effective small molecular drugs in cancer immunotherapy.
Collapse
|
11
|
Cai Q, Yu Q, Liang W, Li H, Liu J, Li H, Chen Y, Fang S, Zhong R, Liu S, Lin S. Membrane-Active Nonivamide Derivatives as Effective Broad-Spectrum Antimicrobials: Rational Design, Synthesis, and Biological Evaluation. J Med Chem 2022; 65:16754-16773. [PMID: 36510819 DOI: 10.1021/acs.jmedchem.2c01604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Antibiotic resistance is emerging as a "global public health concern". To address the growing epidemic of multidrug-resistant pathogens, the development of novel antimicrobials is urgently needed. In this study, by biomimicking cationic antibacterial peptides, we designed and synthesized a series of new membrane-active nonivamide and capsaicin derivatives as peptidomimetic antimicrobials. Through modulating charge/hydrophobicity balance and rationalizing structure-activity relationships of these peptidomimetics, compound 51 was identified as the lead compound. Compound 51 exhibited potent antibacterial activity against both Gram-positive bacteria (MICs = 0.39-0.78 μg/mL) and Gram-negative bacteria (MICs = 1.56-6.25 μg/mL), with low hemolytic activity and low cytotoxicity. Compound 51 displayed a faster bactericidal action through a membrane-disruptive mechanism and avoided bacterial resistance development. Furthermore, compound 51 significantly reduced the microbial burden in a murine model of keratitis infected by Staphylococcus aureus or Pseudomonas aeruginosa. Hence, this design strategy can provide a promising and effective solution to overcome antibiotic resistance.
Collapse
Affiliation(s)
- Qiongna Cai
- The Fifth Affiliated Hospital & Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Qian Yu
- The Fifth Affiliated Hospital & Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Wanxin Liang
- The Fifth Affiliated Hospital & Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Haizhou Li
- The Fifth Affiliated Hospital & Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Jiayong Liu
- The Fifth Affiliated Hospital & Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Hongxia Li
- The Fifth Affiliated Hospital & Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Yongzhi Chen
- The Fifth Affiliated Hospital & Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Shanfang Fang
- The Fifth Affiliated Hospital & Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Rongcui Zhong
- The Fifth Affiliated Hospital & Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Shouping Liu
- The Fifth Affiliated Hospital & Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Shuimu Lin
- The Fifth Affiliated Hospital & Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
12
|
Szallasi A. Capsaicin and cancer: Guilty as charged or innocent until proven guilty? Temperature (Austin) 2022; 10:35-49. [PMID: 37187832 PMCID: PMC10177684 DOI: 10.1080/23328940.2021.2017735] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/18/2021] [Accepted: 12/09/2021] [Indexed: 12/17/2022] Open
Abstract
With an estimated 2 billion chili pepper connoisseurs worldwide, the human exposure to capsaicin is enormous. Therefore, the question whether nutritional capsaicin is a cancer causing or cancer preventive agent is of utmost importance. The gamut of human epidemiology studies suggests that capsaicin in modest, "restaurant-like" doses is not only safe to eat, but it may even provide health benefits, such as lower cancer-related death rate. Very "hot" food is, however, probably better avoided. Importantly, no increased cancer risk was reported in patients following topical (skin or intravesical) capsaicin therapy. Aberrant capsaicin receptor TRPV1 expression was noted in various cancers with potential implications for cancer therapy, diagnosis and prognostication. Indeed, capsaicin can kill cancer cells by a combination of on- and off-target mechanisms, though it remains unclear if this can be exploited for therapeutic purposes. The literature on capsaicin and cancer is vast and controversial. This review aims to find answers to questions that are relevant for our daily life and medical practice.
Collapse
Affiliation(s)
- Arpad Szallasi
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| |
Collapse
|
13
|
Sugiyama Y, Nakazawa Y, Sakagami T, Kawata S, Nagai N, Yamamoto N, Funakoshi-Tago M, Tamura H. Capsaicin attenuates TGFβ2-induced epithelial-mesenchymal-transition in lens epithelial cells in vivo and in vitro. Exp Eye Res 2021; 213:108840. [PMID: 34798144 DOI: 10.1016/j.exer.2021.108840] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 01/09/2023]
Abstract
Posterior capsule opacification (PCO), the most common complication of cataract surgery occurring in 20-50% of patients after 2-5 years of cataract surgery, is a major problem in the aging society. The epithelial-mesenchymal transition (EMT) of lens epithelial cells after cataract surgery has been proposed as a major cause of PCO. Capsaicin, widely used as a food additive and analgesic agent, is a major pungent ingredient in red pepper. Although the effect of capsaicin on EMT has been reported in cancer cells, the biological reaction of capsaicin was unique in each cell type, and there have been no reports describing its effects on EMT earlier. In this study, we demonstrated that treatment with capsaicin inhibited TGFβ2-induced EMT in vitro lens epithelial cells and ex vivo explant lens epithelial cells. Furthermore, eye drops of capsaicin inhibited the PCO model mice in vivo. Finally, we showed that capsaicin inhibited non-canonically induced Smad2/3 activation via suppression of EGFR activation and ERK phosphorylation. Our findings indicate that capsaicin and its derivatives are good candidate compounds for preventing PCO after cataract surgery.
Collapse
Affiliation(s)
| | | | | | - Sara Kawata
- Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Noriaki Nagai
- Faculty of Pharmacy, Kindai University, Osaka, Japan
| | - Naoki Yamamoto
- Research Promotion and Support Headquarters, Fujita Health University, Japan
| | | | | |
Collapse
|
14
|
Weng G, Duan Y, Zhong Y, Song B, Zheng J, Zhang S, Yin Y, Deng J. Plant Extracts in Obesity: A Role of Gut Microbiota. Front Nutr 2021; 8:727951. [PMID: 34631766 PMCID: PMC8495072 DOI: 10.3389/fnut.2021.727951] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Obesity has become one of the most serious chronic diseases threatening human health. Its occurrence and development are closely associated with gut microbiota since the disorders of gut microbiota can promote endotoxin production and induce inflammatory response. Recently, numerous plant extracts have been proven to mitigate lipid dysmetabolism and obesity syndrome by regulating the abundance and composition of gut microbiota. In this review, we summarize the potential roles of different plant extracts including mulberry leaf extract, policosanol, cortex moutan, green tea, honokiol, and capsaicin in regulating obesity via gut microbiota. Based on the current findings, plant extracts may be promising agents for the prevention and treatment of obesity and its related metabolic diseases, and the mechanisms might be associated with gut microbiota.
Collapse
Affiliation(s)
- Guangying Weng
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University, Guangzhou, China.,CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yehui Duan
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yinzhao Zhong
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Bo Song
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jie Zheng
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shiyu Zhang
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yulong Yin
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University, Guangzhou, China.,CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Jinping Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University, Guangzhou, China
| |
Collapse
|
15
|
Li L, Chen C, Chiang C, Xiao T, Chen Y, Zhao Y, Zheng D. The Impact of TRPV1 on Cancer Pathogenesis and Therapy: A Systematic Review. Int J Biol Sci 2021; 17:2034-2049. [PMID: 34131404 PMCID: PMC8193258 DOI: 10.7150/ijbs.59918] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/23/2021] [Indexed: 12/27/2022] Open
Abstract
The transient receptor potential cation channel subfamily V member 1 (TRPV1) is a transmembrane protein that can be activated by various physical and chemical stimuli and is associated with pain transduction. In recent years, TRPV1 was discovered to play essential roles in cancer tumorigenesis and development, as TRPV1 expression levels are altered in numerous cancer cell types. Several investigations have discovered direct associations between TRPV1 and cancer cell proliferation, cell death, and metastasis. Furthermore, about two dozen TRPV1 agonists/antagonists are under clinical trial, as TRPV1 is a potential drug target for treating various diseases. Hence, more researchers are focusing on the effects of TRPV1 agonists or antagonists on cancer tumorigenesis and development. However, both agonists and antagonists may reveal anti-cancer effects, and the effect may function via or be independent of TRPV1. In this review, we provide an overview of the impact of TRPV1 on cancer cell proliferation, cell death, and metastasis, as well as on cancer therapy and the tumor microenvironment, and consider the implications of using TRPV1 agonists and antagonists for future research and potential therapeutic approaches.
Collapse
Affiliation(s)
- Li Li
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, School of Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
| | - Cheng Chen
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, School of Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
| | - Chengyao Chiang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, School of Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
| | - Tian Xiao
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, School of Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
| | - Yangchao Chen
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Yongxiang Zhao
- National Center for International Research of Biological Targeting Diagnosis and Therapy (Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research), Guangxi Medical University, Nanning, China
| | - Duo Zheng
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, School of Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
| |
Collapse
|