1
|
Gu Z, He Y, Xiang H, Qin Q, Cao X, Jiang K, Zhang H, Li Y. Self-healing injectable multifunctional hydrogels for intervertebral disc disease. Mater Today Bio 2025; 32:101655. [PMID: 40166378 PMCID: PMC11957681 DOI: 10.1016/j.mtbio.2025.101655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025] Open
Abstract
Intervertebral disc degeneration (IVDD) is increasingly prevalent in aging societies and poses a significant health challenge. Due to the limited blood supply to the disc, oral medications and systemic treatments are often ineffective. Consequently, localized injection therapies, which deliver therapeutic agents directly to the degenerated disc, have emerged as more efficient. Self-healing injectable hydrogels are particularly promising due to their potential for minimally invasive delivery, precise implantation, and targeted drug release into hard-to-reach tissue sites, including those requiring prolonged healing. Their dynamic viscoelastic properties accurately replicate the mechanical environment of the natural nucleus pulposus, providing cells with an adaptive biomimetic microenvironment. This review will initially discuss the anatomy and pathophysiology of intervertebral discs, current treatments, and their limitations. Subsequently, we conduct bibliometric analysis to explore the research hotspots and trends in applying injectable hydrogel technology to treat IVDD. It will then explore the promising features of injectable hydrogels in biomedical applications such as drug, protein, cells and gene delivery, tissue engineering and regenerative medicine. We discuss the construction mechanisms of injectable hydrogels via physical interactions, chemical and biological crosslinkers, and discuss the selection of biomaterials and fabrication methods for developing novel hydrogels for IVD tissue engineering. The article concludes with future perspectives on the application of injectable hydrogels in this field.
Collapse
Affiliation(s)
- Zhengrong Gu
- Department of Orthopedics, Affiliated Guang'an District People's Hospital of North Sichuan Medical College, Guang'an County, 638000, PR China
| | - Yi He
- Department of Orthopedics, Affiliated Nanbu People's Hospital of North Sichuan Medical College, Nanbu County, Nanchong, 637000, PR China
| | - Honglin Xiang
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Institute of Nanomedicine Innovation and Translational Research, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, PR China
| | - Qiwei Qin
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Institute of Nanomedicine Innovation and Translational Research, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, PR China
| | - Xinna Cao
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Institute of Nanomedicine Innovation and Translational Research, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, PR China
| | - Ke Jiang
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Institute of Nanomedicine Innovation and Translational Research, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, PR China
| | - Haoshaqiang Zhang
- Department of Orthopedics Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91, Tianchi Road, Tianshan District, Urumqi, 830001, PR China
| | - Yuling Li
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Institute of Nanomedicine Innovation and Translational Research, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, PR China
| |
Collapse
|
2
|
Li S, Jiang W, Chen F, Qian J, Yang J. The critical role of TRIM protein family in intervertebral disc degeneration: mechanistic insights and therapeutic perspectives. Front Cell Dev Biol 2025; 13:1525073. [PMID: 39981097 PMCID: PMC11839679 DOI: 10.3389/fcell.2025.1525073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/20/2025] [Indexed: 02/22/2025] Open
Abstract
Intervertebral disc degeneration (IVDD) is a leading cause of chronic back pain, contributing significantly to reduced quality of life and global public health burdens. The TRIM (Tripartite Motif-containing) protein family, with its diverse regulatory roles, has emerged as a key player in critical cellular processes such as inflammation, cell death, and extracellular matrix (ECM) metabolism. Recent findings underscore the involvement of TRIM proteins in IVDD pathogenesis, where they regulate stress responses, maintain cellular homeostasis, and influence the functional integrity of nucleus pulposus (NP) and annulus fibrosus (AF) cells. This review explores the multifaceted roles of TRIM proteins in IVDD, highlighting their contributions to pathological pathways and their potential as therapeutic targets. Advancing our understanding of TRIM protein-mediated mechanisms may pave the way for innovative and precise therapeutic strategies to combat IVDD.
Collapse
Affiliation(s)
- Shangze Li
- Department of Orthopedics, The Second Affiliated Hospital (Shanghai Changzheng Hospital), Naval Medical University, Shanghai, China
| | - Wenli Jiang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai, China
| | - Fei Chen
- Department of Orthopedics, The Second Affiliated Hospital (Shanghai Changzheng Hospital), Naval Medical University, Shanghai, China
| | - Jiao Qian
- Department of Pharmacy, The First Affiliated Hospital (Shanghai Changhai Hospital), Naval Medical University, Shanghai, China
| | - Jun Yang
- Department of Orthopedics, The Second Affiliated Hospital (Shanghai Changzheng Hospital), Naval Medical University, Shanghai, China
| |
Collapse
|
3
|
Rudnik-Jansen I, Du J, Karssemakers-Degen N, Tellegen AR, Wadhwani P, Zuncheddu D, Meij BP, Thies J, Emans P, Öner FC, Mihov G, Garcia JP, Ulrich AS, Grad S, Tryfonidou MA, van Ingen H, Creemers LB. Drug retention after intradiscal administration. Drug Deliv 2024; 31:2415579. [PMID: 39427239 PMCID: PMC11492387 DOI: 10.1080/10717544.2024.2415579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/09/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024] Open
Abstract
Intradiscal drug delivery is a promising strategy for treating intervertebral disk degeneration (IVDD). Local degenerative processes and intrinsically low fluid exchange are likely to influence drug retention. Understanding their connection will enable the optimization of IVDD therapeutics. Release and retention of an inactive hydrophilic fluorine-19 labeled peptide (19F-P) as model for regenerative peptides was studied in a whole IVD culture model by measuring the 19F-NMR (nuclear magnetic resonance) signal in culture media and IVD tissue extracts. In another set-up, noninvasive near-infrared imaging was used to visualize IR-780, as hydrophobic small molecular drug model, retention upon injection into healthy and degenerative caudal IVDs in a rat model of disk degeneration. Furthermore, IR-780-loaded degradable polyester amide microspheres (PEAM) were injected into healthy and needle pricked degenerative IVDs, subcutaneously, and in knee joints with and without surgically-induced osteoarthritis (OA). Most 19F-P was released from the IVD after 7 days. IR-780 signal intensity declined over a 14-week period after bolus injection, without a difference between healthy and degenerative disks. IR-780 signal declined faster in the skin and knee joints compared to the IVDs. IR-780 delivery by PEAMs enhanced disk retention beyond 16 weeks. Moreover, in degenerated IVDs the IR-780 signal was higher over time than in healthy IVDs while no difference between OA and healthy joints was noted. We conclude that the clearance of peptides and hydrophobic small molecules from the IVD is relatively fast. These results illustrate that development of controlled release formulations should take into account the target anatomical location and local (patho)biology.
Collapse
Affiliation(s)
- Imke Rudnik-Jansen
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
- Department Anesthesiology and Pain Management, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
- Department Translational Neuroscience, School of Mental Health and Neuroscience (MHeNs), University of Maastricht, Maastricht, The Netherlands
| | - Jie Du
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Anna R. Tellegen
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Parvesh Wadhwani
- Institute of Biological Interfaces (IBG2) and Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | | | - Björn P. Meij
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | - Pieter Emans
- Department of Orthopaedics, Maastricht University Medical Center, Joint-Preserving Clinic Maastricht, The Netherlands
| | - Fetullah C. Öner
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Joao Pedro Garcia
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Anne S. Ulrich
- Institute of Biological Interfaces (IBG2) and Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | | | - Marianna A. Tryfonidou
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Hugo van Ingen
- NMR Group, Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Laura B. Creemers
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
4
|
Schally AV, Cai R, Zhang X, Sha W, Wangpaichitr M. The development of growth hormone-releasing hormone analogs: Therapeutic advances in cancer, regenerative medicine, and metabolic disorders. Rev Endocr Metab Disord 2024:10.1007/s11154-024-09929-2. [PMID: 39592529 DOI: 10.1007/s11154-024-09929-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/05/2024] [Indexed: 11/28/2024]
Abstract
Growth Hormone-Releasing Hormone (GHRH) and its analogs have gained significant attention for their therapeutic potential across various domains, including oncology, regenerative medicine, and metabolic disorders. Originally recognized for its role in regulating growth hormone (GH) secretion, GHRH has since been discovered to exert broader physiological effects beyond the pituitary gland, with GHRH receptors identified in multiple extrahypothalamic tissues, including tumor cells. This review explores the development of both GHRH agonists and antagonists, focusing on their mechanisms of action, therapeutic applications, and future potential. GHRH agonists have shown promise in promoting tissue regeneration, improving cardiac function, and enhancing islet survival in diabetes. Meanwhile, GHRH antagonists, particularly those in the MIA and AVR series, demonstrate potent antitumor activity by inhibiting cancer cell proliferation and downregulating growth factor pathways, while also exhibiting anti-inflammatory properties. Preclinical studies in models of lung, prostate, breast, and gastrointestinal cancers indicate that GHRH analogs could offer a novel therapeutic approach with minimal toxicity. Additionally, GHRH antagonists are being investigated for their potential in treating neurodegenerative diseases and inflammatory conditions. This review highlights the versatility of GHRH analogs as a promising class of therapeutic agents, poised to impact multiple fields of medicine.
Collapse
Affiliation(s)
- Andrew V Schally
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Miami VA Healthcare System, Endocrine and Polypeptide Institute, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, Miami, FL, USA
- South FL VA Foundation for Research and Education, Miami, FL, USA
| | - Renzhi Cai
- Miami VA Healthcare System, Endocrine and Polypeptide Institute, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Xianyang Zhang
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Miami VA Healthcare System, Endocrine and Polypeptide Institute, Miami, FL, USA
| | - Wei Sha
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Miami VA Healthcare System, Endocrine and Polypeptide Institute, Miami, FL, USA
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Medhi Wangpaichitr
- Miami VA Healthcare System, Endocrine and Polypeptide Institute, Miami, FL, USA.
- Sylvester Comprehensive Cancer Center, Miami, FL, USA.
- Department of Surgery, Division of Thoracic Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
- South FL VA Foundation for Research and Education, Miami, FL, USA.
| |
Collapse
|
5
|
Li P, Que Y, Wong C, Lin Y, Qiu J, Gao B, Zhou H, Hu W, Shi H, Peng Y, Huang D, Gao W, Qiu X, Liang A. IL-32 aggravates metabolic disturbance in human nucleus pulposus cells by activating FAT4-mediated Hippo/YAP signaling. Int Immunopharmacol 2024; 141:112966. [PMID: 39178518 DOI: 10.1016/j.intimp.2024.112966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/21/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024]
Abstract
Extracellular matrix (ECM) metabolism disorders in the inflammatory microenvironment play a key role in the pathogenesis of intervertebral disc degeneration (IDD). Interleukin-32 (IL-32) has been reported to be involved in the progression of various inflammatory diseases; however, it remains unclear whether it participates in the matrix metabolism of nucleus pulposus (NP) cells. Therefore, this study aimed to investigate the mechanism of IL-32 on regulating the ECM metabolism in the inflammatory microenvironment. RNA-seq was used to identify aberrantly expressed genes in NP cells in the inflammatory microenvironment. Western blotting, real-time quantitative PCR, immunohistochemistry and immunofluorescence analysis were performed to measure the expression of IL-32 and metabolic markers in human NP tissues or NP cells treated with or without tumor necrosis factor-α (TNF-α). In vivo, an adeno-associated virus overexpressing IL-32 was injected into the caudal intervertebral discs of rats to assess its effect on IDD. Proteins interacting with IL-32 were identified via immunoprecipitation and mass spectrometry. Lentivirus overexpressing IL-32 or knocking down Fat atypical cadherin 4 (FAT4), yes-associated protein (YAP) inhibitor-Verteporfin (VP) were used to treat human NP cells, to explore the pathogenesis of IL-32. Hippo/YAP signaling activity was verified in human NP tissues. IL-32 expression was significantly upregulated in degenerative NP tissues, as indicated in the clinical samples. Furthermore, IL-32 was remarkably overexpressed in TNF-α-induced degenerative NP cells. IL-32 overexpression induced IDD progression in the rat model. Mechanistically, the elevation of IL-32 in the inflammatory microenvironment enhanced its interactions with FAT4 and mammalian sterile 20-like kinase1/2 (MST1/2) proteins, prompting MST1/2 phosphorylation, and activating the Hippo/YAP signaling pathway, causing matrix metabolism disorder in NP cells. Our results suggest that IL-32 mediates matrix metabolism disorders in NP cells in the inflammatory micro-environment via the FAT4/MST/YAP axis, providing a theoretical basis for the precise treatment of IDD.
Collapse
Affiliation(s)
- Pengfei Li
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yichen Que
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Department of Orthopedic Surgery, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical Universit, Qingyuan, Guangdong, China
| | - Chipiu Wong
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Youxi Lin
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jincheng Qiu
- Department of Minimally Invasive Spine Surgery, Panyu Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Bo Gao
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hang Zhou
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenjun Hu
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huihong Shi
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yan Peng
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Dongsheng Huang
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenjie Gao
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Xianjian Qiu
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Anjing Liang
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
6
|
Liang S, Li N, Zhan J, Li Z, Tie C, Zhu Y, Guo H, Ke L, Li J, Xu Z, Zhang P, Cheng W. Magnetic resonance imaging classification in a percutaneous needle injury rat model of intervertebral disc degeneration. J Orthop Surg Res 2024; 19:632. [PMID: 39375759 PMCID: PMC11457380 DOI: 10.1186/s13018-024-05110-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND During the development of disease-modifying intervertebral disc degeneration (IDD) drugs, the rat model of IDD is frequently used for disease progression assessment. The aim of this study was to describe a magnetic resonance (MRI) scoring system for the assessment of different disc conditions in puncture-induced IDD, allowing standardization and comparison of results obtained by different investigators. METHODS A total of 36 Sprague-Dawley rats were utilized in the present study. The animals were divided into two groups: a sham group and an IDD group caused by puncture. The rats in the IDD group were subsequently divided into six categories based on time frames, with five rats in each category. The sham group was divided into two sub-groups (n = 3) for 28 and 56 days, respectively. T2-weighted images of rats consecutively studied with MRI of the coccygeal discs were classified according to the time course using the corresponding histological data. Additional scoring of the micro-CT was employed to identify the progression of bone destruction of the rat model of IDD. RESULTS A comparison of the MRI results between the sham group and the IDD group revealed a significant reduction in NP height, area, T2WI value, and DHI in the latter group (P < 0.05). The micro-CT results demonstrated that following acupuncture, there was a notable decline in the BV, Tb.N, and height of the coccygeal vertebra, while the BS/BV and Tb.Sp exhibited a significant increase (P < 0.05). The histological results were analogous to the MRI results, indicating a progressive exacerbation of IDD and a corresponding increase in NP score (P < 0.05). The results of the MRI were found to be consistent with those of the micro-CT and histological analyses (P < 0.05). The results of the study demonstrate a robust correlation between MRI analysis and histological findings. Live animals are employed for MRI analysis to improve experiment comparability. The reliability of the MRI scoring system ensures assessment of disease progression in live animals, while promoting cost savings and animal welfare by avoiding the sacrifice of animals at different times. CONCLUSIONS The described scoring paradigm has quantitatively been found to differentiate IDD disease progression in an in vivo rat model. Hence, we suggest employing it to evaluate the rat IDD model and assess the effects of treatments in this model.
Collapse
Affiliation(s)
- Songlin Liang
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
- Department of Spine and Spinal Cord, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, Shandong, China
| | - Nianhu Li
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
- Department of Spine and Spinal Cord, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, Shandong, China
| | - Jiawen Zhan
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Zhichao Li
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
- Department of Spine and Spinal Cord, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, Shandong, China
| | - Changjun Tie
- Paul C. Lauterbur Research Center for Biomedical lmaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Yanjie Zhu
- Paul C. Lauterbur Research Center for Biomedical lmaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Hongyan Guo
- CapitalBio Corporation, Beijing, 102206, China
| | - Liqing Ke
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Jian Li
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Zhanwang Xu
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
- Department of Spine and Spinal Cord, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, Shandong, China
| | - Peng Zhang
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China.
- Faculty of Biomedical Engineering, Shenzhen University of Advanced Technology, Shenzhen, 518055, Guangdong, China.
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, 518000, Guangdong, China.
- Shandong Zhongke Advanced Technology Co., Ltd, Jinan, 250300, Shandong, China.
| | - Wenxiang Cheng
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
7
|
Wang J, Zhang Y, Huang Y, Hao Z, Shi G, Guo L, Chang C, Li J. Application trends and strategies of hydrogel delivery systems in intervertebral disc degeneration: A bibliometric review. Mater Today Bio 2024; 28:101251. [PMID: 39318370 PMCID: PMC11421353 DOI: 10.1016/j.mtbio.2024.101251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/16/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024] Open
Abstract
Hydrogels are widely used to explore emerging minimally invasive strategies for intervertebral disc degeneration (IVDD) due to their suitability as drug and cell delivery vehicles. There has been no review of the latest research trends and strategies of hydrogel delivery systems in IVDD for the last decade. In this study, we identify the application trends and strategies in this field through bibliometric analysis, including aspects such as publication years, countries and institutions, authors and publications, and co-occurrence of keywords. The results reveal that the literature in this field has been receiving increasing attention with a trend of growth annually. Subsequently, the hotspots of hydrogels in this field were described and discussed in detail, and we proposed the "four core factors", hydrogels, cells, cell stimulators, and microenvironmental regulation, required for a multifunctional hydrogel for IVDD. Finally, we discuss the popular and emerging mechanistic strategies of hydrogel therapy for IVDD in terms of five aspects: fundamental pathologic changes in IVDD, counteracting cellular senescence, counteracting cell death, improving organelle function, and replenishing exogenous cells. This study provides a reference and a new perspective for future research in this urgently needed field.
Collapse
Affiliation(s)
- Junwu Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yu Zhang
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
| | - Yilong Huang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zhuowen Hao
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Guang Shi
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Lanhong Guo
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Chunyu Chang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, and Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, Hubei, 430072, China
| | - Jingfeng Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| |
Collapse
|
8
|
Liu L, Chen Y, Ye L, Yu L, Kang Y, Mou X, Cai Y. NIR-II Absorbed Dithienopyrrole-Benzobisthiadiazole Based Nanosystems for Autophagy Inhibition and Calcium Overload Enhanced Photothermal Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309891. [PMID: 38721972 DOI: 10.1002/smll.202309891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/28/2024] [Indexed: 10/01/2024]
Abstract
Although the current cancer photothermal therapy (PTT) can produce a powerful therapeutic effect, tumor cells have been proved a protective mechanism through autophagy. In this study, a novel hybrid theranostic nanoparticle (CaCO3@CQ@pDB NPs, CCD NPs) is designed and prepared by integrating a second near-infrared (NIR-II) absorbed conjugated polymer DTP-BBT (pDB), CaCO3, and autophagy inhibitor (chloroquine, CQ) into one nanosystem. The conjugated polymer pDB with asymmetric donor-acceptor structure shows strong NIR-II absorbing capacity, of which the optical properties and photothermal generation mechanism of pDB are systematically analyzed via molecular theoretical calculation. Under NIR-II laser irradiation, pDB-mediated PTT can produce powerful killing ability to tumor cells. At the same time, heat stimulates a large amount of Ca2+ inflow, causing calcium overload induced mitochondrial damage and enhancing the apoptosis of tumor cells. Besides, the released CQ blocks the self-protection mechanism of tumor cells and greatly enhances the attack of PTT and calcium overload therapy. Both in vitro and in vivo experiments confirm that CCD NPs possess excellent NIR-II theranostic capacity, which provides a new nanoplatform for anti-tumor therapy and builds great potential for future clinical research.
Collapse
Affiliation(s)
- Longcai Liu
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Yang Chen
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Luyi Ye
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Liya Yu
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Yehui Kang
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Xiaozhou Mou
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Yu Cai
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| |
Collapse
|
9
|
Tang J, Luo Y, Wang Q, Wu J, Wei Y. Stimuli-Responsive Delivery Systems for Intervertebral Disc Degeneration. Int J Nanomedicine 2024; 19:4735-4757. [PMID: 38813390 PMCID: PMC11135562 DOI: 10.2147/ijn.s463939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024] Open
Abstract
As a major cause of low back pain, intervertebral disc degeneration is an increasingly prevalent chronic disease worldwide that leads to huge annual financial losses. The intervertebral disc consists of the inner nucleus pulposus, outer annulus fibrosus, and sandwiched cartilage endplates. All these factors collectively participate in maintaining the structure and physiological functions of the disc. During the unavoidable degeneration stage, the degenerated discs are surrounded by a harsh microenvironment characterized by acidic, oxidative, inflammatory, and chaotic cytokine expression. Loss of stem cell markers, imbalance of the extracellular matrix, increase in inflammation, sensory hyperinnervation, and vascularization have been considered as the reasons for the progression of intervertebral disc degeneration. The current treatment approaches include conservative therapy and surgery, both of which have drawbacks. Novel stimuli-responsive delivery systems are more promising future therapeutic options than traditional treatments. By combining bioactive agents with specially designed hydrogels, scaffolds, microspheres, and nanoparticles, novel stimuli-responsive delivery systems can realize the targeted and sustained release of drugs, which can both reduce systematic adverse effects and maximize therapeutic efficacy. Trigger factors are categorized into internal (pH, reactive oxygen species, enzymes, etc.) and external stimuli (photo, ultrasound, magnetic, etc.) based on their intrinsic properties. This review systematically summarizes novel stimuli-responsive delivery systems for intervertebral disc degeneration, shedding new light on intervertebral disc therapy.
Collapse
Affiliation(s)
- Jianing Tang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- First Clinic School, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Yuexin Luo
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- First Clinic School, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Qirui Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- First Clinic School, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Juntao Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- First Clinic School, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Yulong Wei
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
10
|
Zhou W, Tang Q, Wang S, Ding L, Chen M, Liu H, Wu Y, Xiong X, Shen Z, Chen W. Local thiamet-G delivery by a thermosensitive hydrogel confers ischemic cardiac repair via myeloid M2-like activation in a STAT6 O-GlcNAcylation-dependent manner. Int Immunopharmacol 2024; 131:111883. [PMID: 38503016 DOI: 10.1016/j.intimp.2024.111883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/06/2024] [Accepted: 03/13/2024] [Indexed: 03/21/2024]
Abstract
Infarct healing requires a dynamic and orchestrated inflammatory reaction following myocardial infarction (MI). While an uncontrolled excessive inflammatory response exaggerates ischemic injury post-MI, M2-like reparative macrophages may facilitate inflammation regression and promote myocardial healing. However, how protein post-translational modification regulates post-MI cardiac repair and dynamic myeloid activation remains unknown. Here we show that M2-like reparative, but not M1-like inflammatory activation, is enhanced by pharmacologically-induced hyper-O-GlcNAcylation. Mechanistically, myeloid knockdown of O-GlcNAc hydrolase O-GlcNAcase (Oga), which also results in hyper-O-GlcNAcylation, positively regulates M2-like activation in a STAT6-dependent fashion, which is controlled by O-GlcNAcylation of STAT6. Of note, both systemic and local supplementation of thiamet-G (TMG), an Oga inhibitor, effectively facilitates cardiac recovery in mice by elevating the accumulation of M2-like macrophages in infarcted hearts. Our study provides a novel clue for monocyte/macrophage modulating therapies aimed at reducing post-MI hyperinflammation in ischemic myocardium.
Collapse
Affiliation(s)
- Wenjing Zhou
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Medical College, Soochow University, Suzhou, China; School of Life Science, Tianjin University, Tianjin, China
| | - Qingsong Tang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Medical College, Soochow University, Suzhou, China
| | - Shengnan Wang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Medical College, Soochow University, Suzhou, China
| | - Liang Ding
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Medical College, Soochow University, Suzhou, China
| | - Ming Chen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Medical College, Soochow University, Suzhou, China
| | - Hongman Liu
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou, China; Department of Cardiovascular Medicine, the Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Yong Wu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Medical College, Soochow University, Suzhou, China
| | - Xiwen Xiong
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Zhenya Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Medical College, Soochow University, Suzhou, China.
| | - Weiqian Chen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Medical College, Soochow University, Suzhou, China.
| |
Collapse
|
11
|
Fu Y, Huang XQ, Qu HB, Ge YZ, Ru XL. Tandem Mass Tag-Based Proteomic Analysis of Normal and Degenerated Human Intervertebral Discs. J Pain Res 2024; 17:1313-1326. [PMID: 38563035 PMCID: PMC10982071 DOI: 10.2147/jpr.s449044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
Background Intervertebral disc degeneration (IVDD) is the main cause of low back pain (LBP), but the specific regulatory factors, pathways and specific molecular mechanisms remain unclear. Methods We identified and quantitatively analyzed Pfirrmann Grade II (n=3) and Pfirrmann Grade IV (n=3) pulposus samples via MRI. The differential abundance of proteins in the samples was determined and quantitatively analyzed by relative and absolute quantitative analysis of the isotope marker levels combined with the liquid chromatography-tandem mass spectrometry (LC‒MSMS/MS). Results A total of 70 proteins (30 significantly increased proteins (> 1.2-fold change) and 40 significantly decreased proteins (< 0.8-fold change)) showed different levels among the groups. Kyoto Encyclopedia of Genes and Genomes and Gene Ontology (GO) enrichment analyses and Western blot analysis showed that CYCS, RAC1, and PSMD14 may play important roles in IVDD and that Epstein‒Barr virus infection, viral myocarditis, colorectal cancer, nonalcoholic fatty liver disease (NAFLD) and amyotrophic lateral sclerosis (ALS) are the main pathways involved in IVDD. Conclusion CYCS, RAC1 and PSMD14 may play important roles in IVDD, and Epstein‒Barr virus infection, viral myocarditis, colorectal cancer, NAFLD and ALS may be the main pathways involved in IVDD.
Collapse
Affiliation(s)
- Yang Fu
- Department of Orthopedics, Zhejiang Hospital, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Xiao-Qin Huang
- Department of Orthopedics, Zhejiang Hospital, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Hang-Bo Qu
- Department of Orthopedics, Zhejiang Hospital, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Yan Zhi Ge
- Department of Orthopedics, Zhejiang Hospital, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Xuan-Liang Ru
- Department of Orthopedics, Zhejiang Hospital, Hangzhou, Zhejiang Province, People’s Republic of China
| |
Collapse
|
12
|
Yu L, Wu H, Zeng S, Hu X, Wu Y, Zhou J, Yuan L, Zhang Q, Xiang C, Feng Z. Menstrual blood-derived mesenchymal stem cells combined with collagen I gel as a regenerative therapeutic strategy for degenerated disc after discectomy in rats. Stem Cell Res Ther 2024; 15:75. [PMID: 38475906 DOI: 10.1186/s13287-024-03680-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Annulus fibrosis (AF) defects have been identified as the primary cause of disc herniation relapse and subsequent disc degeneration following discectomy. Stem cell-based tissue engineering offers a promising approach for structural repair. Menstrual blood-derived mesenchymal stem cells (MenSCs), a type of adult stem cell, have gained attention as an appealing source for clinical applications due to their potential for structure regeneration, with ease of acquisition and regardless of ethical issues. METHODS The differential potential of MenSCs cocultured with AF cells was examined by the expression of collagen I, SCX, and CD146 using immunofluorescence. Western blot and ELISA were used to examine the expression of TGF-β and IGF-I in coculture system. An AF defect animal model was established in tail disc of Sprague-Dawley rats (males, 8 weeks old). An injectable gel containing MenSCs (about 1*106/ml) was fabricated and transplanted into the AF defects immediately after the animal model establishment, to evaluate its repairment properties. Disc degeneration was assessed via magnetic resonance (MR) imaging and histological staining. Immunohistochemical analysis was performed to assess the expression of aggrecan, MMP13, TGF-β and IGF-I in discs with different treatments. Apoptosis in the discs was evaluated using TUNEL, caspase3, and caspase 8 immunofluorescence staining. RESULTS Coculturing MenSCs with AF cells demonstrated ability to express collagen I and biomarkers of AF cells. Moreover, the coculture system presented upregulation of the growth factors TGF-β and IGF-I. After 12 weeks, discs treated with MenSCs gel exhibited significantly lower Pffirrmann scores (2.29 ± 0.18), compared to discs treated with MenSCs (3.43 ± 0.37, p < 0.05) or gel (3.71 ± 0.29, p < 0.01) alone. There is significant higher MR index in disc treated with MenSCs gel than that treated with MenSCs (0.51 ± 0.05 vs. 0.24 ± 0.04, p < 0.01) or gel (0.51 ± 0.05 vs. 0.26 ± 0.06, p < 0.01) alone. Additionally, MenSCs gel demonstrated preservation of the structure of degenerated discs, as indicated by histological scoring (5.43 ± 0.43 vs. 9.71 ± 1.04 in MenSCs group and 10.86 ± 0.63 in gel group, both p < 0.01), increased aggrecan expression, and decreased MMP13 expression in vivo. Furthermore, the percentage of TUNEL and caspase 3-positive cells in the disc treated with MenSCs Gel was significantly lower than those treated with gel alone and MenSCs alone. The expression of TGF-β and IGF-I was higher in discs treated with MenSCs gel or MenSCs alone than in those treated with gel alone. CONCLUSION MenSCs embedded in collagen I gel has the potential to preserve the disc structure and prevent disc degeneration after discectomy, which was probably attributed to the paracrine of growth factors of MenSCs.
Collapse
Affiliation(s)
- Li Yu
- Department of Operating room, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Honghao Wu
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Shumei Zeng
- Department of gynaecology, Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojian Hu
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yuxu Wu
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jinhong Zhou
- Department of gynaecology, Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Yuan
- Innovative Precision Medicine (IPM) Group, Hangzhou, Zhejiang, China
| | - Qingqing Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Charlie Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang, China.
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| | - Zhiyun Feng
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- , Building 8-2, 58#, Chengzhan Road, Hangzhou, 310003, China.
| |
Collapse
|
13
|
Zhao Y, Dong H, Xia Q, Wang Y, Zhu L, Hu Z, Xia J, Mao Q, Weng Z, Yi J, Feng S, Jiang Y, Liao W, Xin Z. A new strategy for intervertebral disc regeneration: The synergistic potential of mesenchymal stem cells and their extracellular vesicles with hydrogel scaffolds. Biomed Pharmacother 2024; 172:116238. [PMID: 38308965 DOI: 10.1016/j.biopha.2024.116238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024] Open
Abstract
Intervertebral disc degeneration (IDD) is a disease that severely affects spinal health and is prevalent worldwide. Mesenchymal stem cells (MSCs) and their derived extracellular vesicles (EVs) have regenerative potential and have emerged as promising therapeutic tools for treating degenerative discs. However, challenges such as the harsh microenvironment of degenerated intervertebral discs and EVs' limited stability and efficacy have hindered their clinical application. In recent years, hydrogels have attracted much attention in the field of IDD therapy because they can mimic the physiologic microenvironment of the disc and provide a potential solution by providing a suitable growth environment for MSCs and EVs. This review introduced the biological properties of MSCs and their derived EVs, summarized the research on the application of MSCs and EVs in IDD, summarized the current clinical trial studies of MSCs and EVs, and also explored the mechanism of action of MSCs and EVs in intervertebral discs. In addition, plenty of research elaborated on the mechanism of action of different classified hydrogels in tissue engineering, the synergistic effect of MSCs and EVs in promoting intervertebral disc regeneration, and their wide application in treating IDD. Finally, the challenges and problems still faced by hydrogel-loaded MSCs and EVs in the treatment of IDD are summarized, and potential solutions are proposed. This paper outlines the synergistic effects of MSCs and EVs in treating IDD in combination with hydrogels and aims to provide theoretical references for future related studies.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Huaize Dong
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Qiuqiu Xia
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Yanyang Wang
- Department of Cell Engineering Laboratory, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Lu Zhu
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Zongyue Hu
- Department of Pain Rehabilitation, Affiliated Sinopharm Gezhouba Central Hospital, Third Clinical Medical College of Three Gorges University, Yichang 443003, Hubei, China
| | - Jiyue Xia
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Qiming Mao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Zijing Weng
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Jiangbi Yi
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Shuai Feng
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Youhong Jiang
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Wenbo Liao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Zhijun Xin
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China; Institut Curie, PSL Research University, CNRS UMR3244, Dynamics of Genetic Information, Sorbonne Université, 75005 Paris, France.
| |
Collapse
|
14
|
Yu H, Gao R, Liu Y, Fu L, Zhou J, Li L. Stimulus-Responsive Hydrogels as Drug Delivery Systems for Inflammation Targeted Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306152. [PMID: 37985923 PMCID: PMC10767459 DOI: 10.1002/advs.202306152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/19/2023] [Indexed: 11/22/2023]
Abstract
Deregulated inflammations induced by various factors are one of the most common diseases in people's daily life, while severe inflammation can even lead to death. Thus, the efficient treatment of inflammation has always been the hot topic in the research of medicine. In the past decades, as a potential biomaterial, stimuli-responsive hydrogels have been a focus of attention for the inflammation treatment due to their excellent biocompatibility and design flexibility. Recently, thanks to the rapid development of nanotechnology and material science, more and more efforts have been made to develop safer, more personal and more effective hydrogels for the therapy of some frequent but tough inflammations such as sepsis, rheumatoid arthritis, osteoarthritis, periodontitis, and ulcerative colitis. Herein, from recent studies and articles, the conventional and emerging hydrogels in the delivery of anti-inflammatory drugs and the therapy for various inflammations are summarized. And their prospects of clinical translation and future development are also discussed in further detail.
Collapse
Affiliation(s)
- Haoyu Yu
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdong518033P. R. China
| | - Rongyao Gao
- Department of ChemistryRenmin University of ChinaBeijing100872P. R. China
| | - Yuxin Liu
- Department of Biomolecular SystemsMax‐Planck Institute of Colloids and Interfaces14476PotsdamGermany
| | - Limin Fu
- Department of ChemistryRenmin University of ChinaBeijing100872P. R. China
| | - Jing Zhou
- Department of ChemistryCapital Normal UniversityBeijing100048P. R. China
| | - Luoyuan Li
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdong518033P. R. China
| |
Collapse
|
15
|
Liu J, Du C, Huang W, Lei Y. Injectable smart stimuli-responsive hydrogels: pioneering advancements in biomedical applications. Biomater Sci 2023; 12:8-56. [PMID: 37969066 DOI: 10.1039/d3bm01352a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Hydrogels have established their significance as prominent biomaterials within the realm of biomedical research. However, injectable hydrogels have garnered greater attention compared with their conventional counterparts due to their excellent minimally invasive nature and adaptive behavior post-injection. With the rapid advancement of emerging chemistry and deepened understanding of biological processes, contemporary injectable hydrogels have been endowed with an "intelligent" capacity to respond to various endogenous/exogenous stimuli (such as temperature, pH, light and magnetic field). This innovation has spearheaded revolutionary transformations across fields such as tissue engineering repair, controlled drug delivery, disease-responsive therapies, and beyond. In this review, we comprehensively expound upon the raw materials (including natural and synthetic materials) and injectable principles of these advanced hydrogels, concurrently providing a detailed discussion of the prevalent strategies for conferring stimulus responsiveness. Finally, we elucidate the latest applications of these injectable "smart" stimuli-responsive hydrogels in the biomedical domain, offering insights into their prospects.
Collapse
Affiliation(s)
- Jiacheng Liu
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Chengcheng Du
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Wei Huang
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Yiting Lei
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
16
|
Liu Y, Zhao Z, Guo C, Huang Z, Zhang W, Ma F, Wang Z, Kong Q, Wang Y. Application and development of hydrogel biomaterials for the treatment of intervertebral disc degeneration: a literature review. Front Cell Dev Biol 2023; 11:1286223. [PMID: 38130952 PMCID: PMC10733535 DOI: 10.3389/fcell.2023.1286223] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
Low back pain caused by disc herniation and spinal stenosis imposes an enormous medical burden on society due to its high prevalence and refractory nature. This is mainly due to the long-term inflammation and degradation of the extracellular matrix in the process of intervertebral disc degeneration (IVDD), which manifests as loss of water in the nucleus pulposus (NP) and the formation of fibrous disc fissures. Biomaterial repair strategies involving hydrogels play an important role in the treatment of intervertebral disc degeneration. Excellent biocompatibility, tunable mechanical properties, easy modification, injectability, and the ability to encapsulate drugs, cells, genes, etc. make hydrogels good candidates as scaffolds and cell/drug carriers for treating NP degeneration and other aspects of IVDD. This review first briefly describes the anatomy, pathology, and current treatments of IVDD, and then introduces different types of hydrogels and addresses "smart hydrogels". Finally, we discuss the feasibility and prospects of using hydrogels to treat IVDD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qingquan Kong
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
17
|
Han H, Zhao X, Ma H, Zhang Y, Lei B. Multifunctional injectable hydrogels with controlled delivery of bioactive factors for efficient repair of intervertebral disc degeneration. Heliyon 2023; 9:e21867. [PMID: 38027562 PMCID: PMC10665751 DOI: 10.1016/j.heliyon.2023.e21867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/07/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Millions of people worldwide suffer from intervertebral disc degeneration (IVDD), which imposes a significant socioeconomic burden on society. There is an urgent clinical demand for more effective treatments for IVDD because conventional treatments can only alleviate the symptoms rather than preventing the progression of IVDD. Hydrogels, a class of elastic biomaterials with good biocompatibility, are promising candidates for intervertebral disc repair and regeneration. In recent years, various hydrogels have been investigated in vitro and in vivo for the repair of intervertebral discs, some of which are ready for clinical testing. This review summarizes the latest findings and developments in using bioactive factors-released bioactive injectable hydrogels for the repair and regeneration of intervertebral discs. It focuses on the analysis and summary of the use of multifunctional injectable hydrogels to delivery bioactive factors (cells, exosomes, growth factors, genes, drugs) for disc regeneration, providing guidance for future study. Finally, we discussed and analyzed the optimal timing for the application of controlled-release hydrogels in the treatment of IVDD to meet the high standards required for intervertebral disc regeneration and precision medicine.
Collapse
Affiliation(s)
- Hao Han
- Department of Orthopaedics of the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiaoming Zhao
- Department of Orthopaedics of the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Hongyun Ma
- Department of Orthopaedics of the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yingang Zhang
- Department of Orthopaedics of the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Bo Lei
- Department of Orthopaedics of the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710000, China
- Fronter Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China
| |
Collapse
|
18
|
Liu C, Fan L, Guan M, Zheng Q, Jin J, Kang X, Gao Z, Deng X, Shen Y, Chu G, Chen J, Yu Z, Zhou L, Wang Y. A Redox Homeostasis Modulatory Hydrogel with GLRX3 + Extracellular Vesicles Attenuates Disc Degeneration by Suppressing Nucleus Pulposus Cell Senescence. ACS NANO 2023. [PMID: 37432866 DOI: 10.1021/acsnano.3c01713] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Characterized by nucleus pulposus (NP) cell senescence and extracellular matrix (ECM) degradation, disc degeneration is a common pathology for various degenerative spinal disorders. To date, effective treatments for disc degeneration are absent. Here, we found that Glutaredoxin3 (GLRX3) is an important redox-regulating molecule associated with NP cell senescence and disc degeneration. Using a hypoxic preconditioning method, we developed GLRX3+ mesenchymal stem cell-derived extracellular vehicles (EVs-GLRX3), which enhanced the cellular antioxidant defense, thus preventing reactive oxygen species (ROS) accumulation and senescence cascade expansion in vitro. Further, a disc tissue-like biopolymer-based supramolecular hydrogel, which was injectable, degradable, and ROS-responsive, was proposed to deliver EVs-GLRX3 for treating disc degeneration. Using a rat model of disc degeneration, we demonstrated that the EVs-GLRX3-loaded hydrogel attenuated mitochondrial damage, alleviated the NP senescence state, and restored ECM deposition by modulating the redox homeostasis. Our findings suggested that modulation of redox homeostasis in the disc can rejuvenate NP cell senescence and thus attenuate disc degeneration.
Collapse
Affiliation(s)
- Can Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Lei Fan
- Department of Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ming Guan
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Qiangqiang Zheng
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310030, China
| | - Jiale Jin
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xinchang Kang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhongyang Gao
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xiaoqian Deng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Yifan Shen
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Guangyu Chu
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jingyao Chen
- Core Facilities, Zhejiang University School of Medicine, Hangzhou 310030, China
| | - Zhiqiang Yu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lei Zhou
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Spine Surgery, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China
| | - Yue Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
19
|
Shen H, Jin L, Zheng Q, Ye Z, Cheng L, Wu Y, Wu H, Jon TG, Liu W, Pan Z, Mao Z, Wang Y. Synergistically targeting synovium STING pathway for rheumatoid arthritis treatment. Bioact Mater 2023; 24:37-53. [PMID: 36582350 PMCID: PMC9761476 DOI: 10.1016/j.bioactmat.2022.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/23/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is a common autoimmune disease leading to pain, disability, and even death. Although studies have revealed that aberrant activation of STING was implicated in various autoimmune diseases, the role of STING in RA remains unclear. In the current study, we demonstrated that STING activation was pivotal in RA pathogenesis. As the accumulation of dsDNA, a specific stimulus for STING, is a feature of RA, we developed a spherical polyethyleneimine-coated mesoporous polydopamine nanoparticles loaded with STING antagonist C-176 (PEI-PDA@C-176 NPs) for treating RA. The fabricated NPs with biocompatibility had high DNA adsorption ability and could effectively inhibit the STING pathway and inflammation in macrophages. Intra-articular administration of PEI-PDA@C-176 NPs could effectively reduce joint damage in mice models of dsDNA-induced arthritis and collagen-induced arthritis by inhibiting STING pathway. We concluded that materials with synergistic effects of STING inhibition might be an efficacious strategy to treat RA.
Collapse
Affiliation(s)
- Haotian Shen
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Lulu Jin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qiangqiang Zheng
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Ziqiang Ye
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Linxiang Cheng
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yuxu Wu
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, N1 Shangchen Road, Yiwu, Zhejiang, 322000, China
| | - Honghao Wu
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Tae Gyong Jon
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Wenduo Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Zongyou Pan
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yue Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| |
Collapse
|
20
|
Gao L, Liu G, Wu X, Liu C, Wang Y, Ma M, Ma Y, Hao Z. Osteocytes autophagy mediated by mTORC2 activation controls osteoblasts differentiation and osteoclasts activities under mechanical loading. Arch Biochem Biophys 2023; 742:109634. [PMID: 37164247 DOI: 10.1016/j.abb.2023.109634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/01/2023] [Accepted: 05/07/2023] [Indexed: 05/12/2023]
Abstract
Autophagy is an important mechanosensitive response for cellular homeostasis and survival in osteocytes. However, the mechanism and its effect on bone metabolism have not yet clarified. The objective of this study was to evaluate how compressive cyclic force (CCF) induced autophagic response in osteocytes and to determine the effect of mechanically induced-autophagy on bone cells including osteocytes, osteoblasts, and osteoclasts. Autophagic puncta observed in MLO-Y4 cells increased after exposure to CCF. The upregulated levels of the LC3-II isoform and the degradation of p62 further confirmed the increased autophagic flux. Additionally, ATP synthesis and release, osteocalcin (OCN) expression, and cell survival increased in osteocytes as well. The Murine osteoblasts MC3T3-E1 cells and RAW 264.7 macrophage cells were cultured in conditioned medium collected from MLO-Y4 cells subjected to CCF. The concentration of FGF23 increased and the concentrations of SOST and M-CSF and RANKL/OPG ratio decreased significantly in the conditioned medium. Moreover, the promotion of osteogenic differentiation in MC3T3-E1 cells and inhibition of osteoclastogenesis and function in RAW 264.7 cells were significantly attenuated when osteocytes autophagy was inhibited by siAtg7. Our findings suggested that CCF induced protective autophagy in osteocytes and subsequently enhanced osteocytes survival and osteoblasts differentiation and downregulated osteoclasts activities. Further study revealed that CCF induced autophagic response in osteocytes through mechanistic target of rapamycin complex 2 (mTORC2) activation. In conclusion, CCF-induced osteocytes autophagy upon mTORC2 activation promoted osteocytes survival and osteogenic response and decreased osteoclastic function. Thus, osteocytes autophagy will provide a promising target for better understanding of bone physiology and treatment of bone diseases.
Collapse
Affiliation(s)
- Li Gao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Gen Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Xiangnan Wu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Chuanzi Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Yiqiao Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Meirui Ma
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Yuanyuan Ma
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China.
| | - Zhichao Hao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China.
| |
Collapse
|
21
|
Multiple nano-drug delivery systems for intervertebral disc degeneration: Current status and future perspectives. Bioact Mater 2023; 23:274-299. [DOI: 10.1016/j.bioactmat.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/16/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022] Open
|
22
|
Deng W, Sun D, Cai B, Jin B. Yangjing capsule improves oligoasthenozoospermia by promoting nitric oxide production through PLCγ1/AKT/eNOS pathway. Front Pharmacol 2023; 14:1056091. [PMID: 37180698 PMCID: PMC10169610 DOI: 10.3389/fphar.2023.1056091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 04/13/2023] [Indexed: 05/16/2023] Open
Abstract
Background: Oligoasthenozoospermia is an important factor leading to male infertility. Yangjing capsule (YC), a traditional Chinese preparation, displays beneficial effects on male infertility. However, whether YC could improve oligoasthenozoospermia remains unclear. Methods: In this study, we aimed to explore the effect of YC in the treatment of oligoasthenozoospermia. Male Sprague-Dawley (SD) rats were treated with 800 mg/kg ornidazole once daily for 30 days to induce in vivo oligoasthenozoospermia; primary Sertoli cells were treated with 400 μg/mL ornidazole for 24 h to induce in vitro oligoasthenozoospermia. Results: We found that YC improved the testicle and epididymis weight, sperm concentration, sperm progressive motility, serum testosterone, fertility rate and testis morphology in ornidazole-exposed rats and enhanced cell survival in ornidazole-stimulated primary Sertoli cells. YC also inhibited the ornidazole-caused decrease in nitric oxide (NO) generation and the phosphorylation of phospholipase C γ1 (PLCγ1), AKT, and eNOS in vivo and in vitro in oligoasthenozoospermia. Furthermore, the knockdown of PLCγ1 blunted the beneficial effects of YC in vitro. Conclusion: Collectively, our data suggested that YC protected against oligoasthenozoospermia by promoting NO levels through the PLCγ1/AKT/eNOS pathway.
Collapse
Affiliation(s)
| | | | | | - Baofang Jin
- Zhongda Hospital Southeast University, Nanjing, China
| |
Collapse
|
23
|
Chen J, Zhu H, Xia J, Zhu Y, Xia C, Hu Z, Jin Y, Wang J, He Y, Dai J, Hu Z. High-Performance Multi-Dynamic Bond Cross-Linked Hydrogel with Spatiotemporal siRNA Delivery for Gene-Cell Combination Therapy of Intervertebral Disc Degeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2206306. [PMID: 37078785 DOI: 10.1002/advs.202206306] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/01/2023] [Indexed: 05/03/2023]
Abstract
Chronic inflammatory diseases, such as intervertebral disc degeneration (IVDD), which affect the lives of hundreds of millions of people, still lack effective and precise treatments. In this study, a novel hydrogel system with many extraordinary properties is developed for gene-cell combination therapy of IVDD. Phenylboronic acid-modified G5 PAMAM (G5-PBA) is first synthesized, and therapeutic siRNA silencing the expression of P65 mixed with G5-PBA (siRNA@G5-PBA) is then embedded into the hydrogel (siRNA@G5-PBA@Gel) based on multi-dynamic bonds including acyl hydrazone bonds, imine linkage, π-π stacking, and hydrogen bonding interactions. Local and acidic inflammatory microenvironment-responsive gene-drug release can achieve spatiotemporal regulation of gene expression. In addition, gene-drug release from the hydrogel can be sustained for more than 28 days in vitro and in vivo, greatly inhibiting the secretion of inflammatory factors and the subsequent degeneration of nucleus pulposus (NP) cells induced by lipopolysaccharide (LPS). Through prolonged inhibition of the P65/NLRP3 signaling pathway, the siRNA@G5-PBA@Gel is verified to relieve inflammatory storms, which can significantly enhance the regeneration of IVD when combined with cell therapy. Overall, this study proposes an innovative system for gene-cell combination therapy and a precise and minimally invasive treatment method for IVD regeneration.
Collapse
Affiliation(s)
- Jiaxin Chen
- Center for Plastic & Reconstructive Surgery, Department of Plastic & Reconstructive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Haifeng Zhu
- Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Jiechao Xia
- Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Yutao Zhu
- Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Chen Xia
- Department of Orthopedic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Zehui Hu
- Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Yang Jin
- Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Ji Wang
- Center for Plastic & Reconstructive Surgery, Department of Plastic & Reconstructive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jiayong Dai
- Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Zhijun Hu
- Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| |
Collapse
|
24
|
Exosome-laden injectable self-healing hydrogel based on quaternized chitosan and oxidized starch attenuates disc degeneration by suppressing nucleus pulposus senescence. Int J Biol Macromol 2023; 232:123479. [PMID: 36731695 DOI: 10.1016/j.ijbiomac.2023.123479] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/16/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023]
Abstract
Disc degeneration is the common pathology underlying various degenerative spinal disorders and currently there is no effective cure. Here, we found nucleus pulposus (NP) cell senescence was closely associated with the severity of disc degeneration, and exosomes (Exos) derived from mesenchymal stem cells (MSCs) ameliorated NP cell senescence and promoted extracellular matrix (ECM) deposition. As chitosan-based hydrogels have been widely used as vehicles to deliver Exos due to their prominent antibacterial capacity, biocompatibility, and biodegradability, we developed an Exos-laden hydrogel based on quaternized chitosan (QCS) and oxidized starch (OST) to treat disc degeneration. The synthesized QCS-OST hydrogel is injectable, self-healing, biocompatible, and demonstrated desirable pore size, injectable properties, and sustainable release of Exos. In a rat model of disc degeneration, the QCS-OST/Exos hydrogel was able to rejuvenate NP cell senescence, promote ECM remodeling, and partially restore the structures of NP and annulus fibrosis. Our findings suggested that the novel QCS-OST/Exos hydrogel is an effective therapeutic strategy for treating disc degeneration via alleviating NP cell senescence.
Collapse
|
25
|
Liu S, Li X, Han L. Recent developments in stimuli‐responsive hydrogels for biomedical applications. BIOSURFACE AND BIOTRIBOLOGY 2022. [DOI: 10.1049/bsb2.12050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Shuyun Liu
- School of Medicine and Pharmaceutics Laboratory for Marine Drugs and Bioproducts Pilot National Laboratory for Marine Science and Technology Ocean University of China Qingdao Shandong China
| | - Xiaozhuang Li
- School of Medicine and Pharmaceutics Laboratory for Marine Drugs and Bioproducts Pilot National Laboratory for Marine Science and Technology Ocean University of China Qingdao Shandong China
| | - Lu Han
- School of Medicine and Pharmaceutics Laboratory for Marine Drugs and Bioproducts Pilot National Laboratory for Marine Science and Technology Ocean University of China Qingdao Shandong China
| |
Collapse
|
26
|
Scavenging of reactive oxygen species can adjust the differentiation of tendon stem cells and progenitor cells and prevent ectopic calcification in tendinopathy. Acta Biomater 2022; 152:440-452. [PMID: 36108965 DOI: 10.1016/j.actbio.2022.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/22/2022]
Abstract
Tendinopathy is a common disorder that leads to pain and impaired quality of life. Recent studies revealed that osteogenic differentiation of tendon stem/progenitor cells (TSPCs) played an important role in the pathogenesis of tendon calcification and tendinopathy. In this study, we found that the growth hormone-releasing hormone agonist (GA) can prevent matrix degradation and osteogenic differentiation in TSPCs. As oxidative stress is a key factor in the osteogenic differentiation of TSPCs, we used bovine serum albumin/heparin nanoparticles (BHNPs), which have biocompatibility and drug loading capacity, to scavenge reactive oxygen species (ROS) and achieve sustained release of GA at the site of inflammation. The newly developed BHNPs@GA had a synergetic effect on reducing ROS production in TSPCs. In addition, BHNPs@GA effectively inhibited tendon calcification and promoted collagen formation in a rat model of tendinopathy. Focusing on the ROS underlying the differentiation and dedifferentiation of TSPCs, this work demonstrated that sustained release of GA targeting ROS and ectopic ossification is a practical therapeutic strategy for treating tendinopathy. STATEMENT OF SIGNIFICANCE: Osteogenic differentiation of tendon stem/progenitor cells (TSPCs) plays an important role in the pathogenesis of ectopic calcification in tendinopathy. In this study, we found that growth hormone-releasing hormone agonist (GA) can reduce reactive oxygen species (ROS) production and adjust TSPCs differentiation. Bovine serum albumin/heparin nanoparticles (BHNPs) were developed to encapsulate GA and achieve sustained release of GA at the site of inflammation. The developed compound, BHNPs@GA, with a synergistic effect of inhibiting ROS and thus, can effectively adjust TSPCs differentiation, inhibit tendon calcification, and promote collagen formation in tendinopathy. This study highlighted the role of ROS underlying the differentiation and dedifferentiation of TSPCs in tendinopathy, and findings may help to identify new therapeutic targets and develop novel strategy for treating tendinopathy.
Collapse
|
27
|
Wen X, Wang J, Wang Q, Liu P, Zhao H. Interaction between N6-methyladenosine and autophagy in the regulation of bone and tissue degeneration. Front Bioeng Biotechnol 2022; 10:978283. [PMID: 36072293 PMCID: PMC9443517 DOI: 10.3389/fbioe.2022.978283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022] Open
Abstract
Bone and tissue degeneration are the most common skeletal disorders that seriously affect people’s quality of life. N6-methyladenosine (m6A) is one of the most common RNA modifications in eukaryotic cells, affecting the alternative splicing, translation, stability and degradation of mRNA. Interestingly, increasing number of evidences have indicated that m6A modification could modulate the expression of autophagy-related (ATG) genes and promote autophagy in the cells. Autophagy is an important process regulating intracellular turnover and is evolutionarily conserved in eukaryotes. Abnormal autophagy results in a variety of diseases, including cardiomyopathy, degenerative disorders, and inflammation. Thus, the interaction between m6A modification and autophagy plays a prominent role in the onset and progression of bone and tissue degeneration. In this review, we summarize the current knowledge related to the effect of m6A modification on autophagy, and introduce the role of the crosstalk between m6A modification and autophagy in bone and tissue degeneration. An in-depth knowledge of the above crosstalk may help to improve our understanding of their effects on bone and tissue degeneration and provide novel insights for the future therapeutics.
Collapse
|
28
|
Gao XD, Zhang XB, Zhang RH, Yu DC, Chen XY, Hu YC, Chen L, Zhou HY. Aggressive strategies for regenerating intervertebral discs: stimulus-responsive composite hydrogels from single to multiscale delivery systems. J Mater Chem B 2022; 10:5696-5722. [PMID: 35852563 DOI: 10.1039/d2tb01066f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As our research on the physiopathology of intervertebral disc degeneration (IVD degeneration, IVDD) has advanced and tissue engineering has rapidly evolved, cell-, biomolecule- and nucleic acid-based hydrogel grafting strategies have been widely investigated for their ability to overcome the harsh microenvironment of IVDD. However, such single delivery systems suffer from excessive external dimensions, difficult performance control, the need for surgical implantation, and difficulty in eliminating degradation products. Stimulus-responsive composite hydrogels have good biocompatibility and controllable mechanical properties and can undergo solution-gel phase transition under certain conditions. Their combination with ready-to-use particles to form a multiscale delivery system may be a breakthrough for regenerative IVD strategies. In this paper, we focus on summarizing the progress of research on the stimulus response mechanisms of regenerative IVD-related biomaterials and their design as macro-, micro- and nanoparticles. Finally, we discuss multi-scale delivery systems as bioinks for bio-3D printing technology for customizing personalized artificial IVDs, which promises to take IVD regenerative strategies to new heights.
Collapse
Affiliation(s)
- Xi-Dan Gao
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P. R. China.
| | - Xiao-Bo Zhang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao tong University, Shaanxi 710000, P. R. China.
| | - Rui-Hao Zhang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P. R. China.
| | - De-Chen Yu
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P. R. China.
| | - Xiang-Yi Chen
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P. R. China.
| | - Yi-Cun Hu
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P. R. China.
| | - Lang Chen
- Department of Gastrointestinal Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P. R. China
| | - Hai-Yu Zhou
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P. R. China.
| |
Collapse
|
29
|
Zoetebier B, Schmitz T, Ito K, Karperien M, Tryfonidou MA, Paez J. Injectable hydrogels for articular cartilage and nucleus pulposus repair: Status quo and prospects. Tissue Eng Part A 2022; 28:478-499. [PMID: 35232245 DOI: 10.1089/ten.tea.2021.0226] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Osteoarthritis (OA) and chronic low back pain due to degenerative (intervertebral) disc disease (DDD) are two of the major causes of disabilities worldwide, affecting hundreds of millions of people and leading to a high socioeconomic burden. Although OA occurs in synovial joints and DDD occurs in cartilaginous joints, the similarities are striking, with both joints showing commonalities in the nature of the tissues and in the degenerative processes during disease. Consequently, repair strategies for articular cartilage (AC) and nucleus pulposus (NP), the core of the intervertebral disc, in the context of OA and DDD share common aspects. One of such tissue engineering approaches is the use of injectable hydrogels for AC and NP repair. In this review, the state-of-the-art and recent developments in injectable hydrogels for repairing, restoring, and regenerating AC tissue suffering from OA and NP tissue in DDD are summarized focusing on cell-free approaches. The various biomaterial strategies exploited for repair of both tissues are compared, and the synergies that could be gained by translating experiences from one tissue to the other are identified.
Collapse
Affiliation(s)
- Bram Zoetebier
- University of Twente Faculty of Science and Technology, 207105, Developmental BioEngineering , Drienerlolaan 5, Enschede, Netherlands, 7500 AE;
| | - Tara Schmitz
- Eindhoven University of Technology, 3169, Department of Biomedical Engineering, Eindhoven, Noord-Brabant, Netherlands;
| | - Keita Ito
- Eindhoven University of Technology, Department of Biomedical Engineering, P.O. Box 513, GEMZ 4.115, Eindhoven, Netherlands, 5600 MB;
| | | | - Marianna A Tryfonidou
- Utrecht University, Faculty of Veterinary Medicine, Clinical Sciences of Companion Animals, Yalelaan 108, Utrecht, Netherlands, 3584 CM;
| | - Julieta Paez
- University of Twente Faculty of Science and Technology, 207105, Developmental Bioengineering, University of Twente P.O. Box 217, Enschede The Netherlands, Enschede, Netherlands, 7500 AE;
| |
Collapse
|
30
|
Wang X, Li Y, Deng X, Jia F, Cui X, Lu J, Pan Z, Wu Y. Colloidally Stabilized DSPE-PEG-Glucose/Calcium Phosphate Hybrid Nanocomposites for Enhanced Photodynamic Cancer Therapy via Complementary Mitochondrial Ca 2+ Overload and Autophagy Inhibition. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39112-39125. [PMID: 34384220 DOI: 10.1021/acsami.1c11583] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Autophagy inhibition could hinder the underlying protective mechanisms in the course of tumor treatment. The advances in autophagy inhibition have driven focus on the functionalized nanoplatforms by combining the current treatment paradigms with complementary autophagy inhibition for enhanced efficacy. Furthermore, Ca2+ overload is also a promising adjuvant target for the tumor treatment by augmenting mitochondrial damage. In this view, complementary mitochondrial Ca2+ overload and autophagy inhibition were first demonstrated as a novel strategy suitable for homing in on the shortage of photodynamic therapy (PDT). We constructed biodegradable tumor-targeted inorganic/organic hybrid nanocomposites (DPGC/OI) synchronously encapsulating IR780 and Obatoclax by biomineralization of the nanofilm method, which consists of pH-triggered calcium phosphate (CP), long circulation phospholipid block copolymers 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE)-poly(ethylene glycol) (PEG)2000-glucose (DPG). In the presence of the hydrophilic PEG chain and glucose transporter 1 (Glut-1) ligands, DPGC would become an effectively tumor-oriented nanoplatform. Subsequently, IR780 as an outstanding photosensitizer could produce increased amounts of toxic reactive oxygen species (ROS) after laser irradiation. Calcium phosphate (CP) as the Ca2+ nanogenerator could generate Ca2+ at low pH to induce mitochondrial Ca2+ overload. The dysfunction of mitochondria could enhance increased amounts of ROS. Based on the premise that autophagy would degrade dysfunctional organelles to sustain metabolism and homeostasis, which might participate in resistance to PDT, Obatoclax as an autophagy inhibitor would hinder the protective mechanism from cancer cells with negligible toxicity. Such an enhanced PDT via mitochondrial Ca2+ overload and autophagy inhibition could be realized by DPGC/OI.
Collapse
Affiliation(s)
- Xuan Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yunhao Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P. R. China
| | - Xiongwei Deng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing 100190, P. R. China
| | - Fan Jia
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xinyue Cui
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing 100190, P. R. China
| | - Jianqing Lu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing 100190, P. R. China
| | - Zian Pan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yan Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
31
|
Lu Y, Wang Y, Zhang H, Tang Z, Cui X, Li X, Liang J, Wang Q, Fan Y, Zhang X. Solubilized Cartilage ECM Facilitates the Recruitment and Chondrogenesis of Endogenous BMSCs in Collagen Scaffolds for Enhancing Microfracture Treatment. ACS APPLIED MATERIALS & INTERFACES 2021; 13:24553-24564. [PMID: 34014092 DOI: 10.1021/acsami.1c07530] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Articular cartilage has very poor intrinsic healing ability and its repair remains a significant clinical challenge. To promote neocartilage regeneration, we fabricated two collagen (Col) scaffolds functionalized with a porcine decellularized extracellular matrix (dECM) in the forms of particle and solution named pE-Col and sE-Col, respectively. Their differences were systematically compared, including the biochemical compositions, scaffold properties, cell-material interactions, and in situ cartilage regeneration. While it is demonstrated that both forms of dECM could enhance the cell recruitment, proliferation, and chondrogenesis of bone marrow stem cells (BMSCs) in vitro, better performance was seen in the sE-Col group, which could quickly provide a more favorable chondrogenic microenvironment for endogenous BMSCs. The superiority of sE-Col was also proved by our in vivo study, which showed that the sE-Col scaffold achieved better structural hyaline-like neocartilage formation and subchondral bone repair compared to the pE-Col scaffold, according to the gross morphology, biological assessment, and micro-CT imaging analysis. Together, this study suggests that the sE-Col scaffold holds great potential in developing the one-step microfracture-based strategy for cartilage repair and also reminds us that despite dECM being a promising biomaterial in tissue engineering, the optimization of the proper processing methodology would be a crucial consideration in the future design of dECM-based scaffolds in articular cartilage regeneration.
Collapse
Affiliation(s)
- Yan Lu
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610065, China
| | - Yuxiang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610065, China
| | - Hanjie Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610065, China
| | - Zizhao Tang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610065, China
| | - Xiaolin Cui
- Department of Orthopaedic Surgery, University of Otago, Christchurch 8011, New Zealand
| | - Xing Li
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610065, China
| | - Jie Liang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610065, China
| | - Qiguang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610065, China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610065, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610065, China
| |
Collapse
|
32
|
Yin Q, Chen H, Ma RH, Zhang YY, Liu MM, Thakur K, Zhang JG, Wei ZJ. Ginsenoside CK induces apoptosis of human cervical cancer HeLa cells by regulating autophagy and endoplasmic reticulum stress. Food Funct 2021; 12:5301-5316. [PMID: 34013944 DOI: 10.1039/d1fo00348h] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ginsenoside CK (GCK), as a metabolite of ginsenoside Rb1, has been studied for its anti-cancer activity. However, its in-depth anti-cancer mechanism on cervical cancer (CC) HeLa cells has not been fully elucidated. This study found that GCK inhibited the proliferation of CC HeLa cells and caused alteration in cell morphology with an IC50 of 45.95 μM. At the same time, GCK treatment blocked the cell cycle in the G0/G1 phase, elevated the reactive oxygen species (ROS) level, decreased mitochondrial membrane potential (Δψm), contributed to Ca2+ leakage, inhibited HeLa cell metastasis, and stimulated the key markers related to apoptosis, mitochondrial and endoplasmic reticulum pathways. GCK altered the regulation of the Caspase family, Bak/Bcl-xl and down-regulated the endoplasmic reticulum pathways (PERK and IRE1α). Starting from flow cytometry and the protein level, we found that autophagy inhibitors inhibited autophagy while promoting apoptosis, and apoptosis inhibitors reduced the rate of apoptosis while promoting autophagy, which proved that GCK can be used as a suitable novel natural product for CC treatment.
Collapse
Affiliation(s)
- Qi Yin
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China.
| | - Hua Chen
- School of Biology, Food and Environment, Hefei University, Hefei, People's Republic of China.
| | - Run-Hui Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China. and Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China
| | - Yuan-Yuan Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China.
| | - Miao-Miao Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China.
| | - Kiran Thakur
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China. and Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China
| | - Jian-Guo Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China. and Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China. and Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China
| |
Collapse
|