1
|
Yang Z, Wan J, Zhang X, Mei J, Hao H, Liu S, Yi Y, Jiang M, He Y. Baicalin reduces sunitinib-induced cardiotoxicity in renal carcinoma PDX model by inhibiting myocardial injury, apoptosis and fibrosis. Front Pharmacol 2025; 16:1563194. [PMID: 40264678 PMCID: PMC12011809 DOI: 10.3389/fphar.2025.1563194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 03/24/2025] [Indexed: 04/24/2025] Open
Abstract
Sunitinib (SU), a multi-targeted tyrosine kinase inhibitor, has anticancer function but its clinical use is often limited by cardiovascular complications. Baicalin (BA) has demonstrated various pharmacological activities including antioxidant, anti-inflammatory and antiviral properties, but its potential roles in SU-induced cardiotoxicity have not been reported. In this study, we aimed to investigate the effect of BA in SU-induced cardiotoxicity in vivo by using renal carcinoma patient-derived xenograft (PDX) model. Female Nod Scid mice with renal carcinoma PDX were treated with vehicle, SU (50 mg/kg/d), BA (100 mg/kg/d), or BA combined with SU for 6 weeks. The tumor volume and weight of tumor-bearing mice were measured, and cardiovascular functions were evaluated by testing the Heart index and blood biochemical indicators, and by hematoxylin and eosin (H&E), Masson and Tunel staining. The results showed that SU therapy and combination therapy effectively inhibited the growth of renal tumors. Combination therapy inhibited SU-induced increase of creatine kinase (CK) and lactate dehydrogenase (LDH), and ameliorated the heart parameters. Moreover, BA effectively protected SU-induced cardiac dysfunction by decreasing injury, apoptosis, and fibrosis. Collectively, our results demonstrate that BA can be as a potential cardioprotective approach for cardiovascular complications during SU regimen.
Collapse
Affiliation(s)
- Zefu Yang
- Cardiovascular Medicine Department of Nanhai District People’s Hospital, Foshan, Guangdong, China
- Cardiovascular Medicine Department of The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
| | - Jianping Wan
- Electrophysiology Department of The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
| | - Xinjin Zhang
- Cardiovascular Center, Affiliated Hospital of Yunnan University, Kunming, China
| | - Jiaqi Mei
- Department of Hematology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Hua Hao
- Department of Pathology, Yangpu District Central Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Sibo Liu
- The Queen MARY school, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yun Yi
- Center of Biobank, Nanchang University Second Affiliated Hospital, Jiangxi Medical College, Nanchang, China
| | - Meixiu Jiang
- The Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yuanqiao He
- Center of Laboratory Animal Science, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Laboratory Animal, Nanchang, China
- Nanchang Royo Biotechnology, Nanchang, China
| |
Collapse
|
2
|
He Q, Lin J, Mo C, Li G, Lu J, Sun Q, Cao L, Gan H, Sun Q, Yao J, Lian S, Wang W. Endothelin receptor antagonists (ERAs) can potentially be used as therapeutic drugs to reduce hypertension caused by small molecule tyrosine kinase inhibitors (TKIs). Front Pharmacol 2025; 15:1463520. [PMID: 39850566 PMCID: PMC11754196 DOI: 10.3389/fphar.2024.1463520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 12/23/2024] [Indexed: 01/25/2025] Open
Abstract
The emergence of targeted anti-tumor drugs has significantly prolonged the lifespan and improved the prognosis of cancer patients. Among these drugs, vascular endothelial growth factor (VEGF) inhibitors, particularly novel small molecule tyrosine kinase inhibitors (TKIs), are extensively employed as VEGF inhibitors; however, they are also associated with a higher incidence of complications, with hypertension being the most prevalent cardiovascular toxic side effect. Currently, it is widely accepted that TKIs-induced hypertension involves multiple mechanisms including dysregulation of the endothelin (ET) axis, reduced bioavailability of nitric oxide (NO), imbalance in NO-ROS equilibrium system, vascular rarefaction, and activation of epithelial sodium calcium channels; nevertheless, excessive activation of ET system appears to be predominantly responsible for this condition. Moreover, studies have demonstrated that ET plays a pivotal role in driving TKIs-induced hypertension. Therefore, this review aims to explore the significance of ET in the pathogenesis of hypertension induced by targeted anti-tumor drugs and investigate the potential therapeutic value of endothelin antagonists in managing hypertension caused by targeted anti-tumor drugs.
Collapse
Affiliation(s)
- Qingjian He
- Department of Breast and Thyroid Surgery, First Affiliated Hospital of Huzhou University, Huzhou, China
| | - Junling Lin
- Department of Cardiovascular Center, First Affiliated Hospital of Huzhou University, Huzhou, China
| | - Chanjuan Mo
- Department of Cardiovascular Center, First Affiliated Hospital of Huzhou University, Huzhou, China
| | - Guodong Li
- Department of Cardiovascular Center, First Affiliated Hospital of Huzhou University, Huzhou, China
| | - Jianzhong Lu
- Department of Cardiovascular Center, First Affiliated Hospital of Huzhou University, Huzhou, China
| | - Qiyin Sun
- Department of Cardiovascular Center, First Affiliated Hospital of Huzhou University, Huzhou, China
| | - Lijun Cao
- Department of Cardiovascular Center, First Affiliated Hospital of Huzhou University, Huzhou, China
| | - Haojian Gan
- School of Medicine, Huzhou University, Huzhou, China
| | - Quan Sun
- School of Medicine, Huzhou University, Huzhou, China
| | - Jiafang Yao
- Department of Cardiovascular Center, First Affiliated Hospital of Huzhou University, Huzhou, China
| | - Shengyi Lian
- Department of Cardiovascular Center, First Affiliated Hospital of Huzhou University, Huzhou, China
| | - WenJuan Wang
- Department of Cardiovascular Center, First Affiliated Hospital of Huzhou University, Huzhou, China
| |
Collapse
|
3
|
Koukorava C, Ahmed K, Almaghrabi S, Pointon A, Haddrick M, Cross MJ. Anticancer drugs and cardiotoxicity: the role of cardiomyocyte and non-cardiomyocyte cells. Front Cardiovasc Med 2024; 11:1372817. [PMID: 39081368 PMCID: PMC11287221 DOI: 10.3389/fcvm.2024.1372817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/31/2024] [Indexed: 08/02/2024] Open
Abstract
Cardiotoxicity can be defined as "chemically induced heart disease", which can occur with many different drug classes treating a range of diseases. It is the primary cause of drug attrition during pre-clinical development and withdrawal from the market. Drug induced cardiovascular toxicity can result from both functional effects with alteration of the contractile and electrical regulation in the heart and structural changes with morphological changes to cardiomyocytes and other cardiac cells. These adverse effects result in conditions such as arrhythmia or a more serious reduction in left ventricular ejection fraction (LVEF), which can lead to heart failure and death. Anticancer drugs can adversely affect cardiomyocyte function as well as cardiac fibroblasts and cardiac endothelial cells, interfering in autocrine and paracrine signalling between these cell types and ultimately altering cardiac cellular homeostasis. This review aims to highlight potential toxicity mechanisms involving cardiomyocytes and non-cardiomyocyte cells by first introducing the physiological roles of these cells within the myocardium and secondly, identifying the physiological pathways perturbed by anticancer drugs in these cells.
Collapse
Affiliation(s)
- Chrysa Koukorava
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Katie Ahmed
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Shrouq Almaghrabi
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Amy Pointon
- Safety Sciences, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | | | - Michael J. Cross
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Liverpool Centre for Cardiovascular Science, Liverpool, United Kingdom
| |
Collapse
|
4
|
Xie C, Zhang Y, Zhu B, Yang L, Ren J, Lang N. Exploring the pathways of drug repurposing and Panax ginseng treatment mechanisms in chronic heart failure: a disease module analysis perspective. Sci Rep 2024; 14:12109. [PMID: 38802411 PMCID: PMC11130340 DOI: 10.1038/s41598-024-61926-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/10/2024] [Indexed: 05/29/2024] Open
Abstract
Chronic Heart Failure (CHF) is a significant global public health issue, with high mortality and morbidity rates and associated costs. Disease modules, which are collections of disease-related genes, offer an effective approach to understanding diseases from a biological network perspective. We employed the multi-Steiner tree algorithm within the NeDRex platform to extract CHF disease modules, and subsequently utilized the Trustrank algorithm to rank potential drugs for repurposing. The constructed disease module was then used to investigate the mechanism by which Panax ginseng ameliorates CHF. The active constituents of Panax ginseng were identified through a comprehensive review of the TCMSP database and relevant literature. The Swiss target prediction database was utilized to determine the action targets of these components. These targets were then cross-referenced with the CHF disease module in the STRING database to establish protein-protein interaction (PPI) relationships. Potential action pathways were uncovered through Gene Ontology (GO) and KEGG pathway enrichment analyses on the DAVID platform. Molecular docking, the determination of the interaction of biological macromolecules with their ligands, and visualization were conducted using Autodock Vina, PLIP, and PyMOL, respectively. The findings suggest that drugs such as dasatinib and mitoxantrone, which have low docking scores with key disease proteins and are reported in the literature as effective against CHF, could be promising. Key components of Panax ginseng, including ginsenoside rh4 and ginsenoside rg5, may exert their effects by targeting key proteins such as AKT1, TNF, NFKB1, among others, thereby influencing the PI3K-Akt and calcium signaling pathways. In conclusion, drugs like dasatinib and midostaurin may be suitable for CHF treatment, and Panax ginseng could potentially mitigate the progression of CHF through a multi-component-multi-target-multi-pathway approach. Disease module analysis emerges as an effective strategy for exploring drug repurposing and the mechanisms of traditional Chinese medicine in disease treatment.
Collapse
Affiliation(s)
- Chengzhi Xie
- Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Ying Zhang
- Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Baochen Zhu
- Department of Pharmacy, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Lin Yang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Jianxun Ren
- Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Na Lang
- Department of Education, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| |
Collapse
|
5
|
Mohamad HE, Askar ME, Shaheen MA, Baraka NM, Mahmoud YK. Sacubitril/valsartan alleviates sunitinib-induced cardiac fibrosis and oxidative stress via improving TXNIP/TRX system and downregulation of NF-ĸB/Wnt/β-catenin/SOX9 signaling. Int Immunopharmacol 2024; 132:111963. [PMID: 38560962 DOI: 10.1016/j.intimp.2024.111963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
We aimed in this study to investigate the possible cardioprotective effects of sacubitril/valsartan against sunitinib-induced cardiac fibrosis (CF) and oxidative stress via targeting thioredoxin-interacting protein/thioredoxin (TXNIP/TRX) system and nuclear factor-kappa B (NF-κB)/Wingless-related MMTV integration site (Wnt)/β-catenin/Sex-determining region Y box 9 (SOX9) signaling. CF was induced in male Wistar albino rats by cumulative dose of sunitinib (300 mg/kg, given over 4 weeks as: 25 mg/kg orally, three times a week), which were co-treated with sacubitril/valsartan (68 mg/kg/day, orally) for four weeks. Significant elevation in blood pressure, cardiac inflammatory and fibrotic markers besides cardiac dysfunction were observed. These alterations were associated with disruption of TXNIP/TRX system, upregulation of NF-κB/Wnt/β-catenin/SOX9 pathway along with marked increase in lysyl oxidase (LOX) and matrix metalloproteinase-1 (MMP-1) expressions and extensive deposition of collagen fibers in cardiac tissues. Luckily, sacubitril/valsartan was able to reverse all of the aforementioned detrimental effects in sunitinib-administered rats. These findings illustrate a potential role of sacubitril/valsartan in alleviating CF and oxidative stress induced by sunitinib via antioxidant, anti-inflammatory and antifibrotic properties. These remarkable effects of sacubitril/valsartan were mediated by its ability to improve TXNIP/TRX system and downregulate NF-κB/Wnt/β-catenin/SOX9 signaling in addition to decreasing LOX and MMP-1 expressions in cardiac tissues. In summary, this study highlights sacubitril/valsartan as a potential therapeutic agent in mitigating CF and oxidative stress especially in cancer cases treated with sunitinib.
Collapse
Affiliation(s)
- Hoda E Mohamad
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Mervat E Askar
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt.
| | - Mohamed A Shaheen
- Department of Histology & Cell Biology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Nourhan M Baraka
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Yasmin K Mahmoud
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
6
|
Dabour MS, George MY, Daniel MR, Blaes AH, Zordoky BN. The Cardioprotective and Anticancer Effects of SGLT2 Inhibitors: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol 2024; 6:159-182. [PMID: 38774006 PMCID: PMC11103046 DOI: 10.1016/j.jaccao.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 05/24/2024] Open
Abstract
Sodium-glucose cotransporter-2 (SGLT2) inhibitors, originally approved for type 2 diabetes mellitus, have demonstrated efficacy in reducing cardiovascular events, particularly heart failure, in patients with and without diabetes. An intriguing research area involves exploring the potential application of SGLT2 inhibitors in cardio-oncology, aiming to mitigate the cardiovascular adverse events associated with anticancer treatments. These inhibitors present a unique dual nature, offering both cardioprotective effects and anticancer properties, conferring a double benefit for cardio-oncology patients. In this review, the authors first examine the established cardioprotective effects of SGLT2 inhibitors in heart failure and subsequently explore the existing body of evidence, including both preclinical and clinical studies, that supports the use of SGLT2 inhibitors in the context of cardio-oncology. The authors further discuss the mechanisms through which SGLT2 inhibitors protect against cardiovascular toxicity secondary to cancer treatment. Finally, they explore the potential anticancer effects of SGLT2 inhibitors along with their proposed mechanisms.
Collapse
Affiliation(s)
- Mohamed S. Dabour
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Mina Y. George
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mary R. Daniel
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Anne H. Blaes
- Division of Hematology/Oncology/Transplantation, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Beshay N. Zordoky
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
7
|
Shi H, Yuan M, Cai J, Shi J, Li Y, Qian Q, Dong Z, Pan G, Zhu S, Wang W, Zhou J, Zhou X, Liu J. Exploring personalized treatment for cardiac graft rejection based on a four-archetype analysis model and bioinformatics analysis. Sci Rep 2024; 14:6529. [PMID: 38499711 PMCID: PMC10948767 DOI: 10.1038/s41598-024-57097-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 03/14/2024] [Indexed: 03/20/2024] Open
Abstract
Heart transplantation is the gold standard for treating patients with advanced heart failure. Although improvements in immunosuppressive therapies have significantly reduced the frequency of cardiac graft rejection, the incidences of T cell-mediated rejection (TCMR) and antibody-mediated rejection remain almost unchanged. A four-archetype analysis (4AA) model, developed by Philip F. Halloran, illustrated this problem well. It provided a new dimension to improve the accuracy of diagnoses and an independent system for recalibrating the histology guidelines. However, this model was based on the invasive method of endocardial biopsy, which undoubtedly increased the postoperative risk of heart transplant patients. Currently, little is known regarding the associated genes and specific functions of the different phenotypes. We performed bioinformatics analysis (using machine-learning methods and the WGCNA algorithm) to screen for hub-specific genes related to different phenotypes, based Gene Expression Omnibus accession number GSE124897. More immune cell infiltration was observed with the ABMR, TCMR, and injury phenotypes than with the stable phenotype. Hub-specific genes for each of the four archetypes were verified successfully using an external test set (accession number GSE2596). Logistic-regression models based on TCMR-specific hub genes and common hub genes were constructed with accurate diagnostic utility (area under the curve > 0.95). RELA, NFKB1, and SOX14 were identified as transcription factors important for TCMR/injury phenotypes and common genes, respectively. Additionally, 11 Food and Drug Administration-approved drugs were chosen from the DrugBank Database for each four-archetype model. Tyrosine kinase inhibitors may be a promising new option for transplant rejection treatment. KRAS signaling in cardiac transplant rejection is worth further investigation. Our results showed that heart transplant rejection subtypes can be accurately diagnosed by detecting expression of the corresponding specific genes, thereby enabling precise treatment or medication.
Collapse
Affiliation(s)
- Hongjie Shi
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, China
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, 430071, China
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, 430071, China
| | - Ming Yuan
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, China
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, 430071, China
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, 430071, China
| | - Jie Cai
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, China
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, 430071, China
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, 430071, China
| | - Jiajun Shi
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, China
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, 430071, China
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, 430071, China
| | - Yang Li
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, China
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, 430071, China
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, 430071, China
| | - Qiaofeng Qian
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, China
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, 430071, China
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, 430071, China
| | - Zhe Dong
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, China
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, 430071, China
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, 430071, China
| | - Gaofeng Pan
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, China
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, 430071, China
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, 430071, China
| | - Shaoping Zhu
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, China
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, 430071, China
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, 430071, China
| | - Wei Wang
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, China
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, 430071, China
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, 430071, China
| | - Jianliang Zhou
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, China
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, 430071, China
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, 430071, China
| | - Xianwu Zhou
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, China.
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, 430071, China.
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, 430071, China.
| | - Jinping Liu
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, China.
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, 430071, China.
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, 430071, China.
| |
Collapse
|
8
|
Yoganathan T, Perez-Liva M, Balvay D, Le Gall M, Lallemand A, Certain A, Autret G, Mokrani Y, Guillonneau F, Bruce J, Nguyen V, Gencer U, Schmitt A, Lager F, Guilbert T, Bruneval P, Vilar J, Maissa N, Mousseaux E, Viel T, Renault G, Kachenoura N, Tavitian B. Acute stress induces long-term metabolic, functional, and structural remodeling of the heart. Nat Commun 2023; 14:3835. [PMID: 37380648 DOI: 10.1038/s41467-023-39590-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/21/2023] [Indexed: 06/30/2023] Open
Abstract
Takotsubo cardiomyopathy is a stress-induced cardiovascular disease with symptoms comparable to those of an acute coronary syndrome but without coronary obstruction. Takotsubo was initially considered spontaneously reversible, but epidemiological studies revealed significant long-term morbidity and mortality, the reason for which is unknown. Here, we show in a female rodent model that a single pharmacological challenge creates a stress-induced cardiomyopathy similar to Takotsubo. The acute response involves changes in blood and tissue biomarkers and in cardiac in vivo imaging acquired with ultrasound, magnetic resonance and positron emission tomography. Longitudinal follow up using in vivo imaging, histochemistry, protein and proteomics analyses evidences a continued metabolic reprogramming of the heart towards metabolic malfunction, eventually leading to irreversible damage in cardiac function and structure. The results combat the supposed reversibility of Takotsubo, point to dysregulation of glucose metabolic pathways as a main cause of long-term cardiac disease and support early therapeutic management of Takotsubo.
Collapse
Affiliation(s)
| | | | - Daniel Balvay
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
- Université Paris Cité, Plateforme d'Imageries du Vivant, PARCC, F-75015, Paris, France
| | - Morgane Le Gall
- Université Paris Cité, P53 proteom'IC facility, Institut Cochin, INSERM, CNRS, F-75014, Paris, France
| | - Alice Lallemand
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | - Anais Certain
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | - Gwennhael Autret
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
- Université Paris Cité, Plateforme d'Imageries du Vivant, PARCC, F-75015, Paris, France
| | - Yasmine Mokrani
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | - François Guillonneau
- Institut de Cancérologie de l'Ouest, CNRS UMR6075 INSERM U1307, 15 rue André Boquel, F-49055, Angers, France
| | - Johanna Bruce
- Université Paris Cité, P53 proteom'IC facility, Institut Cochin, INSERM, CNRS, F-75014, Paris, France
| | - Vincent Nguyen
- Sorbonne Université, Laboratoire d'Imagerie Biomédicale, Inserm, CNRS, F-75006, Paris, France
| | - Umit Gencer
- Service de Radiologie, AP-HP, hôpital européen Georges Pompidou, F-75015, Paris, France
| | - Alain Schmitt
- Université Paris Cité, Cochin Imaging, Electron microscopy, Institut Cochin, INSERM, CNRS, F-75014, Paris, France
| | - Franck Lager
- Université Paris Cité, Plateforme d'Imageries du Vivant, Institut Cochin, Inserm-CNRS, F-75014, Paris, France
| | - Thomas Guilbert
- Université Paris Cité, Cochin Imaging Photonic, IMAG'IC, Institut Cochin, Inserm, CNRS, F-75014, Paris, France
| | | | - Jose Vilar
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | - Nawal Maissa
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | - Elie Mousseaux
- Service de Radiologie, AP-HP, hôpital européen Georges Pompidou, F-75015, Paris, France
| | - Thomas Viel
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
- Université Paris Cité, Plateforme d'Imageries du Vivant, PARCC, F-75015, Paris, France
| | - Gilles Renault
- Université Paris Cité, Plateforme d'Imageries du Vivant, Institut Cochin, Inserm-CNRS, F-75014, Paris, France
| | - Nadjia Kachenoura
- Sorbonne Université, Laboratoire d'Imagerie Biomédicale, Inserm, CNRS, F-75006, Paris, France
| | - Bertrand Tavitian
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France.
- Université Paris Cité, Plateforme d'Imageries du Vivant, PARCC, F-75015, Paris, France.
- Service de Radiologie, AP-HP, hôpital européen Georges Pompidou, F-75015, Paris, France.
| |
Collapse
|
9
|
Mohamad HE, Asker ME, Shaheen MA, Baraka NM, Fantoukh OI, Alqahtani A, Salama AE, Mahmoud YK. Secukinumab and Black Garlic Downregulate OPG/RANK/RANKL Axis and Devitalize Myocardial Interstitial Fibrosis Induced by Sunitinib in Experimental Rats. Life (Basel) 2023; 13:life13020308. [PMID: 36836664 PMCID: PMC9962443 DOI: 10.3390/life13020308] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Sunitinib has been associated with several cardiotoxic effects such as cardiac fibrosis. The present study was designed to explore the role of interleukin (IL)-17 in sunitinib-induced myocardial fibrosis (MF) in rats and whether its neutralization and/or administration of black garlic (BG), a form of fermented raw garlic (Allium sativum L.), could extenuate this adverse effect. Male Wistar albino rats received sunitinib (25 mg/kg three times a week, orally) and were co-treated with secukinumab (3 mg/kg, subcutaneously, three times total) and/or BG (300 mg/kg/day, orally) for four weeks. Administration of sunitinib induced significant increase in cardiac index, cardiac inflammatory markers, and cardiac dysfunction that were ameliorated by both secukinumab and BG, and to a preferable extent, with the combined treatment. Histological examination revealed disruption in the myocardial architecture and interstitial fibrosis in cardiac sections of the sunitinib group, which were reversed by both secukinumab and BG treatments. Both drugs and their co-administration restored normal cardiac functions, downregulated cardiac inflammatory cytokines, mainly IL-17 and NF-κB, along with increasing the MMP1/TIMP1 ratio. Additionally, they attenuated sunitinib-induced upregulation of the OPG/RANK/RANKL axis. These findings highlight another new mechanism through which sunitinib can induce interstitial MF. The current results propose that neutralizing IL-17 by secukinumab and/or supplementation with BG can be a promising therapeutic approach for ameliorating sunitinib-induced MF.
Collapse
Affiliation(s)
- Hoda E. Mohamad
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Correspondence: ; Tel.: +20-10-2799-4483
| | - Mervat E. Asker
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed A. Shaheen
- Department of Histology & Cell Biology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Nourhan M. Baraka
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Omer I. Fantoukh
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulaziz Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Alaa E. Salama
- Department of Cardiology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Yasmin K. Mahmoud
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
10
|
Bergler-Klein J, Rainer PP, Wallner M, Zaruba MM, Dörler J, Böhmer A, Buchacher T, Frey M, Adlbrecht C, Bartsch R, Gyöngyösi M, Fürst UM. Cardio-oncology in Austria: cardiotoxicity and surveillance of anti-cancer therapies : Position paper of the Heart Failure Working Group of the Austrian Society of Cardiology. Wien Klin Wochenschr 2022; 134:654-674. [PMID: 35507087 PMCID: PMC9065248 DOI: 10.1007/s00508-022-02031-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/18/2022] [Indexed: 02/07/2023]
Abstract
Survival in cancer is continuously improving due to evolving oncological treatment. Therefore, cardiovascular short-term and long-term side effects gain crucial importance for overall outcome. Cardiotoxicity not only presents as heart failure, but also as treatment-resistant hypertension, acute coronary ischemia with plaque rupture or vasospasm, thromboembolism, arrhythmia, pulmonary hypertension, diastolic dysfunction, acute myocarditis and others. Recent recommendations have proposed baseline cardiac risk assessment and surveillance strategies. Major challenges are the availability of monitoring and imaging resources, including echocardiography with speckle tracking longitudinal strain (GLS), serum biomarkers such as natriuretic peptides (NT-proBNP) and highly sensitive cardiac troponins. This Austrian consensus encompasses cardiotoxicity occurrence in frequent antiproliferative cancer drugs, radiotherapy, immune checkpoint inhibitors and cardiac follow-up considerations in cancer survivors in the context of the Austrian healthcare setting. It is important to optimize cardiovascular risk factors and pre-existing cardiac diseases without delaying oncological treatment. If left ventricular ejection fraction (LVEF) deteriorates during cancer treatment (from >10% to <50%), or myocardial strain decreases (>15% change in GLS), early initiation of cardioprotective therapies (angiotensin-converting enzyme inhibitors, angiotensin or beta receptor blockers) is recommended, and LVEF should be reassessed before discontinuation. Lower LVEF cut-offs were recently shown to be feasible in breast cancer patients to enable optimal anticancer treatment. Interdisciplinary cardio-oncology cooperation is pivotal for optimal management of cancer patients.
Collapse
Affiliation(s)
- Jutta Bergler-Klein
- Department of Cardiology, University Clinic of Internal Medicine II, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| | - Peter P Rainer
- Division of Cardiology, Medical University of Graz, Graz, Austria.,BioTechMed Graz, Graz, Austria
| | - Markus Wallner
- Division of Cardiology, Medical University of Graz, Graz, Austria.,Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Marc-Michael Zaruba
- Department of Internal Medicine III, Cardiology and Angiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Jakob Dörler
- Department of Internal Medicine III, Cardiology and Angiology, Medical University of Innsbruck, Innsbruck, Austria.,Department of Internal Medicine and Cardiology, Klinikum Klagenfurt, Klagenfurt, Austria
| | - Armin Böhmer
- Department of Internal Medicine 1, Krems University Clinic, Krems, Austria
| | - Tamara Buchacher
- Department of Internal Medicine and Cardiology, Klinikum Klagenfurt, Klagenfurt, Austria
| | - Maria Frey
- Department of Cardiology, University Clinic of Internal Medicine II, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | | | - Rupert Bartsch
- Department of Medicine 1, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Mariann Gyöngyösi
- Department of Cardiology, University Clinic of Internal Medicine II, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Ursula-Maria Fürst
- Department of Internal Medicine, Hospital of the Brothers of St. John of God (Krankenhaus Barmherzige Brüder) Salzburg, Salzburg, Austria
| |
Collapse
|
11
|
Facchin C, Certain A, Yoganathan T, Delacroix C, Garcia AA, Gaillard F, Lenoir O, Tharaux PL, Tavitian B, Balvay D. FIBER-ML, an Open-Source Supervised Machine Learning Tool for Quantification of Fibrosis in Tissue Sections. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:783-793. [PMID: 35183511 DOI: 10.1016/j.ajpath.2022.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/12/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Pathologic fibrosis is a major hallmark of tissue insult in many chronic diseases. Although the amount of fibrosis is recognized as a direct indicator of the extent of disease, there is no consentaneous method for its quantification in tissue sections. This study tested FIBER-ML, a semi-automated, open-source freeware that uses a machine-learning approach to quantify fibrosis automatically after a short user-controlled learning phase. Fibrosis was quantified in sirius red-stained tissue sections from two fibrogenic animal models: acute stress-induced cardiomyopathy in rats (Takotsubo syndrome-like) and HIV-induced nephropathy in mice (chronic kidney disease). The quantitative results of FIBER-ML software version 1.0 were compared with those of ImageJ in Takotsubo syndrome, and with those of inForm in chronic kidney disease. Intra- and inter-operator and inter-software correlation and agreement were assessed. All correlations were excellent (>0.95) in both data sets. The values of discriminatory power between the pathologic and healthy groups were <10-3 for data on Takotsubo syndrome and <10-4 for data on chronic kidney disease. Intra-operator agreement, assessed by intra-class coefficient correlation, was good (>0.8), while inter-operator and inter-software agreement ranged from moderate to good (>0.7). FIBER-ML performed in a fast and user-friendly manner, with reproducible and consistent quantification of fibrosis in tissue sections. It offers an open-source alternative to currently used software, including quality control and file management.
Collapse
Affiliation(s)
- Caterina Facchin
- Université de Paris, INSERM, Paris Cardiovascular Research Center, Paris, France.
| | - Anais Certain
- Université de Paris, INSERM, Paris Cardiovascular Research Center, Paris, France
| | - Thulaciga Yoganathan
- Université de Paris, INSERM, Paris Cardiovascular Research Center, Paris, France
| | - Clement Delacroix
- Université de Paris, INSERM, Paris Cardiovascular Research Center, Paris, France
| | | | - François Gaillard
- Université de Paris, INSERM, Paris Cardiovascular Research Center, Paris, France
| | - Olivia Lenoir
- Université de Paris, INSERM, Paris Cardiovascular Research Center, Paris, France
| | - Pierre-Louis Tharaux
- Université de Paris, INSERM, Paris Cardiovascular Research Center, Paris, France
| | - Bertrand Tavitian
- Université de Paris, INSERM, Paris Cardiovascular Research Center, Paris, France; Department of Radiology, Assistance Publique-Hôpitaux de Paris, Hopital Européen Georges Pompidou, Paris, France
| | - Daniel Balvay
- Université de Paris, INSERM, Paris Cardiovascular Research Center, Paris, France; Department of Radiology, Assistance Publique-Hôpitaux de Paris, Hopital Européen Georges Pompidou, Paris, France.
| |
Collapse
|
12
|
Cadour F, Thuny F, Sourdon J. New Insights in Early Detection of Anticancer Drug-Related Cardiotoxicity Using Perfusion and Metabolic Imaging. Front Cardiovasc Med 2022; 9:813883. [PMID: 35198613 PMCID: PMC8858802 DOI: 10.3389/fcvm.2022.813883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/06/2022] [Indexed: 12/16/2022] Open
Abstract
Cardio-oncology requires a good knowledge of the cardiotoxicity of anticancer drugs, their mechanisms, and their diagnosis for better management. Anthracyclines, anti-vascular endothelial growth factor (VEGF), alkylating agents, antimetabolites, anti-human epidermal growth factor receptor (HER), and receptor tyrosine kinase inhibitors (RTKi) are therapeutics whose cardiotoxicity involves several mechanisms at the cellular and subcellular levels. Current guidelines for anticancer drugs cardiotoxicity are essentially based on monitoring left ventricle ejection fraction (LVEF). However, knowledge of microvascular and metabolic dysfunction allows for better imaging assessment before overt LVEF impairment. Early detection of anticancer drug-related cardiotoxicity would therefore advance the prevention and patient care. In this review, we provide a comprehensive overview of the cardiotoxic effects of anticancer drugs and describe myocardial perfusion, metabolic, and mitochondrial function imaging approaches to detect them before over LVEF impairment.
Collapse
Affiliation(s)
- Farah Cadour
- Aix-Marseille Université, CNRS, CRMBM, Marseille, France
- APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Franck Thuny
- Aix-Marseille University, University Mediterranean Center of Cardio-Oncology, Unit of Heart Failure and Valvular Heart Diseases, Department of Cardiology, North Hospital, Assistance Publique - Hôpitaux de Marseille, Centre for CardioVascular and Nutrition Research (C2VN), Inserm 1263, Inrae 1260, Marseille, France
| | - Joevin Sourdon
- Aix-Marseille Université, CNRS, CRMBM, Marseille, France
- APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
- *Correspondence: Joevin Sourdon
| |
Collapse
|