1
|
Ghorashi AC, Boucher A, Archer-Hartmann SA, Zalem D, Taherzadeh Ghahfarrokhi M, Murray NB, Konada RSR, Zhang X, Xing C, Teneberg S, Azadi P, Yrlid U, Kohler JJ. Fucosylation of glycoproteins and glycolipids: opposing roles in cholera intoxication. Nat Chem Biol 2025; 21:555-566. [PMID: 39414978 DOI: 10.1038/s41589-024-01748-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/13/2024] [Indexed: 10/18/2024]
Abstract
Cholera toxin (CT) is the etiological agent of cholera. Here we report that multiple classes of fucosylated glycoconjugates function in CT binding and intoxication of intestinal epithelial cells. In Colo205 cells, knockout (KO) of B3GNT5, which encodes an enzyme required for synthesis of lacto and neolacto series glycosphingolipids (GSLs), reduces CT binding but sensitizes cells to intoxication. Overexpressing B3GNT5 to generate more fucosylated GSLs confers protection against intoxication, indicating that fucosylated GSLs act as decoy receptors for CT. KO of B3GALT5 causes increased production of fucosylated O-linked and N-linked glycoproteins and leads to increased CT binding and intoxication. KO of B3GNT5 in B3GALT5-KO cells eliminates production of fucosylated GSLs but increases intoxication, identifying fucosylated glycoproteins as functional receptors for CT. These findings provide insight into the molecular determinants regulating CT sensitivity of host cells.
Collapse
Affiliation(s)
- Atossa C Ghorashi
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Andrew Boucher
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | | | - Dani Zalem
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | | | - Nathan B Murray
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA, USA
| | | | - Xunzhi Zhang
- McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX, USA
| | - Chao Xing
- McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Susann Teneberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA, USA
| | - Ulf Yrlid
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Jennifer J Kohler
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
2
|
Cotton S, Ferreira D, Relvas‐Santos M, Brandão A, Afonso LP, Miranda A, Ferreira E, Santos B, Gonçalves M, Lopes P, Santos LL, Silva AMN, Ferreira JA. E-selectin affinity glycoproteomics reveals neuroendocrine proteins and the secretin receptor as a poor-prognosis signature in colorectal cancer. Mol Oncol 2025; 19:635-658. [PMID: 39508360 PMCID: PMC11887675 DOI: 10.1002/1878-0261.13733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/26/2024] [Accepted: 09/03/2024] [Indexed: 11/15/2024] Open
Abstract
Colorectal cancer (CRC) cells express sialylated Lewis antigens (sLe), crucial for metastasis via E-selectin binding. However, these glycoepitopes lack cancer specificity, and E-selectin-targeted glycoproteins remain largely unknown. Here, we established a framework for identifying metastasis-linked glycoproteoforms. More than 70% of CRC tumors exhibited overexpression of sLeA/X, yet without discernible associations with metastasis or survival. However, The Cancer Genome Atlas (TCGA) analysis unveiled differing expression patterns of sLeA/X-related glycogenes correlating with disease severity, indicating context-dependent regulation by distinct glycosyltransferases. Deeper exploration of metastatic tumor sialoglycoproteome identified nearly 600 glycoproteins, greatly expanding our understanding of the metastasis-related glycoproteome. These glycoproteins were linked to cell adhesion, oncogenic pathways, and neuroendocrine functions. Using an in-house algorithm, the secretin receptor (SCTR) emerged as a top-ranked targetable glycoprotein. Tumor screening confirmed SCTR's association with poor prognosis and metastasis, with N-glycosylation adding cancer specificity to this glycoprotein. Prognostic links were reinforced by TCGA-based investigations. In summary, SCTR, a relatively unknown CRC glycoprotein, holds potential as a biomarker of poor prognosis and as an E-selectin ligand, suggesting an unforeseen role in disease dissemination. Future investigations should focus on this glycoprotein's biological implications for clinical applications.
Collapse
Affiliation(s)
- Sofia Cotton
- Portuguese Oncology Institute of Porto (IPO‐Porto)/Porto Comprehensive Cancer Center (P.ccc) Raquel SerucaPortugal
- ICBAS ‐ School of Medicine and Biomedical SciencesUniversity of PortoPortugal
| | - Dylan Ferreira
- Portuguese Oncology Institute of Porto (IPO‐Porto)/Porto Comprehensive Cancer Center (P.ccc) Raquel SerucaPortugal
- ICBAS ‐ School of Medicine and Biomedical SciencesUniversity of PortoPortugal
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortugal
| | - Marta Relvas‐Santos
- Portuguese Oncology Institute of Porto (IPO‐Porto)/Porto Comprehensive Cancer Center (P.ccc) Raquel SerucaPortugal
- ICBAS ‐ School of Medicine and Biomedical SciencesUniversity of PortoPortugal
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortugal
- LAQV‐REQUIMTE, Department of Chemistry and Biochemistry, Faculty of SciencesUniversity of PortoPortugal
| | - Andreia Brandão
- Portuguese Oncology Institute of Porto (IPO‐Porto)/Porto Comprehensive Cancer Center (P.ccc) Raquel SerucaPortugal
| | - Luís Pedro Afonso
- Portuguese Oncology Institute of Porto (IPO‐Porto)/Porto Comprehensive Cancer Center (P.ccc) Raquel SerucaPortugal
- Pathology DepartmentPortuguese Oncology Institute of PortoPortugal
| | - Andreia Miranda
- Portuguese Oncology Institute of Porto (IPO‐Porto)/Porto Comprehensive Cancer Center (P.ccc) Raquel SerucaPortugal
- ICBAS ‐ School of Medicine and Biomedical SciencesUniversity of PortoPortugal
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortugal
| | - Eduardo Ferreira
- Portuguese Oncology Institute of Porto (IPO‐Porto)/Porto Comprehensive Cancer Center (P.ccc) Raquel SerucaPortugal
| | - Beatriz Santos
- Portuguese Oncology Institute of Porto (IPO‐Porto)/Porto Comprehensive Cancer Center (P.ccc) Raquel SerucaPortugal
- ICBAS ‐ School of Medicine and Biomedical SciencesUniversity of PortoPortugal
| | - Martina Gonçalves
- Portuguese Oncology Institute of Porto (IPO‐Porto)/Porto Comprehensive Cancer Center (P.ccc) Raquel SerucaPortugal
- ICBAS ‐ School of Medicine and Biomedical SciencesUniversity of PortoPortugal
| | - Paula Lopes
- Pathology DepartmentPortuguese Oncology Institute of PortoPortugal
| | - Lúcio Lara Santos
- Portuguese Oncology Institute of Porto (IPO‐Porto)/Porto Comprehensive Cancer Center (P.ccc) Raquel SerucaPortugal
- Health School of University Fernando PessoaPortoPortugal
- Department of Surgical OncologyPortuguese Oncology Institute of PortoPortugal
| | - André M. N. Silva
- ICBAS ‐ School of Medicine and Biomedical SciencesUniversity of PortoPortugal
- LAQV‐REQUIMTE, Department of Chemistry and Biochemistry, Faculty of SciencesUniversity of PortoPortugal
| | - José Alexandre Ferreira
- Portuguese Oncology Institute of Porto (IPO‐Porto)/Porto Comprehensive Cancer Center (P.ccc) Raquel SerucaPortugal
- ICBAS ‐ School of Medicine and Biomedical SciencesUniversity of PortoPortugal
| |
Collapse
|
3
|
Gadi MR, Han J, Shen T, Fan S, Xiao Z, Li L. Divergent synthesis of amino acid-linked O-GalNAc glycan core structures. Nat Protoc 2025; 20:480-517. [PMID: 39327537 DOI: 10.1038/s41596-024-01051-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 07/19/2024] [Indexed: 09/28/2024]
Abstract
O-GalNAc glycans, also known as mucin-type O-glycans, are primary constituents of mucins on various mucosal sites of the body and also ubiquitously expressed on cell surface and secreted proteins. They have crucial roles in a wide range of physiological and pathological processes, including tumor growth and progression. In addition, altered expression of O-GalNAc glycans is frequently observed during different disease states. Research dedicated to unraveling the structure-function relationships of O-GalNAc glycans has led to the discovery of disease biomarkers and diagnostic tools and the development of O-glycopeptide-based cancer vaccines. Many of these efforts require amino acid-linked O-GalNAc core structures as building blocks to assemble complex O-glycans and glycopeptides. There are eight core structures (cores one to eight), from which all mucin-type O-glycans are derived. In this protocol, we describe the first divergent synthesis of all eight cores from a versatile precursor in practical scales. The protocol involves (i) chemical synthesis of the orthogonally protected precursor (3 days) from commercially available materials, (ii) chemical synthesis of five unique glycosyl donors (1-2 days for each donor) and (iii) selective deprotection of the precursor and assembly of the eight cores (2-4 days for each core). The procedure can be adopted to prepare O-GalNAc cores linked to serine, threonine and tyrosine, which can then be utilized directly for solid-phase glycopeptide synthesis or chemoenzymatic synthesis of complex O-glycans. The procedure empowers researchers with fundamental organic chemistry skills to prepare gram scales of any desired O-GalNAc core(s) or all eight cores concurrently.
Collapse
Affiliation(s)
- Madhusudhan Reddy Gadi
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Jinghua Han
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Tangliang Shen
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Shuquan Fan
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Zhongying Xiao
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Lei Li
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
4
|
Bennett AR, Lundstrøm J, Chatterjee S, Thaysen-Andersen M, Bojar D. Compositional data analysis enables statistical rigor in comparative glycomics. Nat Commun 2025; 16:795. [PMID: 39824855 PMCID: PMC11748655 DOI: 10.1038/s41467-025-56249-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 01/13/2025] [Indexed: 01/20/2025] Open
Abstract
Comparative glycomics data are compositional data, where measured glycans are parts of a whole, indicated by relative abundances. Applying traditional statistical analyses to these data often results in misleading conclusions, such as spurious "decreases" of glycans when other structures increase in abundance, or high false-positive rates for differential abundance. Our work introduces a compositional data analysis framework, tailored to comparative glycomics, to account for these data dependencies. We employ center log-ratio and additive log-ratio transformations, augmented with a scale uncertainty/information model, to introduce a statistically robust and sensitive data analysis pipeline. Applied to comparative glycomics datasets, including known glycan concentrations in defined mixtures, this approach controls false-positive rates and results in reproducible biological findings. Additionally, we present specialized analysis modalities: alpha- and beta-diversity analyze glycan distributions within and between samples, while cross-class glycan correlations shed light on previously undetected interdependencies. These approaches reveal insights into glycome variations that are critical to understanding roles of glycans in health and disease.
Collapse
Affiliation(s)
- Alexander R Bennett
- Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Jon Lundstrøm
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Sayantani Chatterjee
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia
| | - Morten Thaysen-Andersen
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan
| | - Daniel Bojar
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
5
|
Jame-Chenarboo F, Reyes JN, Twells NM, Ng HH, Macdonald D, Hernando E, Mahal LK. Screening the human miRNA interactome reveals coordinated up-regulation in melanoma, adding bidirectional regulation to miRNA networks. SCIENCE ADVANCES 2025; 11:eadr0277. [PMID: 39792681 PMCID: PMC11721578 DOI: 10.1126/sciadv.adr0277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025]
Abstract
Cellular protein expression is coordinated posttranscriptionally by an intricate regulatory network. The current presumption is that microRNAs (miRNAs) work by repression of functionally related targets within a system. In recent work, up-regulation of protein expression via direct interactions of messenger RNA with miRNA has been found in dividing cells, providing an additional mechanism of regulation. Herein, we demonstrate coordinated up-regulation of functionally coupled proteins by miRNA. We focused on CD98hc, the heavy chain of the amino acid transporter LAT-1, and α-2,3-sialyltransferases ST3GAL1 and ST3GAL2, which are critical for CD98hc stability in melanoma. Profiling miRNA regulation using our high-throughput miRFluR assay, we identified miRNA that up-regulated the expression of both CD98hc and either ST3GAL1 or ST3GAL2. These co-up-regulating miRNAs were enriched in melanoma datasets associated with transformation and progression. Our findings add co-up-regulation by miRNA into miRNA regulatory networks and add a bidirectional twist to the impact miRNAs have on protein regulation and glycosylation.
Collapse
Affiliation(s)
| | - Joseph N. Reyes
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | | | - Hoi Hei Ng
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | - Dawn Macdonald
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | - Eva Hernando
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Lara K. Mahal
- Department of Chemistry, University of Alberta, Edmonton, Canada
| |
Collapse
|
6
|
Ma X, Li M, Wang X, Qi G, Wei L, Zhang D. Sialylation in the gut: From mucosal protection to disease pathogenesis. Carbohydr Polym 2024; 343:122471. [PMID: 39174097 DOI: 10.1016/j.carbpol.2024.122471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/19/2024] [Accepted: 07/07/2024] [Indexed: 08/24/2024]
Abstract
Sialylation, a crucial post-translational modification of glycoconjugates, entails the attachment of sialic acid (SA) to the terminal glycans of glycoproteins and glycolipids through a tightly regulated enzymatic process involving various enzymes. This review offers a comprehensive exploration of sialylation within the gut, encompassing its involvement in mucosal protection and its impact on disease progression. The sialylation of mucins and epithelial glycoproteins contributes to the integrity of the intestinal mucosal barrier. Furthermore, sialylation regulates immune responses in the gut, shaping interactions among immune cells, as well as their activation and tolerance. Additionally, the gut microbiota and gut-brain axis communication are involved in the role of sialylation in intestinal health. Altered sialylation patterns have been implicated in various intestinal diseases, including inflammatory bowel disease (IBD), colorectal cancer (CRC), and other intestinal disorders. Emerging research underscores sialylation as a promising avenue for diagnostic, prognostic, and therapeutic interventions in intestinal diseases. Potential strategies such as sialic acid supplementation, inhibition of sialidases, immunotherapy targeting sialylated antigens, and modulation of sialyltransferases have been utilized in the treatment of intestinal diseases. Future research directions will focus on elucidating the molecular mechanisms underlying sialylation alterations, identifying sialylation-based biomarkers, and developing targeted interventions for precision medicine approaches.
Collapse
Affiliation(s)
- Xueni Ma
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Muyang Li
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xiaochun Wang
- Department of Gastroenterology, Gansu Provincial Hospital, Lanzhou, China
| | - Guoqing Qi
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, China
| | - Lina Wei
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, China
| | - Dekui Zhang
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, China; Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, China.
| |
Collapse
|
7
|
Bhirud D, Bhattacharya S, Prajapati BG. Bioengineered carbohydrate polymers for colon-specific drug release: Current trends and future prospects. J Biomed Mater Res A 2024; 112:1860-1872. [PMID: 38721841 DOI: 10.1002/jbm.a.37732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/15/2024] [Accepted: 04/25/2024] [Indexed: 09/03/2024]
Abstract
The worldwide health burden of colorectal cancer is still substantial, and traditional chemotherapeutic drugs sometimes have poor selectivity, which can result in systemic toxicity and unfavorable side effects. For colon-specific medication delivery, bioengineered carbohydrate polymers have shown promise as carriers. They may enhance treatment effectiveness while minimizing systemic exposure and associated side effects. The unique properties of these manufactured or naturally occurring biopolymers, such as hyaluronic acid, chitosan, alginate, and pectin, enable targeted medicine release. These qualities can be changed to meet the physiological needs of the colon. In the context of colorectal cancer therapy, this article provides a comprehensive overview of current developments and prospective future directions in the field of bioengineered carbohydrate polymer synthesis for colon-specific drug delivery. We discuss numerous techniques for achieving colon-targeted drug release, including enzyme-sensitive polymers, pH-responsive devices, and microbiota-activated processes. To increase tumor selectivity and cellular uptake, we also examine the inclusion of active targeting approaches, such as conjugating specific ligands. Furthermore, we discuss the potential of combination treatment strategies, which use the coadministration of numerous therapeutic medications to target multiple pathways implicated in cancer growth and address drug resistance mechanisms. We address recent biomimetic advances that potentially improve the biocompatibility, cellular uptake, and tumor penetration of carbohydrate polymer-based nanocarriers. These methods involve protein corona engineering and cell membrane coating. Furthermore, we look at the possibility of intelligent and sensitive systems that may adjust their behaviors in response to certain inputs or feedback loops, allowing for precise and regulated drug distribution.
Collapse
Affiliation(s)
- Darshan Bhirud
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM's NMIMS Deemed-to-be University, Shirpur, Maharashtra, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM's NMIMS Deemed-to-be University, Shirpur, Maharashtra, India
| | - Bhupendra G Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Shree S.K. Patel College of Pharmaceutical Education & Research, Mehsana, Gujarat, India
| |
Collapse
|
8
|
J M, Sanji AS, Gurav MJ, Megalamani PH, Vanti G, Kurjogi M, Kaulgud R, Kennedy JF, Chachadi VB. Overexpression of sialyl Lewis a carrying mucin-type glycoprotein in prostate cancer cell line contributes to aggressiveness and metastasis. Int J Biol Macromol 2024; 281:136519. [PMID: 39401629 DOI: 10.1016/j.ijbiomac.2024.136519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/20/2024]
Abstract
Metastasis-promoting Lewis and sialyl Lewis antigens expressed on glycoproteins such as mucins are frequently displayed on the surface of prostate cancer cells and could thus be ideal candidates as measures of prostate cancer aggressiveness. The current study describes the altered expression of sialyl Lewisa (sLea) antigen attached to glycoproteins and key glycosyltransferases between normal prostate (RWPE-1) and cancerous cell lines (LNCaP and DU145). Our results suggest that the expression of sLea on different glycoproteins correlates with the aggressiveness of prostate cancer cells, as determined by flow cytometry and fluorescence microscopy. Blotting studies revealed that sLea-bearing glycoproteins, similar to mucins, are predominantly expressed in the more aggressive DU145 cells, followed by LNCaP cells. Immunohistochemistry technique showed a gradient of sLea expression, with low levels in low-grade prostate cancer (stage II/III) and increasing levels in high-grade cancer (stage IV), indicating its potential as a prognostic marker. Additionally, in qRT-PCR analysis significant upregulation of the glycosyltransferases GALNT5 and ST3GAL6 was observed, correlating with the increased sLea expression in LNCaP (3.2- and 14.5-fold) and DU145 (3.3- and 23.75-fold) cells. Our data indicates a correlation between sLea selectin ligand expression and prostate cancer aggressiveness. Furthermore, GALNT5 and ST3GAL6 could serve as benchmarks in PCa malignancy.
Collapse
Affiliation(s)
- Manasa J
- P.G. Department of Studies in Biochemistry, Karnatak University, Dharwad 580 003, India
| | - Ashwini S Sanji
- P.G. Department of Studies in Biochemistry, Karnatak University, Dharwad 580 003, India
| | - Maruti J Gurav
- P.G. Department of Studies in Biochemistry, Karnatak University, Dharwad 580 003, India
| | - Prasanna H Megalamani
- P.G. Department of Studies in Biochemistry, Karnatak University, Dharwad 580 003, India
| | - Gulamnabi Vanti
- Multidisciplinary Research Unit (MRU), Karnataka Institute of Medical Sciences, Hubli 05, India
| | - Mahantesh Kurjogi
- Multidisciplinary Research Unit (MRU), Karnataka Institute of Medical Sciences, Hubli 05, India
| | - Ram Kaulgud
- Multidisciplinary Research Unit (MRU), Karnataka Institute of Medical Sciences, Hubli 05, India
| | - John F Kennedy
- Chembiotech Ltd, Kyrewood House, Tenbury Wells WR15 8FF, UK
| | - Vishwanath B Chachadi
- P.G. Department of Studies in Biochemistry, Karnatak University, Dharwad 580 003, India.
| |
Collapse
|
9
|
Wang Y, Lei K, Zhao L, Zhang Y. Clinical glycoproteomics: methods and diseases. MedComm (Beijing) 2024; 5:e760. [PMID: 39372389 PMCID: PMC11450256 DOI: 10.1002/mco2.760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 10/08/2024] Open
Abstract
Glycoproteins, representing a significant proportion of posttranslational products, play pivotal roles in various biological processes, such as signal transduction and immune response. Abnormal glycosylation may lead to structural and functional changes of glycoprotein, which is closely related to the occurrence and development of various diseases. Consequently, exploring protein glycosylation can shed light on the mechanisms behind disease manifestation and pave the way for innovative diagnostic and therapeutic strategies. Nonetheless, the study of clinical glycoproteomics is fraught with challenges due to the low abundance and intricate structures of glycosylation. Recent advancements in mass spectrometry-based clinical glycoproteomics have improved our ability to identify abnormal glycoproteins in clinical samples. In this review, we aim to provide a comprehensive overview of the foundational principles and recent advancements in clinical glycoproteomic methodologies and applications. Furthermore, we discussed the typical characteristics, underlying functions, and mechanisms of glycoproteins in various diseases, such as brain diseases, cardiovascular diseases, cancers, kidney diseases, and metabolic diseases. Additionally, we highlighted potential avenues for future development in clinical glycoproteomics. These insights provided in this review will enhance the comprehension of clinical glycoproteomic methods and diseases and promote the elucidation of pathogenesis and the discovery of novel diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Yujia Wang
- Department of General Practice Ward/International Medical Center WardGeneral Practice Medical Center and Institutes for Systems GeneticsWest China HospitalSichuan UniversityChengduChina
| | - Kaixin Lei
- Department of General Practice Ward/International Medical Center WardGeneral Practice Medical Center and Institutes for Systems GeneticsWest China HospitalSichuan UniversityChengduChina
| | - Lijun Zhao
- Department of General Practice Ward/International Medical Center WardGeneral Practice Medical Center and Institutes for Systems GeneticsWest China HospitalSichuan UniversityChengduChina
| | - Yong Zhang
- Department of General Practice Ward/International Medical Center WardGeneral Practice Medical Center and Institutes for Systems GeneticsWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
10
|
Mohamed KA, Kruf S, Büll C. Putting a cap on the glycome: Dissecting human sialyltransferase functions. Carbohydr Res 2024; 544:109242. [PMID: 39167930 DOI: 10.1016/j.carres.2024.109242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/24/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024]
Abstract
Human glycans are capped with sialic acids and these nine-carbon sugars mediate many of the biological functions and interactions of glycans. Structurally diverse sialic acid caps mark human cells as self and they form the ligands for the Siglec immune receptors and other glycan-binding proteins. Sialic acids enable host interactions with the human microbiome and many human pathogens utilize sialic acids to infect host cells. Alterations in sialic acid-carrying glycans, sialoglycans, can be found in every major human disease including inflammatory conditions and cancer. Twenty sialyltransferase family members in the Golgi apparatus of human cells transfer sialic acids to distinct glycans and glycoconjugates. Sialyltransferases catalyze specific reactions to form unique sialoglycans or they have shared functions where multiple family members generate the same sialoglycan product. Moreover, some sialyltransferases compete for the same glycan substrate, but create different sialic acid caps. The redundant and competing functions make it difficult to understand the individual roles of the human sialyltransferases in biology and to reveal the specific contributions to pathobiological processes. Recent insights hint towards the existence of biosynthetic rules formed by the individual functions of sialyltransferases, their interactions, and cues from the local Golgi environment that coordinate sialoglycan biosynthesis. In this review, we discuss the current structural and functional understanding of the human sialyltransferase family and we review recent technological advances that enable the dissection of individual sialyltransferase activities.
Collapse
Affiliation(s)
- Khadra A Mohamed
- Department of Biomolecular Chemistry, Institute for Molecules and Materials, Faculty of Science, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ, Nijmegen, the Netherlands
| | - Stijn Kruf
- Department of Biomolecular Chemistry, Institute for Molecules and Materials, Faculty of Science, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ, Nijmegen, the Netherlands
| | - Christian Büll
- Department of Biomolecular Chemistry, Institute for Molecules and Materials, Faculty of Science, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ, Nijmegen, the Netherlands.
| |
Collapse
|
11
|
Zhang T, Wang W, Wuhrer M, de Haan N. Comprehensive O-Glycan Analysis by Porous Graphitized Carbon Nanoliquid Chromatography-Mass Spectrometry. Anal Chem 2024; 96:8942-8948. [PMID: 38758656 PMCID: PMC11154684 DOI: 10.1021/acs.analchem.3c05826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024]
Abstract
The diverse and unpredictable structures of O-GalNAc-type protein glycosylation present a challenge for its structural and functional characterization in a biological system. Porous graphitized carbon (PGC) liquid chromatography (LC) coupled to mass spectrometry (MS) has become one of the most powerful methods for the global analysis of glycans in complex biological samples, mainly due to the extensive chromatographic separation of (isomeric) glycan structures and the information delivered by collision induced fragmentation in negative mode MS for structural elucidation. However, current PGC-based methodologies fail to detect the smaller glycan species consisting of one or two monosaccharides, such as the Tn (single GalNAc) antigen, which is broadly implicated in cancer biology. This limitation is caused by the loss of small saccharides during sample preparation and LC. Here, we improved the conventional PGC nano-LC-MS/MS-based strategy for O-glycan analysis, enabling the detection of truncated O-glycan species and improving isomer separation. This was achieved by the implementation of 2.7 μm PGC particles in both the trap and analytical LC columns, which provided an enhanced binding capacity and isomer separation for O-glycans. Furthermore, a novel mixed-mode PGC-boronic acid-solid phase extraction during sample preparation was established to purify a broad range of glycans in an unbiased manner, including the previously missed mono- and disaccharides. Taken together, the optimized PGC nano-LC-MS/MS platform presents a powerful component of the toolbox for comprehensive O-glycan characterization.
Collapse
Affiliation(s)
- Tao Zhang
- Center for Proteomics and
Metabolomics, Leiden University Medical
Center, P.O. Box 9600, Leiden 2300 RC, The Netherlands
| | - Wenjun Wang
- Center for Proteomics and
Metabolomics, Leiden University Medical
Center, P.O. Box 9600, Leiden 2300 RC, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and
Metabolomics, Leiden University Medical
Center, P.O. Box 9600, Leiden 2300 RC, The Netherlands
| | - Noortje de Haan
- Center for Proteomics and
Metabolomics, Leiden University Medical
Center, P.O. Box 9600, Leiden 2300 RC, The Netherlands
| |
Collapse
|
12
|
Zhang SZ, Lobo A, Li PF, Zhang YF. Sialylated glycoproteins and sialyltransferases in digestive cancers: Mechanisms, diagnostic biomarkers, and therapeutic targets. Crit Rev Oncol Hematol 2024; 197:104330. [PMID: 38556071 DOI: 10.1016/j.critrevonc.2024.104330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 04/02/2024] Open
Abstract
Sialic acid (SA), as the ultimate epitope of polysaccharides, can act as a cap at the end of polysaccharide chains to prevent their overextension. Sialylation is the enzymatic process of transferring SA residues onto polysaccharides and is catalyzed by a group of enzymes known as sialyltransferases (SiaTs). It is noteworthy that the sialylation level of glycoproteins is significantly altered when digestive cancer occurs. And this alteration exhibits a close correlation with the progression of these cancers. In this review, from the perspective of altered SiaTs expression levels and changed glycoprotein sialylation patterns, we summarize the pathogenesis of gastric cancer (GC), colorectal cancer (CRC), pancreatic ductal adenocarcinoma (PDAC), and hepatocellular carcinoma (HCC). Furthermore, we propose potential early diagnostic biomarkers and prognostic indicators for different digestive cancers. Finally, we summarize the therapeutic value of sialylation in digestive system cancers.
Collapse
Affiliation(s)
- Shao-Ze Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Amara Lobo
- Department of Critical Care Medicine Holy Family Hospital, St Andrew's Road, Bandra (West), Mumbai 400050, India
| | - Pei-Feng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| | - Yin-Feng Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
13
|
Tian H, Yu JL, Chu X, Guan Q, Liu J, Liu Y. Unraveling the role of C1GALT1 in abnormal glycosylation and colorectal cancer progression. Front Oncol 2024; 14:1389713. [PMID: 38699634 PMCID: PMC11063370 DOI: 10.3389/fonc.2024.1389713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 03/25/2024] [Indexed: 05/05/2024] Open
Abstract
C1GALT1 plays a pivotal role in colorectal cancer (CRC) development and progression through its involvement in various molecular mechanisms. This enzyme is central to the O-glycosylation process, producing tumor-associated carbohydrate antigens (TACA) like Tn and sTn, which are linked to cancer metastasis and poor prognosis. The interaction between C1GALT1 and core 3 synthase is crucial for the synthesis of core 3 O-glycans, essential for gastrointestinal health and mucosal barrier integrity. Aberrations in this pathway can lead to CRC development. Furthermore, C1GALT1's function is significantly influenced by its molecular chaperone, Cosmc, which is necessary for the proper folding of T-synthase. Dysregulation in this complex interaction contributes to abnormal O-glycan regulation, facilitating cancer progression. Moreover, C1GALT1 affects downstream signaling pathways and cellular behaviors, such as the epithelial-mesenchymal transition (EMT), by modifying O-glycans on key receptors like FGFR2, enhancing cancer cell invasiveness and metastatic potential. Additionally, the enzyme's relationship with MUC1, a mucin protein with abnormal glycosylation in CRC, highlights its role in cancer cell immune evasion and metastasis. Given these insights, targeting C1GALT1 presents a promising therapeutic strategy for CRC, necessitating further research to develop targeted inhibitors or activators. Future efforts should also explore C1GALT1's potential as a biomarker for early diagnosis, prognosis, and treatment response monitoring in CRC, alongside investigating combination therapies to improve patient outcomes.
Collapse
Affiliation(s)
- Hong Tian
- Department of Oncology, Fourth People’s Hospital in Shenyang, China Medical University, Shenyang, China
| | - Jia-Li Yu
- Department of Gastroenterology, The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
| | - Xiaoli Chu
- Department of Oncology, Fourth People’s Hospital in Shenyang, China Medical University, Shenyang, China
| | - Qi Guan
- Department of Oncology, Fourth People’s Hospital in Shenyang, China Medical University, Shenyang, China
| | - Juan Liu
- Department of Oncology, Fourth People’s Hospital in Shenyang, China Medical University, Shenyang, China
| | - Ying Liu
- Department of Oncology, Fourth People’s Hospital in Shenyang, China Medical University, Shenyang, China
| |
Collapse
|
14
|
Soares J, Eiras M, Ferreira D, Santos DAR, Relvas-Santos M, Santos B, Gonçalves M, Ferreira E, Vieira R, Afonso LP, Santos LL, Dinis-Ribeiro M, Lima L, Ferreira JA. Stool Glycoproteomics Signatures of Pre-Cancerous Lesions and Colorectal Cancer. Int J Mol Sci 2024; 25:3722. [PMID: 38612533 PMCID: PMC11012158 DOI: 10.3390/ijms25073722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Colorectal cancer (CRC) screening relies primarily on stool analysis to identify occult blood. However, its sensitivity for detecting precancerous lesions is limited, requiring the development of new tools to improve CRC screening. Carcinogenesis involves significant alterations in mucosal epithelium glycocalyx that decisively contribute to disease progression. Building on this knowledge, we examined patient series comprehending premalignant lesions, colorectal tumors, and healthy controls for the T-antigen-a short-chain O-glycosylation of proteins considered a surrogate marker of malignancy in multiple solid cancers. We found the T-antigen in the secretions of dysplastic lesions as well as in cancer. In CRC, T-antigen expression was associated with the presence of distant metastases. In parallel, we analyzed a broad number of stools from individuals who underwent colonoscopy, which showed high T expressions in high-grade dysplasia and carcinomas. Employing mass spectrometry-based lectin-affinity enrichment, we identified a total of 262 proteins, 67% of which potentially exhibited altered glycosylation patterns associated with cancer and advanced pre-cancerous lesions. Also, we found that the stool (glyco)proteome of pre-cancerous lesions is enriched for protein species involved in key biological processes linked to humoral and innate immune responses. This study offers a thorough analysis of the stool glycoproteome, laying the groundwork for harnessing glycosylation alterations to improve non-invasive cancer detection.
Collapse
Affiliation(s)
- Janine Soares
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal; (J.S.); (M.E.); (D.F.); (D.A.R.S.); (M.R.-S.); (B.S.); (M.G.); (E.F.); (L.P.A.); (L.L.S.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- REQUIMTE-LAQV, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mariana Eiras
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal; (J.S.); (M.E.); (D.F.); (D.A.R.S.); (M.R.-S.); (B.S.); (M.G.); (E.F.); (L.P.A.); (L.L.S.)
| | - Dylan Ferreira
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal; (J.S.); (M.E.); (D.F.); (D.A.R.S.); (M.R.-S.); (B.S.); (M.G.); (E.F.); (L.P.A.); (L.L.S.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- Center for Applied Medical Research, University of Navarra, 31008 Pamplona, Spain
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB-Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Daniela A. R. Santos
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal; (J.S.); (M.E.); (D.F.); (D.A.R.S.); (M.R.-S.); (B.S.); (M.G.); (E.F.); (L.P.A.); (L.L.S.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- Faculty of Medicine (FMUP), University of Porto, 4200-072 Porto, Portugal;
| | - Marta Relvas-Santos
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal; (J.S.); (M.E.); (D.F.); (D.A.R.S.); (M.R.-S.); (B.S.); (M.G.); (E.F.); (L.P.A.); (L.L.S.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB-Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- REQUIMTE-LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Beatriz Santos
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal; (J.S.); (M.E.); (D.F.); (D.A.R.S.); (M.R.-S.); (B.S.); (M.G.); (E.F.); (L.P.A.); (L.L.S.)
| | - Martina Gonçalves
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal; (J.S.); (M.E.); (D.F.); (D.A.R.S.); (M.R.-S.); (B.S.); (M.G.); (E.F.); (L.P.A.); (L.L.S.)
| | - Eduardo Ferreira
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal; (J.S.); (M.E.); (D.F.); (D.A.R.S.); (M.R.-S.); (B.S.); (M.G.); (E.F.); (L.P.A.); (L.L.S.)
| | - Renata Vieira
- Department of Pathology, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal;
| | - Luís Pedro Afonso
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal; (J.S.); (M.E.); (D.F.); (D.A.R.S.); (M.R.-S.); (B.S.); (M.G.); (E.F.); (L.P.A.); (L.L.S.)
- Department of Pathology, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal;
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal; (J.S.); (M.E.); (D.F.); (D.A.R.S.); (M.R.-S.); (B.S.); (M.G.); (E.F.); (L.P.A.); (L.L.S.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- FF-I3ID, University Fernando Pessoa, 4249-004 Porto, Portugal
- GlycoMatters Biotech, 4500-162 Espinho, Portugal
- Department of Surgical Oncology, Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal
| | - Mário Dinis-Ribeiro
- Faculty of Medicine (FMUP), University of Porto, 4200-072 Porto, Portugal;
- Precancerous Lesions and Early Cancer Management Group, Research Center of IPO Porto (CI-IPOP), Rise@CI-IPOP (Health Research Group), Portuguese Institute of Oncology of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal
- Department of Gastroenterology, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal
| | - Luís Lima
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal; (J.S.); (M.E.); (D.F.); (D.A.R.S.); (M.R.-S.); (B.S.); (M.G.); (E.F.); (L.P.A.); (L.L.S.)
| | - José Alexandre Ferreira
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal; (J.S.); (M.E.); (D.F.); (D.A.R.S.); (M.R.-S.); (B.S.); (M.G.); (E.F.); (L.P.A.); (L.L.S.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- GlycoMatters Biotech, 4500-162 Espinho, Portugal
| |
Collapse
|
15
|
Rodriguez E, Lindijer DV, van Vliet SJ, Garcia Vallejo JJ, van Kooyk Y. The transcriptional landscape of glycosylation-related genes in cancer. iScience 2024; 27:109037. [PMID: 38384845 PMCID: PMC10879703 DOI: 10.1016/j.isci.2024.109037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/12/2023] [Accepted: 01/23/2024] [Indexed: 02/23/2024] Open
Abstract
Changes in glycosylation patterns have been associated with malignant transformation and clinical outcomes in several cancer types, prompting ongoing research into the mechanisms involved and potential clinical applications. In this study, we performed an extensive transcriptomic analysis of glycosylation-related genes and pathways, using publicly available bulk and single cell transcriptomic datasets from tumor samples and cancer cell lines. We identified genes and pathways strongly associated with different tumor types, which may represent novel diagnostic biomarkers. By using single cell RNA-seq data, we characterized the contribution of different cell types to the overall tumor glycosylation. Transcriptomic analysis of cancer cell lines revealed that they present a simplified landscape of genes compared to tissue. Lastly, we describe the association of different genes and pathways with the clinical outcome of patients. These results can serve as a resource for future research aimed to unravel the role of the glyco-code in cancer.
Collapse
Affiliation(s)
- Ernesto Rodriguez
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, De Boelelaan 1117, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Cancer Immunology, Amsterdam, the Netherlands
| | - Dimitri V. Lindijer
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, De Boelelaan 1117, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Cancer Immunology, Amsterdam, the Netherlands
| | - Sandra J. van Vliet
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, De Boelelaan 1117, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Cancer Immunology, Amsterdam, the Netherlands
| | - Juan J. Garcia Vallejo
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, De Boelelaan 1117, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Cancer Immunology, Amsterdam, the Netherlands
| | - Yvette van Kooyk
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, De Boelelaan 1117, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Cancer Immunology, Amsterdam, the Netherlands
| |
Collapse
|
16
|
Lundstrøm J, Urban J, Bojar D. Decoding glycomics with a suite of methods for differential expression analysis. CELL REPORTS METHODS 2023; 3:100652. [PMID: 37992708 PMCID: PMC10753297 DOI: 10.1016/j.crmeth.2023.100652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/04/2023] [Accepted: 10/30/2023] [Indexed: 11/24/2023]
Abstract
Glycomics, the comprehensive profiling of all glycan structures in samples, is rapidly expanding to enable insights into physiology and disease mechanisms. However, glycan structure complexity and glycomics data interpretation present challenges, especially for differential expression analysis. Here, we present a framework for differential glycomics expression analysis. Our methodology encompasses specialized and domain-informed methods for data normalization and imputation, glycan motif extraction and quantification, differential expression analysis, motif enrichment analysis, time series analysis, and meta-analytic capabilities, synthesizing results across multiple studies. All methods are integrated into our open-source glycowork package, facilitating performant workflows and user-friendly access. We demonstrate these methods using dedicated simulations and glycomics datasets of N-, O-, lipid-linked, and free glycans. Differential expression tests here focus on human datasets and cancer vs. healthy tissue comparisons. Our rigorous approach allows for robust, reliable, and comprehensive differential expression analyses in glycomics, contributing to advancing glycomics research and its translation to clinical and diagnostic applications.
Collapse
Affiliation(s)
- Jon Lundstrøm
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 41390 Gothenburg, Sweden
| | - James Urban
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Daniel Bojar
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 41390 Gothenburg, Sweden.
| |
Collapse
|
17
|
Tian J, Zhu Q, Huang X, Li Y. A new sandwich-type electrochemiluminescence sensor based on HPSNs-NH2@Au NPs and AuPdPt NPs for determination of α(2,3)-sial-Gs. Mikrochim Acta 2023; 190:420. [PMID: 37770767 DOI: 10.1007/s00604-023-06000-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/13/2023] [Indexed: 09/30/2023]
Abstract
A novel sandwich-type "on-off" electrochemiluminescence (ECL) biosensor for the determination of α(2,3)-sial-Gs was designed. Specifically, amino-functionalized porous silica nanoparticles (HPSNs-NH2) were first prepared and then decorated with gold nanoparticles (Au NPs) to form HPSNs-NH2@Au NP nanocomposite, which exhibited a strong ability to enhance ECL intensity with K2S2O8 as co-reactant (signal-on) and could immobilize the target-specific binding molecules of maackia amurensis lectin (MAL). Additionally, AuPdPt trimetallic nanoparticles were prepared to serve as a quenched ECL signal indicator (signal-off) with the ability of capturing the target non-specific binding molecules of 3-aminophenylboronic acid (APBA) to form a signal label. The sandwich-type ECL biosensor was constructed based on the structure of MAL-α(2,3)-sial-Gs-APBA and achieved a determination toward α(2,3)-sial-Gs with a wide linear range from 1 fg mL-1 to 10 ng mL-1 and a low detection limit of 0.5 fg mL-1. Furthermore, the proposed ECL biosensor showed satisfactory selectivity, stability, and reproducibility for α(2,3)-sial-Gs determination.
Collapse
Affiliation(s)
- Jiangman Tian
- Department of Pharmacy, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, PR China
| | - Qihao Zhu
- Department of Pharmacy, Yongchuan Hospital of Traditional Chinese Medicine, Chongqing, 402160, PR China
| | - Xiaojing Huang
- Central Laboratory, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, PR China
| | - Yuan Li
- Central Laboratory, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, PR China.
| |
Collapse
|
18
|
Guo W, Hu Y, Qian J, Zhu L, Cheng J, Liao J, Fan X. Laser capture microdissection for biomedical research: towards high-throughput, multi-omics, and single-cell resolution. J Genet Genomics 2023; 50:641-651. [PMID: 37544594 DOI: 10.1016/j.jgg.2023.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/08/2023]
Abstract
Spatial omics technologies have become powerful methods to provide valuable insights into cells and tissues within a complex context, significantly enhancing our understanding of the intricate and multifaceted biological system. With an increasing focus on spatial heterogeneity, there is a growing need for unbiased, spatially resolved omics technologies. Laser capture microdissection (LCM) is a cutting-edge method for acquiring spatial information that can quickly collect regions of interest (ROIs) from heterogeneous tissues, with resolutions ranging from single cells to cell populations. Thus, LCM has been widely used for studying the cellular and molecular mechanisms of diseases. This review focuses on the differences among four types of commonly used LCM technologies and their applications in omics and disease research. Key attributes of application cases are also highlighted, such as throughput and spatial resolution. In addition, we comprehensively discuss the existing challenges and the great potential of LCM in biomedical research, disease diagnosis, and targeted therapy from the perspective of high-throughput, multi-omics, and single-cell resolution.
Collapse
Affiliation(s)
- Wenbo Guo
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China
| | - Yining Hu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China
| | - Jingyang Qian
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China
| | - Lidan Zhu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China
| | - Junyun Cheng
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China
| | - Jie Liao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China.
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China.
| |
Collapse
|
19
|
Ghorashi AC, Boucher A, Archer-Hartmann SA, Murray NB, Konada RSR, Zhang X, Xing C, Azadi P, Yrlid U, Kohler JJ. Fucosylated glycoproteins and fucosylated glycolipids play opposing roles in cholera intoxication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.02.551727. [PMID: 37577488 PMCID: PMC10418270 DOI: 10.1101/2023.08.02.551727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Cholera toxin (CT) is the etiological agent of cholera. Here we report that multiple classes of fucosylated glycoconjugates function in CT binding and intoxication of intestinal epithelial cells. In Colo205 cells, knockout of B3GNT5, the enzyme required for synthesis of lacto- and neolacto-series glycosphingolipids (GSLs), reduces CT binding but sensitizes cells to intoxication. Overexpressing B3GNT5 to generate more fucosylated GSLs confers protection against intoxication, indicating that fucosylated GSLs act as decoy receptors for CT. Knockout (KO) of B3GALT5 causes increased production of fucosylated O-linked and N-linked glycoproteins, and leads to increased CT binding and intoxication. Knockout of B3GNT5 in B3GALT5 KO cells eliminates production of fucosylated GSLs but increases intoxication, identifying fucosylated glycoproteins as functional receptors for CT. These findings provide insight into molecular determinants regulating CT sensitivity of host cells.
Collapse
Affiliation(s)
- Atossa C. Ghorashi
- Department of Biochemistry, UT Southwestern Medical Center, Dallas TX 75390 USA
| | - Andrew Boucher
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | | | - Nathan B. Murray
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | | | - Xunzhi Zhang
- McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas TX 75390 USA
| | - Chao Xing
- McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas TX 75390 USA
- Department of Bioinformatics, UT Southwestern Medical Center, Dallas TX 75390 USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Ulf Yrlid
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Jennifer J. Kohler
- Department of Biochemistry, UT Southwestern Medical Center, Dallas TX 75390 USA
| |
Collapse
|
20
|
Pinto D, Parameswaran R. Role of Truncated O-GalNAc Glycans in Cancer Progression and Metastasis in Endocrine Cancers. Cancers (Basel) 2023; 15:3266. [PMID: 37444377 DOI: 10.3390/cancers15133266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Glycans are an essential part of cells, playing a fundamental role in many pathophysiological processes such as cell differentiation, adhesion, motility, signal transduction, host-pathogen interactions, tumour cell invasion, and metastasis development. These glycans are also able to exert control over the changes in tumour immunogenicity, interfering with tumour-editing events and leading to immune-resistant cancer cells. The incomplete synthesis of O-glycans or the formation of truncated glycans such as the Tn-antigen (Thomsen nouveau; GalNAcα- Ser/Thr), its sialylated version the STn-antigen (sialyl-Tn; Neu5Acα2-6GalNAcα-Ser/Thr) and the elongated T-antigen (Thomsen-Friedenreich; Galβ1-3GalNAcα-Ser/Thr) has been shown to be associated with tumour progression and metastatic state in many human cancers. Prognosis in various human cancers is significantly poor when they dedifferentiate or metastasise. Recent studies in glycobiology have shown truncated O-glycans to be a hallmark of cancer cells, and when expressed, increase the oncogenicity by promoting dedifferentiation, risk of metastasis by impaired adhesion (mediated by selectins and integrins), and resistance to immunological killing by NK cells. Insight into these truncated glycans provides a complimentary and attractive route for cancer antigen discovery. The recent emergence of immunotherapies against cancers is predicted to harness the potential of using such agents against cancer-associated truncated glycans. In this review, we explore the role of truncated O-glycans in cancer progression and metastasis along with some recent studies on the role of O-glycans in endocrine cancers affecting the thyroid and adrenal gland.
Collapse
Affiliation(s)
- Diluka Pinto
- Division of Endocrine Surgery, National University Hospital, Singapore 119074, Singapore
| | - Rajeev Parameswaran
- Division of Endocrine Surgery, National University Hospital, Singapore 119074, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| |
Collapse
|
21
|
van der Burgt Y, Wuhrer M. The role of clinical glyco(proteo)mics in precision medicine. Mol Cell Proteomics 2023:100565. [PMID: 37169080 DOI: 10.1016/j.mcpro.2023.100565] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/12/2023] [Accepted: 05/02/2023] [Indexed: 05/13/2023] Open
Abstract
Glycoproteomics reveals site-specific O- and N-glycosylation that may influence protein properties including binding, activity and half-life. The increasingly mature toolbox with glycomic- and glycoproteomic strategies is applied for the development of biopharmaceuticals and discovery and clinical evaluation of glycobiomarkers in various disease fields. Notwithstanding the contributions of glycoscience in identifying new drug targets, the current report is focused on the biomarker modality that is of interest for diagnostic and monitoring purposes. To this end it is noted that the identification of biomarkers has received more attention than corresponding quantification. Most analytical methods are very efficient in detecting large numbers of analytes but developments to accurately quantify these have so far been limited. In this perspective a parallel is made with earlier proposed tiers for protein quantification using mass spectrometry. Moreover, the foreseen reporting of multimarker readouts is discussed to describe an individual's health or disease state and their role in clinical decision-making. The potential of longitudinal sampling and monitoring of glycomic features for diagnosis and treatment monitoring is emphasized. Finally, different strategies that address quantification of a multimarker panel will be discussed.
Collapse
Affiliation(s)
- Yuri van der Burgt
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands.
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
22
|
Bangarh R, Khatana C, Kaur S, Sharma A, Kaushal A, Siwal SS, Tuli HS, Dhama K, Thakur VK, Saini RV, Saini AK. Aberrant protein glycosylation: Implications on diagnosis and Immunotherapy. Biotechnol Adv 2023; 66:108149. [PMID: 37030554 DOI: 10.1016/j.biotechadv.2023.108149] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/10/2023] [Accepted: 04/04/2023] [Indexed: 04/10/2023]
Abstract
Glycosylation-mediated post-translational modification is critical for regulating many fundamental processes like cell division, differentiation, immune response, and cell-to-cell interaction. Alterations in the N-linked or O-linked glycosylation pattern of regulatory proteins like transcription factors or cellular receptors lead to many diseases, including cancer. These alterations give rise to micro- and macro-heterogeneity in tumor cells. Here, we review the role of O- and N-linked glycosylation and its regulatory function in autoimmunity and aberrant glycosylation in cancer. The change in cellular glycome could result from a change in the expression of glycosidases or glycosyltransferases like N-acetyl-glucosaminyl transferase V, FUT8, ST6Gal-I, DPAGT1, etc., impact the glycosylation of target proteins leading to transformation. Moreover, the mutations in glycogenes affect glycosylation patterns on immune cells leading to other related manifestations like pro- or anti-inflammatory effects. In recent years, understanding the glycome to cancer indicates that it can be utilized for both diagnosis/prognosis as well as immunotherapy. Studies involving mass spectrometry of proteome, site- and structure-specific glycoproteomics, or transcriptomics/genomics of patient samples and cancer models revealed the importance of glycosylation homeostasis in cancer biology. The development of emerging technologies, such as the lectin microarray, has facilitated research on the structure and function of glycans and glycosylation. Newly developed devices allow for high-throughput, high-speed, and precise research on aberrant glycosylation. This paper also discusses emerging technologies and clinical applications of glycosylation.
Collapse
Affiliation(s)
- Rashmi Bangarh
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana 133207, India
| | - Chainika Khatana
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana 133207, India
| | - Simranjeet Kaur
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana 133207, India
| | - Anchita Sharma
- Division of Biology, Indian Institute of Science Education and Research, Tirupati, Andhra Pradesh 517641, India
| | - Ankur Kaushal
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana 133207, India
| | - Samarjeet Singh Siwal
- Department of Chemistry, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana 133207, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana 133207, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly 243122, Uttar Pradesh, India
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, United Kingdom; School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India.
| | - Reena V Saini
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana 133207, India
| | - Adesh K Saini
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana 133207, India
| |
Collapse
|
23
|
In-Depth Analysis of the N-Glycome of Colorectal Cancer Cell Lines. Int J Mol Sci 2023; 24:ijms24054842. [PMID: 36902272 PMCID: PMC10003090 DOI: 10.3390/ijms24054842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed cancer and the second leading cause of cancer deaths worldwide. A well-known hallmark of cancer is altered glycosylation. Analyzing the N-glycosylation of CRC cell lines may provide potential therapeutic or diagnostic targets. In this study, an in-depth N-glycomic analysis of 25 CRC cell lines was conducted using porous graphitized carbon nano-liquid chromatography coupled to electrospray ionization mass spectrometry. This method allows for the separation of isomers and performs structural characterization, revealing profound N-glycomic diversity among the studied CRC cell lines with the elucidation of a number of 139 N-glycans. A high degree of similarity between the two N-glycan datasets measured on the two different platforms (porous graphitized carbon nano-liquid chromatography electrospray ionization tandem mass spectrometry (PGC-nano-LC-ESI-MS) and matrix-assisted laser desorption/ionization time of flight-mass spectrometry (MALDI-TOF-MS)) was discovered. Furthermore, we studied the associations between glycosylation features, glycosyltransferases (GTs), and transcription factors (TFs). While no significant correlations between the glycosylation features and GTs were found, the association between TF CDX1 and (s)Le antigen expression and relevant GTs FUT3/6 suggests that CDX1 contributes to the expression of the (s)Le antigen through the regulation of FUT3/6. Our study provides a comprehensive characterization of the N-glycome of CRC cell lines, which may contribute to the future discovery of novel glyco-biomarkers of CRC.
Collapse
|
24
|
Madunić K, Luijkx YMCA, Mayboroda OA, Janssen GMC, van Veelen PA, Strijbis K, Wennekes T, Lageveen-Kammeijer GSM, Wuhrer M. O-Glycomic and Proteomic Signatures of Spontaneous and Butyrate-Stimulated Colorectal Cancer Cell Line Differentiation. Mol Cell Proteomics 2023; 22:100501. [PMID: 36669592 PMCID: PMC9999233 DOI: 10.1016/j.mcpro.2023.100501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Gut microbiota of the gastrointestinal tract provide health benefits to the human host via bacterial metabolites. Bacterial butyrate has beneficial effects on intestinal homeostasis and is the preferred energy source of intestinal epithelial cells, capable of inducing differentiation. It was previously observed that changes in the expression of specific proteins as well as protein glycosylation occur with differentiation. In this study, specific mucin O-glycans were identified that mark butyrate-induced epithelial differentiation of the intestinal cell line CaCo-2 (Cancer Coli-2), by applying porous graphitized carbon nano-liquid chromatography with electrospray ionization tandem mass spectrometry. Moreover, a quantitative proteomic approach was used to decipher changes in the cell proteome. It was found that the fully differentiated butyrate-stimulated cells are characterized by a higher expression of sialylated O-glycan structures, whereas fucosylation is downregulated with differentiation. By performing an integrative approach, we generated hypotheses about the origin of the observed O-glycome changes. These insights pave the way for future endeavors to study the dynamic O-glycosylation patterns in the gut, either produced via cellular biosynthesis or through the action of bacterial glycosidases as well as the functional role of these patterns in homeostasis and dysbiosis at the gut-microbiota interface.
Collapse
Affiliation(s)
- K Madunić
- Center for Proteomics and Metabolomics, Leiden University, The Netherlands
| | - Y M C A Luijkx
- Department Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands; Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - O A Mayboroda
- Center for Proteomics and Metabolomics, Leiden University, The Netherlands
| | - G M C Janssen
- Center for Proteomics and Metabolomics, Leiden University, The Netherlands
| | - P A van Veelen
- Center for Proteomics and Metabolomics, Leiden University, The Netherlands
| | - K Strijbis
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - T Wennekes
- Department Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | | | - M Wuhrer
- Center for Proteomics and Metabolomics, Leiden University, The Netherlands.
| |
Collapse
|
25
|
Gadi MR, Chen C, Bao S, Wang S, Guo Y, Han J, Xiao W, Li L. Convergent chemoenzymatic synthesis of O-GalNAc rare cores 5, 7, 8 and their sialylated forms. Chem Sci 2023; 14:1837-1843. [PMID: 36819867 PMCID: PMC9931048 DOI: 10.1039/d2sc06925c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
All O-GalNAc glycans are derived from 8 cores with 2 or 3 monosaccharides linked via α- or β-glycosidic bonds. While chemical and chemoenzymatic syntheses of β-linked cores 1-4 and 6 and derived glycans have been well developed, the preparation of α-linked rare cores 5, 7, and 8 is challenging due to the presence of this 1,2-cis linkage. Meanwhile, the biosynthesis and functional roles of these structures are poorly understood. Herein, we synthesize 3 α-linked rare cores with exclusive α-configuration from a versatile precursor through multifaceted chemical modulations. Efficient regioselective α2-6sialylion of the rare cores was then achieved by Photobacterium damselae α2-6sialyltransferase-catalyzed reactions. These structures, together with β-linked cores 1-4 and 6, and their sialylated forms, were fabricated into a comprehensive O-GalNAc core microarray to profile the binding of clinically important GalNAc-specific lectins. It is found that only Tn, (sialyl-)core 5, and core 7 are the binders of WFL, VVL, and SBA, while DBA only recognized (sialyl-)core 5, and Jacalin is the only lectin that binds core 8. In addition, activity assays of human α-N-acetylgalactosaminide α2-6sialyltransferases (ST6GalNAcTs) towards the cores suggested that ST6GalNAc1 may be involved in the biosynthesis of previously identified sialyl-core 5 and sialyl-core 8 glycans. In conclusion, we provide efficient routes to access α-linked O-GalNAc rare cores and derived structures, which are valuable tools for functional glycomics studies of mucin O-glycans.
Collapse
Affiliation(s)
- Madhusudhan Reddy Gadi
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University Atlanta GA 30303 USA
| | - Congcong Chen
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University Atlanta GA 30303 USA
- Shandong Academy of Pharmaceutical Science, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs Jinan 250101 China
| | - Shumin Bao
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University Atlanta GA 30303 USA
| | - Shuaishuai Wang
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University Atlanta GA 30303 USA
| | - Yuxi Guo
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University Atlanta GA 30303 USA
| | - Jinghua Han
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University Atlanta GA 30303 USA
| | - Weidong Xiao
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine Indianapolis IN 46202 USA
| | - Lei Li
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University Atlanta GA 30303 USA
| |
Collapse
|
26
|
Duca M, Malagolini N, Dall'Olio F. The story of the Sd a antigen and of its cognate enzyme B4GALNT2: What is new? Glycoconj J 2023; 40:123-133. [PMID: 36287346 DOI: 10.1007/s10719-022-10089-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 11/25/2022]
Abstract
The structure Siaα2,3(GalNAcβ1,4)Gal- is the epitope of the Sda antigen, which is expressed on the erythrocytes and secretions of the vast majority of Caucasians, carried by N- and O-linked chains of glycoproteins, as well as by glycolipids. Sda is very similar, but not identical, to ganglioside GM2 [Siaα2,3(GalNAcβ1,4)Galβ1,4Glc-Cer]. The Sda synthase β1,4 N-acetylgalactosaminyl transferase 2 (B4GALNT2) exists in a short and a long form, diverging in the aminoterminal domain. The latter has a very long cytoplasmic tail and displays a Golgi- as well as a post-Golgi localization. The biosynthesis of Sda is mutually exclusive with that of the cancer-associated sialyl Lewis antigens, whose structure is Siaα2,3Galβ1,3/4(Fucα1,4/3)GlcNAc-. B4GALNT2 is down-regulated in colon cancer but patients with higher expression survive longer. In experimental systems, B4GALNT2 inhibits colon cancer progression,not only through inhibition of sialyl Lewis antigen biosynthesis. By contrast, in breast cancer B4GALNT2 is associated with malignancy. In colon cancer, the B4GALNT2 gene is regulated by multiple mechanisms, which include miRNA and transcription factor expression, as well as CpG methylation. In addition, Sda/B4GALNT2 regulates the susceptibility to infectious agents, the protection from muscle dystrophy, the activity of immune system in pregnancy and the immune rejection in xenotransplantation.
Collapse
Affiliation(s)
- Martina Duca
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, Via San Giacomo 14, 40126, Bologna, Italy
| | - Nadia Malagolini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, Via San Giacomo 14, 40126, Bologna, Italy
| | - Fabio Dall'Olio
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, Via San Giacomo 14, 40126, Bologna, Italy.
| |
Collapse
|